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ACCURACY OF CONVERGENCE OF SUMS OF DEPENDENT
RANDOM VARIABLES WITH VARIANCES NOT NECESSARILY FINITE!

By H. W. BLock
University of Pittsburgh

Let S, = X", X, and X be random variables with distribution
functions F,(x) and F(x). No assumptions are made that the (X.i) have
finite means or variances. Also, no independence conditions are assumed.
A bound is found for

M, = SUP_ 0 <x< uoIFn(x)_F(x)[~

This bound involves various truncated moments and conditional proba-
bilities and expectations. A typical quantity involved is Zz":lE|E
(X 521 X,1) — E(Xwo)|. Using this bound, particular conditions are found
so that S, converges in distribution to X.

1. Introduction and summary. Let (X,), k= 1,2,--,k,, n=1,2,--- be a
system of random variables with distribution functions Fy,(x). Let S, = Y .| X,
have distribution function F,(x) and X be a random variable with distribution
function F(x). If Z(S,) — Z£(X) (i.e., S, converges in distribution to X), it has been
of interest to investigate bounds on

Mn = SUP- p<x<oo |F"(X)——F(X)|

In this paper we obtain a bound on M, and use the bound to give conditions for
the convergence of S, to X where neither finite variances of the X, nor any
independence conditions are assumed. The convergence theorem is of a type
considered by Loéve in [S] and by the author in [1] assuming finite variances of the
X,x. Theorem 1, whose proof is given in Section 3, gives the bound on M,. The
main component of this bound, g“(n, m, r), is given at the end of Section 2.

THEOREM 1. Let (X,,) be a system of random variables and X be an infinitely
divisible random variable with distribution function F(x). Assume F'(x) = dF(x)/d(x)
exists for each x and is bounded by B. Then for each r and a such that 0 < r £ 1,
a>1

Mn = SUP_p<x<w IFn(x)_F(x)l é 2:21 (Fnk(_a)+1_Fnk(a))+h(B)ga(na m, r)
if % (a) £ 1 for all n, k * where h(b) depends only on B.
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2 This is a very mild assumption as seen by the remark of the next to the last paragraph of [1].
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Theorems of this type were discussed by Shapiro [6] and Boonyasombut and
Shapiro [2] and were applied by them to specific limit theorems where X,;,
Xoi25 *++» Xy, were assumed to be independent for each n.

2. Notation. For g > 0, let
Xﬁk = Xnk if —a < Xnk é a

=0 otherwise
with S,* = Yk= | X%, F4 (x) and F,%(x) the corresponding distribution functions,
means p,,(a) and p,(a), o2 (a) the variance of X% and 6,2 (a) = Y%, 62 (a). Also
let
w(0) = P(Xi < x | T2t X5

E'(Xm) = E(Xq | Y521 X))
Knk(x) = |2 5 u?dFi(u+ py(a)), K, (x) = iy Ky (%)
e (%) = X u?dFgy (u+ pu(a)).

We say (X,5) is the independent version of (X,,) if for all n, k, X* and X,; have the
same distribution and for each n, X5, X5, ---, X, are independent.

Let X be an infinitely divisible random varlable with Lévy—Khintchine represen-
tation (see (2.1) of [2]) determined by the function G(u) and the constant y. Let

G%(u) =0 if u< —a,
= Gu)—G(—a) if —a<uga, Y == ju>a 4 'dG(a)
= G(a)—G(—a) if u>a,
which by the above representation determines a unique infinitely divisible random
variable X with distribution function F*(x), mean u(a), variance o*(a) (which can
be shown to be finite), and Kolmogorov representation (see page 85 of [4]) given
by a bounded non-decreasing function K%(x) and the constant u(a).

For any 4 > 0 such that + 4 are continuity points of G(u), let 0 < § < 24 and
define m = m(4, ) = [24/0]1+1, —A=x,<x, <+ <Xx,=A with x;
continuity points of G(u) and such that max (x;—x;_,) < 6. Then for r > 0 let

g°(n, m, 1) = [150,%(a) max, gxzs,, o3(a)]* +[86(30,°(a) + 0> (a))]*

+['% Z Zk 1 EIK k(xl) K (xl)|+l Z =0 IK a(xl) Ka(x )l]-}
+[2 i1 E|E'(X5) — (@) +2| (@) — p(a)|
+(4/4)(20,*(a)+ K,(00) — K,*(A) + K*(c0) — K*(4) + K, — A)
+K(— AT

8 ul>a rdG 1/1+r
+[ J1u>a [u] (“)] .

r
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3. Proof of Theorem 1. The following proof combines the techniques of Theorem
1 of [2] and Theorem 2 of [1]. The crucial approximation of |¢,°(t) — ¢“(¢)| derives
from Lemma 2 of [1].

