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ON THE CONTINUITY PROPERTIES OF L FUNCTIONS!

By STEPHEN JAMES WOLFE
University of California, Riverside and University of Delaware

A necessary and sufficient condition is obtained for an L function to
have a continuous derivative of the kth order. Other results concerning
the continuity properties of infinitely divisible distribution functions are
also obtained.

1. Introduction and summary. The definition of an L function, i.e., a distribution
function in class L, and a discussion of its elementary properties can be found in
Gnedenko and Kolmogorov (1954, Chapter 6).

By 1963 it was shown that every non-degenerate L function is absolutely con-
tinuous (see Fisz and Varadarajan (1963, page 336)) or (Zolotarev (1963, Theorem
2, page 125)). It is quite easy to show that an L function with a normal component
has continuous derivatives of all orders. Let F(x) be an L function without a
normal component and with Lévy spectral function M(u). Let A(u) = uM’(x). In
this paper it will be shown that a necessary and sufficient condition for F(x) to have
continuous derivatives (or absolutely continuous derivatives) of the first k orders
is that A(+0)+|4(—0)| > k. The sufficiency of the condition follows from a slight
extension of a theorem of V. M. Zolotarev (1963, Theorem 3, page 131). However,
a much deeper analysis of the continuity properties of L functions than that made
by Zolotarev is necessary in order to show the necessity of the condition.

2. Three lemmas. Three lemmas will be needed for the proof of the main theorem
of this paper. The statements and proofs of the lemmas will now be given.

LEMMA 1. Let F(x) and G(x) be two distribution functions such that F(x) has abso-
lutely continuous and integrable derivatives of the first n orders. Then F*G(x) has
absolutely continuous and integrable derivatives of the first n orders that vanish at
infinity and

(F*G)P(x) = [2 FO(x—y)dG(y)
for 1 £ i £ n. Ifin addition F"*')(x) is integrable then
(F*G)" " D(x) = |2, F"" D(x—y) dG(y)
for almost all x and (F*G)™" ')(x) is integrable.
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PRrOOF. Since F’(x) is absolutely continuous the function

q(x) = |2, F'(x—y) dG(y)
is also absolutely continuous. Since F’(x) is integrable it follows from Fubini’s
theorem that g(x) is integrable. It also follows from Fubini’s theorem that

F*G(x) = [* , q(?)dt.
Thus (F*G)'(x) = g(x). Since (F*G)'(x) is absolutely continuous and integrable it

vanishes at infinity. The remainder of Lemma 1 can be proved in a similar
manner. []

LEMMA 2. Letp > 0,4, 20,4, = 0, and A, +A, > 0. Let H(x) be a distribution

Sfunction with characteristic function
h(t) = exp {— 2, [° ,(e™ = 1)/udu+2, [5(e™ —1)[u du}.

Let k be the largest integer smaller than A, + A,. Then H(x) has absolutely continuous
derivatives of the first k orders and integrable derivatives of the first k+1 orders.
However, H(x) does not have a continuous derivative of the (k+1)th order. All
derivatives of H(x) vanish at infinity.

PrROOF. Let F(x) and G(x) be the distribution functions with characteristic
functions

J(t) = exp {4, [5(e™ — D)/udu},
g(0) =exp{—4, |2, (e™—1)|udu}

respectively. It will be assumed that 4; > 0and A4, > 0. The proof can be modified
slightly if A, = 0 or 4, = 0. Let k, and k, be the largest integers smaller than A,
and A, respectively. Let A(x), f(x), and g(x) be the density functions of H(x), F(x),
and G(x) respectively. Since h(t) = f(£)4(z) it follows that H(x) = F*G(x). It has
been shown in the proof of Lemma 1 of Wolfe (1971) that

)] f(x)=0 if x<0,

2 f(x) =c,x*"t  if 0<x<p, where ¢, > 0,
(3) fx) =(A/0)[Fx)=F(x—p)] if x>0,

and

@ xf'(x) = (A= D)f(x)— 4 f(x—p) if x>0.

In a similar manner it can be shown that

%) ‘ gx)=0 if x>0,

(6) g(x) = cq|x|M 7! if —p<x<0, where ¢, > 0,
@) g(x) = (4/0[Gx)-G(x+p)] if x<O,

and

@® xg'(x) = (4, —Dg(x)—Ag(x+p)  if x<O.
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It was also shown in Wolfe (1971) that
® xh'(x) = (A + A, —Dh(x)— A h(x+p)—Ah(x—p)  if x#0.

