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REGULARITY OF EXCESSIVE FUNCTIONS II'

By R. K. GETOOR
University of California, San Diego

1. Introduction. In [3] we introduced some conditions which are equivalent to
the regularity of excessive functions under certain additional hypotheses. Un-
fortunately the additional hypotheses assumed in [3] are much too strong, and, in
fact, can be eliminated completely. Thus the present paper represents a considerable
extension and simplification of the results of [3]. Moreover, it may be read in-
dependently of [3].

All terminology and notation are the same as in [1] unless explicitly stated
otherwise. In particular we fix once and for all a standard process X =
Q, #, #,, X, 0, PY) with state space (E, &), and alt stopping times are {#;}
stopping times unless explicitly stated otherwise. In Section 2 we characterize those
stopping times which are accessible on {T' < {}—here accessibility is defined as in
the general theory of processes, [4] or [7], and not as in [1]. See Section 2 for the
precise definition. In the case of a special standard process our result reduces to a
criterion of Meyer [6]. Even though all of the techniques needed for the construction
in Section 2 are well known, we have given some details since the result seems to
have been overlooked in the literature and is, perhaps. of some independent
interest. In any case it is crucial for the discussion in Section 4. In Section 3 we
introduce a topology on the state space E which for lack of a better name we call
the d-topology. In Section 4 we relate this topology to the regularity of excessive
functions. Roughly speaking, an excessive function is regular if and only if it is
d-continuous. See Proposition 4.2 for the precise statement. Also we give a necessary
and sufficient condition that all excessive functions be regular. See Proposition 4.4.

2. Accessibility of stopping times. Recall that a stopping time T is accessible if
for each initial measure p there exists a sequence {A,} of sets in & such that
{T > 0} = U A, almost surely P* and for each k there exists an increasing sequence
{T,*} of stopping times bounded by 7 and such that almost surely P*, {T,*} increases
to T strictly from below on A,; i.e., lim, T,} = T and T,* < T for all n almost
surely P* on A,. If T'is a stopping time and A € & 1 we say that T is accessible on A
provided 7, is accessible where Ty = Ton A and T, = co on A®. It is easily seen
that this is equivalent to the statement that for each p, almost surely P* we have
{T > 0} " A = U A, with each A, € Fr and with T the limit strictly from below
on A, of an increasing sequence of stopping times. In general we use the terms
accessible, totally inagces‘sible, and previsible as in the general theory of processes
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[7]. Note that a stopping time T is accessible if and only if it is accessible on
{T < o0}.

There is one trivial technical point in applying the results from the general
theory of processes on which a comment is, perhaps, in order. As in [1],
F° = o{X,:s 2 0} and #,° = ¢{X,:0 £ s £ ¢}. For each initial measure p, F*
denotes the completion of #° with respect to P* and & /* is the o-algebra generated
by #,° and all P* null sets. The fundamental g-algebras for X are then # = n W F
and &, = n, & * where the intersection is over all initial probability measures p.
Now the proof of (I—8.12) in [1] shows that for each u the family (/) is right
continuous. Thus the results from the general theory of processes can be applied
to (F*, &}, P*) for each u. But if T is an (& *) stopping time, then there exists an
(#)—actually an (#7 ,)—stopping time T* such that PT # T*) = 0. See (I-7.3)
of [1]. Making use of these facts one can apply the general results to (&) stopping
times provided one exercises a modicum of care. We shall say no more about such
trivialities.

We now state the main result of this section.

2.1) THEOREM. Let T be a stopping time. Then T is accessible on
{X0 = X737 < (3.

We shall break up the proof of Theorem 2.1 into several steps. The first fact that
we need is contained implicitly in [5] and also appears in [2]. However, it is not
completely clear precisely what is being assumed about X in these references and
so we shall give the proof here.

2.2) PROPOSITION. Let f be a finite nearly Borel measurable function such that
almost surely t — f(X,) is right continuous and has left-hand limits on [0, ). Let
S(X) - = limg,, f(X) if 0 < t < 0 and f(X,)- = f(X,). Given ¢ > 0 define

(2.3) T=inf{t:|f(Xt)_f(Xr)—| >eX, =X, 5t <}
Then T is accessible.

