ACCURACY OF CONVERGENCE OF SUMS OF DEPENDENT RANDOM VARIABLES WITH VARIANCES NOT NECESSARILY FINITE¹

By H. W. Block

University of Pittsburgh

Let $S_n = \sum_{k=1}^{k_n} X_{nk}$ and X be random variables with distribution functions $F_n(x)$ and F(x). No assumptions are made that the (X_{nk}) have finite means or variances. Also, no independence conditions are assumed. A bound is found for

$$M_n = \sup_{-\infty < x < \infty} |F_n(x) - F(x)|.$$

This bound involves various truncated moments and conditional probabilities and expectations. A typical quantity involved is $\sum_{k=1}^{k} E|E|$ $(X_{nk}|\sum_{j=1}^{k-1} X_{nj}) - E(X_{nk})|$. Using this bound, particular conditions are found so that S_n converges in distribution to X.

1. Introduction and summary. Let (X_{nk}) , $k = 1, 2, \dots, k_n$, $n = 1, 2, \dots$ be a system of random variables with distribution functions $F_{nk}(x)$. Let $S_n = \sum_{k=1}^{k_n} X_{nk}$ have distribution function $F_n(x)$ and X be a random variable with distribution function F(x). If $\mathcal{L}(S_n) \to \mathcal{L}(X)$ (i.e., S_n converges in distribution to X), it has been of interest to investigate bounds on

$$M_n = \sup_{-\infty < x < \infty} |F_n(x) - F(x)|.$$

In this paper we obtain a bound on M_n and use the bound to give conditions for the convergence of S_n to X where neither finite variances of the X_{nk} nor any independence conditions are assumed. The convergence theorem is of a type considered by Loève in [5] and by the author in [1] assuming finite variances of the X_{nk} . Theorem 1, whose proof is given in Section 3, gives the bound on M_n . The main component of this bound, $g^a(n, m, r)$, is given at the end of Section 2.

THEOREM 1. Let (X_{nk}) be a system of random variables and X be an infinitely divisible random variable with distribution function F(x). Assume F'(x) = dF(x)/d(x) exists for each x and is bounded by B. Then for each r and a such that $0 < r \le 1$, a > 1

$$M_n = \sup_{-\infty < x < \infty} \left| F_n(x) - F(x) \right| \le \sum_{k=1}^{k_n} \left(F_{nk}(-a) + 1 - F_{nk}(a) \right) + h(B)g^a(n, m, r)$$
 if $\sigma_{nk}^2(a) \le 1$ for all n, k^2 where $h(b)$ depends only on B .

www.jstor.org

Received February 2, 1971.

¹ Presented to the American Mathematical Society, January 23, 1970.

AMS 1970 subject classifications. Primary 60F05; Secondary 60E05.

Key words and phrases. Lévy-Khintchine representation, Kolmogorov representation, bounds on rates of convergence, infinitesimal, convergence in distribution.

² This is a very mild assumption as seen by the remark of the next to the last paragraph of [1].

Theorems of this type were discussed by Shapiro [6] and Boonyasombut and Shapiro [2] and were applied by them to specific limit theorems where X_{n1} , X_{n2} , ..., X_{nk_n} were assumed to be independent for each n.

2. Notation. For a > 0, let

$$X_{nk}^a = X_{nk}$$
 if $-a < X_{nk} \le a$
= 0 otherwise

with $S_n^a = \sum_{k=1}^{k_n} X_{nk}^a$, $F_{nk}^a(x)$ and $F_n^a(x)$ the corresponding distribution functions, means $\mu_{nk}(a)$ and $\mu_n(a)$, $\sigma_{nk}^2(a)$ the variance of X_{nk}^a and $\sigma_n^2(a) = \sum_{k=1}^{k_n} \sigma_{nk}^2(a)$. Also let

$$\begin{split} F_{nk}^{a'}(x) &= P(X_{nk}^{a} \leq x \mid \sum_{j=1}^{k-1} X_{nj}^{a}) \\ E'(X_{nk}^{a}) &= E(X_{nk}^{a} \mid \sum_{j=1}^{k-1} X_{nj}^{a}) \\ K_{nk}^{a}(x) &= \int_{-\infty}^{x} u^{2} dF_{nk}^{a}(u + \mu_{nk}(a)), K_{n}^{a}(x) = \sum_{k=1}^{k_{n}} K_{nk}^{a}(x) \\ K_{nk}^{a'}(x) &= \int_{-\infty}^{x} u^{2} dF_{nk}^{a'}(u + \mu_{nk}(a)). \end{split}$$

We say (X_{nk}^*) is the independent version of (X_{nk}) if for all n, k, X_{nk}^* and X_{nk} have the same distribution and for each $n, X_{n1}^*, X_{n2}^*, \dots, X_{nk_n}^*$ are independent.