It follows from the above statements that

(10 FM(x) =c,*x*27 "1 if 0<x<p,
(1) fO%x) =1/0)[(A—n)f"Px) -2,/ D(x—p)]  if x>0,
(12) 90(x) = (=1)e *x[ "t if —p<x<0,

13)  g”x) =1A/N)[A—mg" P(x)=24g" P(x+p)] if x<0,
and
(14)  h™(x) = (A/x)[(Ay + A = )b~ D(x) = 2,k D (x + p) = A,h" ™ D(x - p)]
if x#0,

where ¢, * = (4, —1) --- (A; —m)cy and ¢,* = (A, —1) - (A, —n)c,.

The distribution functions F(x) and G(x) are L functions and are therefore
absolutely continuous. It follows from (1), (3), (10), and (11) that if k, > O then
f(x) is absolutely continuous and has absolutely continuous derivatives of the first
k,—1 orders and integrable derivatives of the first k, orders. Similarly it follows
from (5), (7), (12), and (13) that if k&, > 0 then g(x) is absolutely continuous and
has absolutely continuous derivatives of the first k;, —1 orders and integrable
derivatives of the first k, orders. Also f*?)(x) and g®**)(x) are absolutely continuous
on (— 0, 0) and (0, o).

Since H(x) = F*G(x) it follows that

15) h(x) = [2 o f(x—y)g(y)dy.

By Fubini’s theorem it is possible to differentiate under the integral sign and get
that

(16) W D(x) = 2, fO(x—y)g P (y) dy
if0<i<k,0=<j<k,and0<i+j<k +k,—1. Also
17 hETD(x) = [2, f D (x—y)g®(y)dy  if x>0

= [ f®(g* ) (x—y)dy if x<O.

If k; > 0 or k, > 0O then A(x) is absolutely continuous. If 0 < i < k,,0 < j < ky,
and 1 £ i+j £ ky+k,—1 then A%*(x) is absolutely continuous. From (16) it
follows that A(x) has integrable derivatives of the first k; +k,— 1 orders. From (14)
it follows that A(x) and all derivatives of A(x) vanish at infinity. From the definition
of k, ky, and k,, it follows that either k = k, +k, or k = k; +k,+1. Two cases
must be considered.

Case 1. k = k,+k,. In this case it has been shown that H(x) has absolutely
continuous derivatives of the first k orders that vanish at infinity and integrable
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derivatives of the first k+1 orders. From (2), (6), and (17) it follows that if
0 < x < p/4,

(18) h(k1+kz)(x) =c *62*55/4(x+y)lz—kz—lyll_kl_l dy
+[57af “x+)g* (= y) dy.

Let A,(x) and A,(x) denote respectively the first and second expressions on the
right side of (18). By (11) f*?)(x) is bounded on (p/4, o). It follows from this that
A,(x) is bounded on (0,p/4). If k =k;+k, then 0 < i,—k; <1 and
0 < A,—k, < 1. It follows that (x+y)*27%~! < y»27%~! for 0 < x < p/4 and
0 < y < p/4 and that

(19) A(%) Z e Fey* B (x+yyhit Rtk 2 gy

for 0 <x <p/4. It follows from (19) that lim,,o,d4;(x) = co. Thus
lim, o4 h**¥)(x) = co and h***)(x) is not continuous.

Case 2. k = ky+k,+1. It has been shown that A(x) has absolutely continuous
derivatives of the first k; +k,—1 orders. It will now be shown that A*1**?(x) is
absolutely continuous. Using the notation previously developed it can easily be
seen that since £*?)(x) is absolutely continuous on (p/4, co) and g*"(x) is integrable
that A,(x) is continuous from the right at 0. If 0 < x < p/4 then

(20) A(x) S ¢ *Cz*_‘.gmylﬂh_h_kz_ldy < ©.

From the monotone convergence theorem and (20) it follows that 4,(x) is con-
tinuous from the right at 0. Thus A% **2)(x) is continuous from the right at 0. In a
similar manner it can be shown that A% **?(x) is continuous from the left at 0.
Thus A% **)(x) is continuous at 0. From (14) and the fact that A***2~1 is
absolutely continuous it follows that A***?(x) is absolutely continuous and
pki+k2t () is integrable.

To complete the proof it must be shown that 2*1**2* V(x) is not continuous.
If x > 0 it follows from (11) that f*2*1)(y) is integrable over (x, co). From (10),
(12), (17), and Fubini’s theorem, it follows that for almost all x such that
0 < x<pl4

(21) h(k1+k2+1)(x) — j‘gof(k2+1)(x+y)g(kl)(_y) dy
and
(22) WO D (x) = (1, —ky— ey e, * 84 (e y) 202y ™1 dy
+f@a fE D (x+ y)g* (= y) dy.