Proor. First of all it is well known (and an easy consequence of (IV-52) of (4])
that T is a terminal time. Clearly T > 0 almost surely and T = oo on {T = {}.
We shall show that there exists a sequence {A;} in & ; independent of the initial
measure y such that {7 < {} = U A, almost surely, and such that given u for each
k there exists {T,*} increasing to T strictly from below on A, almost surely P*.
This and the previous observation imply that T is accessible.

In view of the regularity assumptions on ¢ — f(X,) the infimum in (2.3) is
attained if it is finite, and so | f(X)— f(XT)_I > ¢ on {T < (}. Here and in what
follows we omit the phrase “almost surely.” Also (II-4.8) of [1] implies that f is
finely continuous. Now define

ke (k+1)e
Ay ={x:—8— Sf(x) < 3 }
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E >2
k—x =Z

fork =0, +1, +2, ---. Clearly 4, and E, are nearly Borel sets, and since f'is finite
E is the disjoint union of the 4,. Define

(2.4) H(w) = Tg,(w) if Xy(w)eA;;
= © if Xo(w)=

It is immediate that H is a stopping time. Since | S(Xp)—f(Xp)- | >¢on{T <{(}
either |f(X,)—f(Xr)-| > &2 in which case H < T or |f(X1)—f(Xo)| > ¢/2 in
which case H £ T. Thus in all cases H < T. Next define Hy, = 0, H; = H, ---,
H,,, = min (H,+H o0y ,T). If H, < T, then Ho 0, < To8 = T—H,, and
s0 H,, = H,+Ho0y < Ton{H, < T}. Consequently| f(Xy,)—f(Xu,, )| = ¢/4
if H, < T < {. Since t — f(X,) has left limits it follows that H, = 7" for all
sufficiently large n on {T < (}. For k = 0, let

={H,<Hgy, =T<{={H,<T})n{Hu, =T}n{T <}eF,.

Then {T < {} = U A,

Let u be an initial (finite) measure on E. We fix £ = 0 and we then construct an
increasing sequence {R,} of stopping times increasing to T strictly from below
almost surely P* on A,. As remarked previously this will establish Proposition 2.2.
For each integer j define

VJ(B) =P"[XHk€Br\Aj,H,‘ < T A C]

ke
I -3

and
v(B) =Y ;v/(B) = P*[Xy,€B,H, <T A (]

The measure v; does not charge E; and so there exists a decreasing sequence of
open sets {G ,,} containing E; such that T, = T, G,.» increases to Tg, almost surely
P on {Ty, < {}. From (2. 4), H = T, almost surely PY and thus T 71 H almost
surely P on {H < (}. But E; is ﬁnely closed and so P% almost surely on
{T = H < {} one has X;€E; c G;,. Now X; = X;_ on {T < (} and conse-
quently 7,’ < T almost surely P/ on {T = H < {}; that is {T,’} increases to T'
strictly from below almost surely P* on {T = H < (}. Define S, = T,’ Hif X, € A;
and S, = o if X, = A. Then {S,} is an increasing sequence of stopping times w1th
S, = T, almost surely P"/. Recalling the definition of v it follows that {S,} increases
to T strictly from below almost surely P” on {T = H < (}. But v is the distribution
of X(H,) on {H, < T A {} under P*, and so (" denotes complement)

0 = EY{PXHI([S, 1 T;S,<T,Vn]"H=T <(};H, <T A}
=Pu{[Hk+Sn°0HkT T;Hk+sn°6Hk < T,Vn]c,Hk+1 =T< C’Hk <TA C}

because Hy+H o 0y, = Hyy, if H, < T and T and { are terminal times. Finally
setting R, = min (H,+ S, o 0y,, T) we see that {R,} increases to T strictly from
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below almost surely P* on A, = {H, < H,,, = T < (}, completing the proof of
Proposition 2.2.