Let X be an infinitely divisible random variable with Lévy-Khintchine representation (see (2.1) of [2]) determined by the function G(u) and the constant γ . Let

$$G^{a}(u) = 0 if u \le -a,$$

$$= G(u) - G(-a) if -a < u \le a, \gamma^{a} = \gamma - \int_{|u| > a} u^{-1} dG(a)$$

$$= G(a) - G(-a) if u > a,$$

which by the above representation determines a unique infinitely divisible random variable X^a with distribution function $F^a(x)$, mean $\mu(a)$, variance $\sigma^2(a)$ (which can be shown to be finite), and Kolmogorov representation (see page 85 of [4]) given by a bounded non-decreasing function $K^a(x)$ and the constant $\mu(a)$.

For any A > 0 such that $\pm A$ are continuity points of G(u), let $0 < \delta \le 2A$ and define $m = m(A, \delta) = [2A/\delta] + 1$, $-A = x_0 < x_1 < \cdots < x_m = A$ with x_i continuity points of G(u) and such that $\max (x_i - x_{i-1}) < \delta$. Then for r > 0 let

$$g^{a}(n, m, r) = \left[\frac{5}{16}\sigma_{n}^{2}(a) \max_{1 \le k \le k_{n}} \sigma_{nk}^{2}(a)\right]^{\frac{1}{5}} + \left[\frac{5}{6}\delta(3\sigma_{n}^{2}(a) + \sigma^{2}(a))\right]^{\frac{1}{5}}$$

$$+ \left[\frac{1}{2}\sum_{i=0}^{m} \sum_{k=1}^{k_{n}} E\left|K_{nk}^{a'}(x_{i}) - K_{nk}^{a}(x_{i})\right| + \frac{1}{2}\sum_{i=0}^{m} \left|K_{n}^{a}(x_{i}) - K^{a}(x_{i})\right|\right]^{\frac{1}{5}}$$

$$+ \left[2\sum_{k=1}^{k_{n}} E\left|E'(X_{nk}^{a}) - \mu_{nk}(a)\right| + 2\left|\mu_{n}(a) - \mu(a)\right|$$

$$+ (4/A)(2\sigma_{n}^{2}(a) + K_{n}^{a}(\infty) - K_{n}^{a}(A) + K^{a}(\infty) - K^{a}(A) + K_{n}^{a}(-A)$$

$$+ K^{a}(-A))\right]^{\frac{1}{5}}$$

$$+ \left[\frac{8\int_{|u| > a} \left|u\right|^{r} dG(u)}{r}\right]^{1/1 + r}$$

$$+ \left[\frac{8\int_{|u| > a} \left|u\right|^{r} dG(u)}{r}\right]^{1/1 + r}$$

2136 H. W. BLOCK

3. Proof of Theorem 1. The following proof combines the techniques of Theorem 1 of [2] and Theorem 2 of [1]. The crucial approximation of $|\phi_n^a(t) - \phi^a(t)|$ derives from Lemma 2 of [1].

PROOF. To obtain the bound for M_n observe that

$$\begin{aligned} \left| F_{n}(x) - F(x) \right| &\leq \left| F_{n}(x) - F_{n}^{a}(x) \right| + \left| F_{n}^{a}(x) - F(x) \right| \\ &\leq \sum_{k=1}^{k_{n}} \left| F_{nk}(-a) + 1 - F_{nk}(a) \right| + \left| F_{n}^{a}(x) - F(x) \right| \end{aligned}$$

where the second inequality follows from Lemma 1 of [2]. A bound is now found for $|F_n{}^a(x)-F(x)|$. Let $\phi_n{}^a(t)$, $\phi^a(t)$ and $\phi(t)$ be the characteristic functions of $S_n{}^a$, X^a , and X respectively. Then

$$\left|\phi_n^{a}(t) - \phi(t)\right| \leq \left|\phi_n^{a}(t) - \phi^{a}(t)\right| + \left|\phi^{a}(t) - \phi(t)\right|.$$