In a similar manner it follows from the same statements that for almost all x such
that —pf4 < x <0,

@3) R0 = [ ED(g % x—p) dy
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and
(24) h*HRrD(x) = (Ay—ky—D)ey *e, * (B4 (x+ y) M2yl gy
+ [ fP()g* * V(x— y)dy.

Let A5(x) and A4 4(x) denote the first and second expressions on the right side of (22).
From (13) and the fact that g% ~*)(y) is bounded it follows that g*"(x) is bounded
on (— oo, —p/4). From (11) and the fact that f*2(y) is integrable it follows that
f%2*1)(x) is integrable over (p/4, 00). It follows from these two statements that
A4(x) is bounded for x > 0. If ,—k, < 1 then it follows by an argument similar
to the one used in the proof of the previous case that lim,_ o, A5(x) = —o0.
Thus lim, ¢, A% **2*(x) = — 0. By a similar proof it can be shown that if
A —k; < 1then lim, o A% *e2¥D(x) = —o0, If A;—k; = 1 and A,—k, = 1 it
follows from (10) and (12) that

25  [ofErP(g* (=) dy = —ci e, *+ 5 f*P(0)g* T V(- y) dy.

It follows from (21), (22), (23), (24) and (25) that A****2*U(x) is bounded and
pRitiet D) = pitke*D_0)—¢c *c,* if A, —k, =1 and A,—k, =1. If
k = k,+k,+1 then ¢;* > 0 and c,* > 0. It has been shown that A%:*k2*1(x)
is not continuous at 0 if k = ky+k,+1. []

LEMMA 3. Let Fy(x) be a non-degenerate L function with Lévy spectral function
My(u). Let o(w) = uM,'(u) for u # 0. Assume that Af(u) = —A; for —p S u <0
ando(u) = A, for0 < u < pwhere Ay =2 0,4, =20, andp > 0. Let k be the largest
integer smaller than A, + A,. The L function Fy(x) does not have a continuous deriva-
tive of the (k+ 1)th order.

Proor. It will be assumed that A; > 0 and 4, > 0. The proof can be modified
slightly if 4, = 0 or 4, = 0. Without loss of generality the centering constant y of
Fy(x) can be chosen so that Fy(x) has characteristic function

fo(t) = exp {[=% +[ 15 (™ —1)/u)Ao(u) du}.
Let
A(u) = Ao(u) if —pZu<0 or O<u=p
=0 if u<—p or u>p
A, (u) = Ag(u)— A (u) if u#0.
Let F;(x) be a distribution function with characteristic function
fi(®) = exp{[=% +[ 15 (™~ D)u);(u) du}

for j = 1 and j = 2. It can easily be seen that F(x) is an L function and F,(x) is
an infinitely divisible distribution function. Since fo(f) = f,(z)f,(¢) it follows that
Fy(x) = F*F,(x). It can easily be seen that

0= J2o+[18 Aa(w)udu =[5+ [ Mo'(1)du = Mo(—p)— Mo(p) < .
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Let ¢ = [Z% +[18 A, (u)/u du,
g(u) = A,(u)/cu if u#0,
=0 if u=0,
and G(x) = [*, g(u)du.
The distribution function G(x) is absolutely continuous and
£ =exp{c[2, (e —1)dG(u)}.
Let E(x) denote the distribution function degenerate at 0. By a lemma of H. G.

Tucker (1962, Lemma 3, page 1126) F,(x) has a jump of size ™ at 0 and is abso-
lutely continuous elsewhere. Thus

(26) Fy(x) = e E(x)+(1—e™) [, h(y)dy
where h(x) is the density function of an absolutely continuous distribution function
H(x). From Lemma 2 it follows that F;(x) has absolutely continuous derivatives

of the first k orders and integrable derivatives of the first k+1 orders. From (26)
and Lemma 1 it follows that for almost all x

Q7) Fo**D(x) = e™F,**D(x) +(1—e) 2, F, " D(x = y)h(y) dy.

Let k, and k, be the largest integers smaller than A4, and 4, respectively. Three
cases must be considered.

Case 1. k = k,+k,. In this case it was shown in the proof of Lemma 2 that
lim, o4 F;**(x) = oo. Since F;®(x) is absolutely continuous and vanishes at
infinity it follows from (14) that F,%**V(x) is bounded from below. It follows
from (27) that lim,_, ¢, Fo®**(x) = 0. Thus F;**!)(x) has a discontinuity at 0.