Proor. To obtain the bound for M, observe that
|Fu()—F(x)| £ |Fu(x)—F, ()| + |F,%(x)— F(x)|
< Yiry (Fu(—a)+1—F (@) + |F, (x)— F(x)|

where the second inequality follows from Lemma 1 of [2]. A bound is now found
for |F,,"(x)—F(x)|. Let ¢,%(2), ¢°(t) and ¢(¢) be the characteristic functions of
S,% X* and X respectively. Then

|9, —d(D)] < |¢a" (D) — (D] + () — $(2)).
By the proof of Theorem 2 of [1]if T, = 1/g%n, m, r), then for |¢| £ T,
9.0 —¢°(D)] < |1]*[30,°(a) max, gi<k, oml@)] + |t [30(30,%(a) + 0% (a))]

e[ Yo Yy E[Kp(x) — Ka(x)|+3 2o [Ka' () — K (x| ]
+[t|[Xhm 1 E|E (X5 — tad@)| + [1(a) — (@) |+ (2/ A){20,%(a)
+K,%(00) — K,%(A) + K%(00) — K(— A) + K%(— A)}].

From Lemma 2 of [2]

|6°()— @] < 4]t [1u1>a [u[dC(w).
Now applying a result of Esseen [3], for any p > 1

¢.°(0)— (1) B
_——t—— } dt+c(p)- 'T—n

p (™
SUP -0 <x<w IF,,a(X)—F(X)I = ﬂj\

—Th
where ¢(p) is a constant depending only on p. It is easy to show that

J ™1, () — ()
-,

SUP_ p<x<oo |[Fa'(X)—F(x)| £ <§%+0(p)'3>g“(n, m, r)

; dt < g(n, m, r).
and so by fixing p and letting #(B) = (p/2n+c(p)- B) the theorem follows.

Thus

4. A convergence theorem. In [1], [2], and [6] theorems similar to Theorem 1
were proven for specific limit theorems. Then in each case the bounds obtained on
M, were shown to converge to zero under conditions of the particular limit theorems
under discussion. In this paper, the bound of the previous section, obtained without
reference to a particular limit theorem, yields immediate conditions for a limit
theorem. At the same tine these conditions are such that the bound on M|, converges
to zero. A corollary to Theorem 1 is thus obtained with conditions similar to those
in [5] for random variables whose variances are not necessarily finite.
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THEOREM 2. Let (X,,) be a system of infinitesimal random variables with X as in
Theorem 1. Also let £(S,*) » L (X) where S,* =Y, X} and (X%) is the
independent version of (X,;).> Then #(S,) - L(X) if

(i)  thereis an r > 0 such that |2, |u|'dG(u) < oo, *
(”) limn—'oo Zz"=1 ElE’(X:k)—ﬂnk(a)l = Oa
(i) lim,., Yz EjKi(0) = Kn(x)| =0

for all x and a which are continuity points of G(u), the Lévy—Khintchine function
associated with X. Furthermore, the bound on M, converges to zero as n goes to co.

PrROOF. The proof of the last statement establishes the theorem. We first
observe that if (X,,) is infinitesimal so is (X3). It then follows that
lim, , ,, max, <, <, 02(a) = 0. From the fact that £(S,*) » £(X) we have by
Theorem 3 of [8] that for each a which is a continuity point of G(u) that
Z(S,*) - £(X°) where S,** = Y%, X,* Furthermore, by Theorem 6 of the
same paper we have that lim,_ , 6,%(a) = 6*(a) and lim,_, ., u.(a@) = u(a). Since
L(S,*) - L(X° it follows from the proof of Theorem 2, page 100 of [4] and the
remark following it that K,%(x) — K%x) and K,*(+ o) — K*(+ o). We then have
that as n - o

K,%(0)— K,*(4) + K%00)— K*(A)+ K, (—A) + K(— A)
— 2(K*%0)— K%A)+K(— A)).
We now let 4 = 1/6* and realize that in g*(n, m(4, J), r), J is a function of n so we

write J, and m(4, 6) = m(6,). Then we can find a sequence J, = J,(a@) so that
+8,”* are continuity points of G(u) and such that

[3 Y% Yam s E|Ki(x) — Ka(x) | +3 Y% |K,4(x) — K(x))|]
—-0 as n - oo.

Thus it is clear that for each a which is a continuity point of G(«)

r 1/1+r
lim,, , 5, {g“(n, m(d,(a)), ;~)_[85_M>L|7“|_‘§@] } -0

and so by Lemma 5 of [2] we can find g, £ a,4, so that lim,., a, = © and
lim,, , g°(n, m(3,(a,)), r) = 0. Since by Lemma 4 of [2] lim,_, , Y s~ { (Fp(—a,)+
1-F_(a,)) = 0, the result follows.

Acknowledgment. The author would like to thank Professor J. M. Shapiro for
his guidance and the suggestion of the problem which led to [1]. His encouragement
also influenced the investigation which culminated in the present results.

3 This condition is equivalent to assuming certain conditions on Fy, (x) such as those given in
Theorem 1, Section 25 of [4].

4 This condition is satisfied by all stable laws, for example.
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