By the proof of Theorem 2 of [1] if $T_n = 1/g^a(n, m, r)$, then for $|t| \leq T_n$

$$\begin{aligned} \left| \phi_{n}^{a}(t) - \phi^{a}(t) \right| &\leq \left| t \right|^{4} \left[\frac{5}{8} \sigma_{n}^{2}(a) \max_{1 \leq k \leq k_{n}} \sigma_{nk}^{2}(a) \right] + \left| t \right|^{3} \left[\frac{5}{4} \delta(3\sigma_{n}^{2}(a) + \sigma^{2}(a)) \right] \\ &+ \left| t \right|^{2} \left[\frac{1}{2} \sum_{i=0}^{m} \sum_{k=1}^{k_{n}} E \left| K_{nk}^{a'}(x_{i}) - K_{nk}^{a}(x_{i}) \right| + \frac{1}{2} \sum_{i=0}^{m} \left| K_{n}^{a}(x_{i}) - K^{a}(x_{i}) \right| \right] \\ &+ \left| t \right| \left[\sum_{k=1}^{k_{n}} E \left| E'(X_{nk}^{a}) - \mu_{nk}(a) \right| + \left| \mu_{n}(a) - \mu(a) \right| + (2/A) \left\{ 2\sigma_{n}^{2}(a) + K_{n}^{a}(\infty) - K_{n}^{a}(A) + K^{a}(\infty) - K^{a}(-A) + K^{a}(-A) \right\} \right]. \end{aligned}$$

From Lemma 2 of [2]

$$\left|\phi^a(t) - \phi(t)\right| \le 4\left|t\right|^r \int_{|u| > a} \left|u\right|^r dG(u).$$

Now applying a result of Esseen [3], for any p > 1

$$\sup_{-\infty < x < \infty} \left| F_n^{a}(x) - F(x) \right| \leq \frac{p}{2\pi} \int_{-T_n}^{T_n} \left| \frac{\phi_n^{a}(t) - \phi(t)}{t} \right| dt + c(p) \cdot \frac{B}{T_n}$$

where c(p) is a constant depending only on p. It is easy to show that

$$\int_{-T_n}^{T_n} \left| \frac{\phi_n^{a}(t) - \phi(t)}{t} \right| dt \leq g^{a}(n, m, r).$$

Thus

$$\sup_{-\infty < x < \infty} \left| F_n^{a}(x) - F(x) \right| \le \left(\frac{p}{2\pi} + c(p) \cdot B \right) g^a(n, m, r)$$

and so by fixing p and letting $h(B) = (p/2\pi + c(p) \cdot B)$ the theorem follows.

4. A convergence theorem. In [1], [2], and [6] theorems similar to Theorem 1 were proven for specific limit theorems. Then in each case the bounds obtained on M_n were shown to converge to zero under conditions of the particular limit theorems under discussion. In this paper, the bound of the previous section, obtained without reference to a particular limit theorem, yields immediate conditions for a limit theorem. At the same time these conditions are such that the bound on M_n converges to zero. A corollary to Theorem 1 is thus obtained with conditions similar to those in [5] for random variables whose variances are not necessarily finite.

THEOREM 2. Let (X_{nk}) be a system of infinitesimal random variables with X as in Theorem 1. Also let $\mathcal{L}(S_n^*) \to \mathcal{L}(X)$ where $S_n^* = \sum_{k=1}^{k_n} X_{nk}^*$ and (X_{nk}^*) is the independent version of (X_{nk}) .³ Then $\mathcal{L}(S_n) \to \mathcal{L}(X)$ if

- (i) there is an r > 0 such that $\int_{-\infty}^{\infty} |u|^r dG(u) < \infty$,
- (ii) $\lim_{n\to\infty} \sum_{k=1}^{k_n} E|E'(X_{nk}^a) \mu_{nk}(a)| = 0,$

(iii)
$$\lim_{n\to\infty} \sum_{k=1}^{k_n} E |K_{nk}^{a'}(x) - K_{nk}^{a}(x)| = 0$$

for all x and a which are continuity points of G(u), the Lévy-Khintchine function associated with X. Furthermore, the bound on M_n converges to zero as n goes to ∞ .