Case 2.k = k,+k,+1 and either A; —k; < 1 or A,—k, < 1. In this case it was
shown that either lim,.q. F;**V(x) = —oo, or lim,,o- F;*"P(x) = —co.
Since F;®(x) is absolutely continuous and vanishes at infinity it follows from 14)
that F,**VY(x) is bounded from above. It follows from (27) that either
lim, o4 Fo®™D(x) = — oo or lim,_o_ Fo®*(x) = —oco. Thus Fo®**(x) has a
discontinuity at 0.

Case 3. k = k;+k,+1 and both A, —k, =1 and 4,—k, = 1. In this case it
was shown that F,**1(x) is bounded and has a discontinuity at 0. It follows from
the Lebesgue dominated convergence theorem that the second expression on the
right side of the equality sign in (27) is continuous and therefore Fo**!)(x) has a
discontinuity at 0. []

3. Main Theorem. The main theorem of this paper can now be proved.

THEOREM 4. Let F(x) be a non-degenerate L function with a normal component
variance o* and a Lévy spectral function M(u). Let Au) = uM’'(w). If 62 =0 and
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k < M(+0)+ li(—O)l < k+1 for some integer k then F(x) has absolutely continuous
derivatives of the first k orders that vanish at infinity and integrable derivatives of the
first k+ 1 orders. However, F(x) doesnot have a continuous derivative of the (k+ 1th
order. If a* > 0 or (+0)+|4(—0)| = oo then F(x) has absolutely continuous and
integrable derivatives of all orders that vanish at infinity.

PROOF. The theorem will first be proved when 62 = Oand k < A(+0)+ |A(— 0)| =
k+1 for some integer k. Without loss of generality the centering constant y of
F(x) can be chosen so that F(x) has characteristic function

(28) S0 = exp{[=%+[18 (€™~ D/u)a(u) du}.

It will be assumed that A(+0) > 0 and A(—0) < 0. The proof can be modified
slightly if A(+0) = 0 or A(—0) = 0. By Gnedenko and Kolmogorov (1954,
Theorem 1, page 149) A(u) is non-increasing on (— o0, 0) and on (0, o). Thus there
exist constants 4, > 0, A, > 0, and p > 0 such that k < 4, +1,, 4) < —4, for
—p=<u<0,and A(u) > 4, for0 < u =< p. Let

A(w) =0 if u<—p or u>p
=—1 if —p=u<0
— 4, if 0<u<p
o) =Au)y—A,(w) if u#0
As(u) = A(—0) if —p=su<0
= A(+0) if O<u=p
= Au) if u<—p or u>p

Ag(u) = A3(u)— A(u) if u#0.

For 1 £ j < 4 let Fy(x) be the distribution function with characteristic function
fi® =exp{J2%+18 (¢ —D/u)d () du}.

It can easily be seen that F;(x) and Fs(x) are L functions. Also F,(x) and F,(x) are
infinitely divisible distribution functions. Since (@) = fi(Of>(t) and f5(t) =
F(£)7.(2) it follows that F(x) = F,*F,(x) and F3(x) = F*Fy(x).

By Lemma 2, F(x) has absolutely continuous derivatives of the first k orders
and integrable derivatives of the first k+1 orders. Thus, by Lemma 1, F(x) has
absolutely continuous derivatives of the first k orders that vanish at infinity and
integrable derivatives of the first k+1 orders.

It also follows from Lemma 1 that

(29) F3®(x) = [, FO(x—y)dF(y).

If F**V(x) is bounded and continuous it could be shown using Fubini’s theorem
and the Lebesgue dominated convergence theorem that F3**!(x) is continuous.
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By Lemma 3, F;**!)(x) is not continuous. Therefore F**)(x) cannot be bounded
and continuous. V. M. Zolotarev has shown (1963, page 132) that xF**1)(x) is
bounded. It follows from this fact that F**1)(x) vanishes at infinity and thus cannot
be continuous. [It should be pointed out that it follows easily from statements of
Zolotarev (1963, pages 131-132) that xF**1)(x) is continuous. Thus F**1)(x) has
a discontinuity at the origin.]

If A(+0)+ |/1(—0)] = oo the proof can be modified to show that F(x) has
absolutely continuous and integrable derivatives of all orders that vanish at infinity.
Finally, if 6> > 0 it can easily be shown using Lemma 1 that F(x) has absolutely
continuous and integrable derivatives of all orders that vanish at infinity. [In fact,
if ¢ > 0 then F(x) is an analytic function (see Zolotarev (1963, Theorem 1, page
124)).]

4. Example. As an example of a distribution function that satisfies the hypo-
thesis of Theorem 4, let F,(x) be a gamma distribution function with density
function

[,(x)=0 if x<O.
=1/TA)x*"te ™ if x=0.
This distribution function is known to ha\}e a Lévy spectral function
M) =0 if u<0
=—AfPe ¥xdx if u>0.

