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CONTINUOUS MARTINGALES WITH DISCONTINUOUS
MARGINAL DISTRIBUTIONS

By DEAN ISAACSON
Iowa State University

We construct in this paper a continuous, nowhere constant, square
integrable martingale such that P{M(})* = 0} = % for k = 3. This con-
struction is used to show that in general, lim;, o[ @(s)dM (s, w)| M (t, w)
®(0) where ®(s) is nonrandom and right continuous, M (¢, ®) is a con-
tinuous, nowhere constant, square integrable, martingale, and the limit is a
limit in probability.

In a previous paper [3] we considered the question of whether or not
limp, o 374 ®(s)dM/M(t+At)— M(t) = O(z)

where the limit is taken to be a limit in probability. In the case where M(s, @)
was a Brownian motion we obtained the desired convergence. However, for
M(s, w) € M, the class of right continuous, square integrable, nowhere constant,
martingales, a counterexample showed that the convergence may fail in this case.
The open question at that time was whether or not the convergence held when
M(s, w) € #°, the class of continuous, square integrable, nowhere constant,
martingales. In this paper we will show by another counterexample that conver-
gence may fail in this case also.

The main idea of the counterexample in [3] was to find M(t, w) € A such that
P{M((3)*, ) = 0} = « > 0. Hence the first question to consider for M(t, w) .#°¢
is whether or not the random variable one gets for a fixed time can have a dis-
continuous distribution function. Since there are many similarities between
martingales of the above type and Brownian motion, (e.g. any such martingale
can be expressed as a continuous time change on a Brownian motion [1], [4] and
the sample paths of such martingales are of unbounded variation as in Brownian
motion [2]) and since Brownian motion has continuous marginal distributions, one
might expect the same to be true for martingales in .#°. To resolve this question
we consider the following example.

Let (B, &, denote a Brownian motion process where &, = o{B;:s < t}.
Define a random variable

Y= 1 if B(1, ) > ¢,
= 0 if [Bl,w)|=e,
= -1 if B(l,w) < —c.
Then define M(z, w) = E[Y| F,] for te[0,1)]. Since M(¢t, w) is a martingale

adapted to the o-fields generated by a Brownian motion, we know M(t, w) =
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o @,dB, [5]. Hence M(t, w) is a continuous martingale. In ozder to show M(z, w)
is nowhere constant we write,
M(t,0) = E[Y |#] = P{B, > ¢ | #}—P{B; < —c | #}
= P{B, > c¢|B}—P{B, < —c| B}

since B, is a Markov process. Recall that M, is nowhere constant if
P[sup,,. ,|M,—Ms| > 0] = 1 for all open intervals I. Now

P{B, < —c|B, = x} = k [Z¢, exp [-(z—x)*[2(1—1)]dz
where k depends on ¢ but not on x. So
P{B, < —c|B,} =k [Z¢ exp [—(z— B(w))*/2(1 —1)]dz.

For o fixed, as ¢ varies over an interval, the variation in B(w) will clearly cause
P[B; < —c¢ | B,] to vary a.s. From this it can be shown that

E[Y | #,]
=k [ exp [—(z— B())*[2(1 —t)]dz—k [ =5, exp [ —(z—B(w))*/2(1—1)]dz

varies a.s. over any interval. We clearly have that M(z, ) is square integrable. We
will now use the above approach to construct M(t, w) € .#° such that
P{M)(%)’% Cl)) = 0} 2 %fOI’ k=3,4,5,.

Let

Yl = 1 if BI_B%_ > (11
= 0 if |B1—Bé_| é a1
= —1 if BI—B%_ < —a1

where a, is chosen so that P{|B, —By| > a;} < }. Now define M,V = E[Y, | #].
This martingale is zero for 0 £ ¢ < 4, and continuous and nowhere constant for
1 <t=1 Let

Y2 =
= 0 if |By—By|=Za,

Nj=

= —% lf B%—B_} < _az

where a, is chosen so that P{|B;—B,| > a,} < (3)%. Define M,® = E[Y, | #].
This martingale is zero for 0 £ ¢ < 1, continuous and nowhere constant for
1<t and Y,fory =t = 1. Let

Yk = (%)k_l if B(*)R—I—B(%)k > a
= 0 if |B(%)k—1—B(i.)k| é a
= — (%)k_ 1 if B(%)k—l - B(%)k < —a

wherea,ischosensothat P{|B sy-1 —Bgyx| > a} < (3)*.Define M,® = E[Y, | #.1.
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Now define M, =Y % M,). Since|M,“’| < (4)’~* we have the series convergent
a.s. and
E[M,|F,] =Y EIMY | #]= Y5 E[E[Y; | #,] | #,]
=Y E[Y; | #] =M,

a.s. for s < ¢. Hence M, is a martingale which is clearly continuous and square
integrable. In order to show M, is nowhere constant it is sufficient to show M,® is
nowhere constant on ((3)*, (4)*~*) for each k since each M,* has constant paths
except on (D)X, 3)*~1). For simplicity let £ = 1. Then we have

M = P{B,~B, > a, | #}—P{B;—B; < —a, | #,}
= P{Bl_Bé > al |B1_B~%}_P{B1_B-§," < —a4 |Bt_B*}

and since B,— B, is again a Brownian motion for 4 < ¢ £ 1 we can use the previous
argument to show M, is nowhere constant on (4, 1). Let B,* = B,— B,.
We now note that P{M{" = 0} = 0 since

P{M,V = 0} = P{[Z exp [ —2(z—B;*(w))* ]dz
= [Z% exp [—2(z— B3 *(w))*]dz}

and the above integrals are equal if and only if B;* = 0. Similarly we can show
P{M$..» = 0} = 0 for all k. We also have

P{Mgy = 0} = 1=P{My. # 0} 2 1— 3.2, P{M{}x # 0}
= 1-3@
We now construct a right continuous, nonrandom integrand such that
o @, dM /M, +> @, as t - 0. We note that for Brownian motion we were able to

show convergence at every point ¢ when the integrand was of this type (Isaacson
(1969)). Let

q)(s) = l/n if (%)" <s< (%)n+1
o) = —1n i @ Ss< @
®0)= 0

forn=1,2,3, .
Since @ is nonrandom and bounded it is certainly integrable on [0, 1]. Now

S8 @AM, = [Mgye1—2M gyers +Myllk
and with probability at least 1 — (4)*~?2 this integral is equal to —2m;y.+1/k. Hence
P{{@ " @AM, # 0} 2 1-(3) "% > } for k = 4.

From this it follows that P{[$"“ ®,dM, s 0} = # for infinitely many k, since if
P{[$" ®,dM, # 0} < 3 then we must have P{[(¥ ®,dM; # 0} = 3. Therefore

P{|[P* @ dM,| 2 |My|e} = P{[P" O dM, # 0, My = 0} 2 -3 =4
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for infinitely many k. We conclude that when the integrator is in .#° one may not
get the convergence to the integrand that one gets when the integrator is Brownian
motion.
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