PROOF. The proof of the last statement establishes the theorem. We first observe that if (X_{nk}) is infinitesimal so is (X_{nk}^a) . It then follows that $\lim_{n\to\infty} \max_{1\le k\le k_n} \sigma_{nk}^2(a) = 0$. From the fact that $\mathcal{L}(S_n^*) \to \mathcal{L}(X)$ we have by Theorem 3 of [8] that for each a which is a continuity point of G(u) that $\mathcal{L}(S_n^{*a}) \to \mathcal{L}(X^a)$ where $S_n^{*a} = \sum_{k=1}^{k_n} X_n^{*a}$. Furthermore, by Theorem 6 of the same paper we have that $\lim_{n\to\infty} \sigma_n^2(a) = \sigma^2(a)$ and $\lim_{n\to\infty} \mu_n(a) = \mu(a)$. Since $\mathcal{L}(S_n^{*a}) \to \mathcal{L}(X^a)$ it follows from the proof of Theorem 2, page 100 of [4] and the remark following it that $K_n^a(x) \to K^a(x)$ and $K_n^a(+\infty) \to K^a(+\infty)$. We then have that as $n\to\infty$

$$K_n^{a}(\infty) - K_n^{a}(A) + K^{a}(\infty) - K^{a}(A) + K_n^{a}(-A) + K^{a}(-A)$$

 $\rightarrow 2(K^{a}(\infty) - K^{a}(A) + K^{a}(-A)).$

We now let $A = 1/\delta^{\frac{1}{2}}$ and realize that in $g^a(n, m(A, \delta), r)$, δ is a function of n so we write δ_n and $m(A, \delta) = m(\delta_n)$. Then we can find a sequence $\delta_n = \delta_n(a)$ so that $\pm \delta_n^{-\frac{1}{2}}$ are continuity points of G(u) and such that

$$\left[\frac{1}{2} \sum_{i=1}^{m(\delta_n)} \sum_{k=1}^{k_n} E \left| K_{nk}^{a'}(x_i) - K_{nk}^{a}(x_i) \right| + \frac{1}{2} \sum_{i=0}^{m(\delta_n)} \left| K_n^{a}(x_i) - K^a(x_i) \right| \right] \\
\to 0 \quad \text{as} \quad n \to \infty.$$

Thus it is clear that for each a which is a continuity point of G(u)

$$\lim_{n\to\infty}\left\{g^a(n,\,m(\delta_n(a)),\,r)-\left\lceil\frac{8\int_{|u|>a}\left|u\right|^rdG(u)}{r}\right\rceil^{1/1+r}\right\}=0$$

and so by Lemma 5 of [2] we can find $a_n \le a_{n+1}$ so that $\lim_{n\to\infty} a_n = \infty$ and $\lim_{n\to\infty} g^{a_n}(n, m(\delta_n(a_n)), r) = 0$. Since by Lemma 4 of [2] $\lim_{n\to\infty} \sum_{k=1}^{k_n} (F_{nk}(-a_n) + 1 - F_{nk}(a_n)) = 0$, the result follows.

Acknowledgment. The author would like to thank Professor J. M. Shapiro for his guidance and the suggestion of the problem which led to [1]. His encouragement also influenced the investigation which culminated in the present results.

³ This condition is equivalent to assuming certain conditions on F_{nk} (x) such as those given in Theorem 1, Section 25 of [4].

⁴ This condition is satisfied by all stable laws, for example.

2138 H. W. BLOCK

REFERENCES

- [1] BLOCK, H. W. (1970). Error estimation for a limit theorem for dependent random variables.

 Ann. Math. Statist. 41 1334-1338.
- [2] BOONYASOMBUT, V. and SHAPIRO, J. M. (1970). The accuracy of infinitely divisible approximations to sums of independent variables with applications to stable laws. *Ann. Math. Statist.* 41 237–250.
- [3] Esseen, C. G. (1945). Fourier analysis of distribution functions. Acta Math. 77 1-125.
- [4] GNEDENKO, B. V. and KOLMOGOROV, A. N. (1954). Limit Distributions for Sums of Independent Random Variables, translated by K. L. Chung. Addison-Wesley, Reading.
- [5] Loève, M. (1950). On sets of probability laws and their limit elements. Univ. Calif. Publ. Statist. 153-87.
- [6] Shapiro, J. M. (1955). Error estimates for certain probability theorems. Ann. Math. Statist. 26 617-630.
- [7] Shapiro, J. M. (1956). A condition for existence of moments of infinitely divisible distribution functions. *Canad. J. Math.* **8** 69–71.
- [8] Shapiro, J. M. (1957). Sums of independent truncated random variables. *Ann. Math. Statist.* **28** 754–761.