(See Lukacs (1960, pages 91-93)). It follows from Theorem 4 that if
k < 2 £ k+1 for some integer k then F;(x) has absolutely continuous derivatives
of the first k£ orders that vanish at infinity and integrable derivatives of the first
k+1 orders, but that F,(x) does not have a continuous derivative of the (k+ 1)th
order. This previous statement can easily be verified.

5. Generalization of the main theorem. In the proof of Theorem 4 it is necessary
to assume that F(x) is an L function in order to show that F**(x) vanishes at
infinity and is thus not continuous. The rest of the proof of Theorem 4 does not
depend upon the fact that F is an L function but only on the fact that its Lévy
spectral function has a “nice” behavior in a neighborhood of the origin. Most of
the proof of Theorem 4 can be generalized to a larger class of infinitely divisible
distribution functions than the L functions.

LEMMA 5. Let Fy(x) be an infinitely divisible distribution function with a Lévy
spectral function My(u) that is absolutely continuous on (— o0, 0) and on (0, c0).
Let Jo(u) = uM,y'(u). Assume that M u) = — A, for —p < u < 0 and Mu) = A, for
O<u<p where Ay, 20, 4, 20, ,+4, >0, and p > 0. Let k be the largest
integer smaller than A, + A,. The distribution function Fy(x) does not have a con-
tinuous derivative of the (k + 1)th order.
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Proor. The proof of this lemma is identical to the proof of Lemma 3, and is
omitted here.

THEOREM 6. Let F(x) be an infinitely divisible distribution function without a normal
component and with a Lévy spectral function M(u) that is absolutely continuous on
(— 0, 0) and on (0, ). Let M) = uM'(w). Let A, 20,1, 20,1, =20, 1, =0,
andp > 0 be constants. Let k = 0 be an integer. Assume that —A, < Mu) £ —1,
Sfor almost all u such that —p < u < 0 and 23 < Mu) £ A4 for almost all u such
that0 < u < p. Ifk < A+ 43 = A+ A, < k+1 then F(x) is absolutely continuous
and has absolutely continuous derivatives of the first k orders that vanish at infinity
and integrable derivatives of the first k+1 orders. However, F(x) does not have a
bounded and continuous derivative of the (k + 1)th order.

ProoOF. The proof of this theorem is similar to the proof of Theorem 4. Lemma 5
is used in the proof in place of Lemma 3.

6. Continuity properties of infinitely divisible distribution functions. An infinitely
divisible distribution function with a normal component has continuous derivatives
of all orders. In this paper it has been shown that for a class of infinitely divisible
distribution functions containing the L functions, it is possible to give necessary
and sufficient conditions for the distribution functions to have a bounded and
continuous derivative (or an absolutely continuous derivative) of the kth order.
It would be of interest to extend these results.

The continuity properties of infinitely divisible distribution functions have been
studied by many people. P. Hartman and A. Wintner showed (1942) that a necessary
and sufficient condition for an infinitely divisible distribution function F(x) to be
continuous is that > > 0 or |2, dM(u) = co where ¢ is the normal component
variance of F(x) and M(u) is the Lévy spectral function of F(x). J. R. Blum and
M. Rosenblatt (1959) obtained the same necessary and sufficient condition by an
entirely different proof. H. G. Tucker (1962), M. Fisz and V. S. Varadarajan
(1963) showed independently that a sufficient condition for F(x) to be absolutely
continuous is that j"_"w dM,(x) = oo where M, (x) is the absolutely continuous
component of M(x). H. G. Tucker (1965) gave a necessary and sufficient condition
for F(x) to be absolutely continuous. Although his condition is not very satisfactory,
it is perhaps the best that can be given. S. Orey (1968) gave a sufficient condition
on M(u) for F(x) to have continuous derivatives of all orders. This result replaces
an erroneous condition of P. Hartman and A. Wintner (1942),

Let F(x) be an infinitely divisible distribution function without a normal com-
ponent. In view of the work by H. G, Tucker, it is probably not possible to give a
necessary and sufficient condition on M(u) for F(x) to have an absolutely con-
tinuous derivative of the kth order, However, it might be possible to generalize the
proof of Theorem 6 and give a necessary and sufficient condition on M(u) for F(x)
to have an absolutely continuous derivative of the kth order in the case when M(u)
is absolutely continuous on (— c0,0) and on (0, o). It may also be possible to give a
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necessary and sufficient condition on M(u) for F(x) to have a continuous derivative
of the kth order.
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