2.5 COROLLARY. Let Ty = 0, T,y = T,+T o 0y, for n = 0 be the iterates of
T. Then ifn = 1, T, is accessible on {T, < (}.

Proor. Since T; = T it suffices to prove that T, is accessible on {T,,; < {}
for n > 1. Using the notation of the proof of (2.2) one notes that 07'A e Fr, .,
and that

[Uk0r A AT, < () = {Thsy < (3.

Given an initial measure p, let w(B) = P*[X(T,) € B;T, < {} and let {R;} be an
increasing sequence of stopping times that increases to T strictly from below on
A, almost surely P". Then one easily checks that {T,+R; o 07 } increases to T,
strictly from below on (07.'A,) n {T, < (} almost surely P¥, proving (2.5).

(2.6) PROPOSITION. Let T be a stopping time such that Xp = Xr_ almost surely
on {T < {}. Then T is accessible on {T < (}.

PROOF. Let u be a fixed initial measure. Let T, and T, be the accessible and totally
inaccessible parts of T (relative to P*). See [4]. Then (2.6) will follow provided we
show PHT; <{) =0, since T=T, A T; on {0 < T < o}. Here and in the
remainder of this proof all statements are understood to hold almost surely P*.
Next let R =T, if T; <{ and R = oo if T; =Z {. Then we must show that
PYR < ) = 0. Clearly if P/(R < o) > 0 then R is totally inaccessible and we
shall obtain a contradiction to this last statement by show that R is accessible if
P“R < o) > 0. Implicitly in [6], pages 111 to 116, Meyer showed that a stopping
time S is accessible provided that f(Xs) = f(Xs5)- on {S < oo} forallf = U’g with
o > 0 and g a bounded universally measurable function. This part of Meyer’s
argument is valid for arbitrary standard processes. However, it ultimately rests on
Theorem VII-47 of [4] which has as its hypothesis that the basic family of o-
algebras is free of times of discontinuity. But this theorem gives a necessary and
sufficient condition that a stopping time be accessible and a careful reading of its
proof reveals that the stated condition is sufficient without the assumption that the
basic family of o-algebras be free of times of discontinuity. Consequently Meyer’s
argument shows that the above criterion is a sufficient condition for a stopping
time S to be accessible for general standard processes. We now apply this criterion
to the stopping time R defined above. If R < co, then R< {and R=T, =T,
and so by hypothesis Xz = Xz on {R < {} = {R < oo}. Butif f(Xg) # f(Xr)-
for some f = U’ as above, then for some ¢ > 0

P f(Xp)—f(Xp)-| > &R <{]>0.

Let T be defined as in (2.3) and let (7,°) denote the iterates of T°. Then for some n,
PY[R = T,F < {] >0, and since f obviously satisfies the hypotheses of (2.2) it
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follows from (2.5) that R is not totally inaccessible. Consequently f(Xz) = f(Xg) -
on {R < oo} and hence R is accessible. This contradiction establishes (2.6).

The proof of Theorem 2.1 is now immediate. Namely let A = {X7 = X;_;T < {}
and let S = T,. Then S satisfies the hypotheses of (2.6) and so S is accessible
because {S < {} = {S < oo}. But this is just the statement that 7T is accessible on
A.

We close this section by pointing out that the condition in Theorem 2.1 is neces-
sary in the sense that if T'is a stopping time that is accessible on a set A € & 1, then
it follows from the quasi-left-continuity of X that X; = X;_ almost surely on
An{T < {}.

3. The d-topology. In this section we introduce a topology on E that will be used
to characterize regular excessive functions in the next section. 4 subset D of E
is called a d-set provided that it is nearly Borel measurable and that whenever {T,}
is an increasing sequence of stopping times with limit T

(3.1) PY{X(T,)eD forall n, X(T)¢D, T<(¢} =0

for all x. That is, almost surely on {T' < {}, X(T) is in D if X(T,) is in D for all n.
We let 2 be the collection of all d-sets. In view of the quasi-left-continuity of X
it is clear that all closed subsets of E are in 9.

(3.2 LEMMA. A nearly Borel set D is in @ if and only if whenever {T,} is an
increasing sequence of stopping times with limit T

3.3) P¥{X(T,)eD infinitely often, X(T)¢D;T <{(} =0

Jor all x.

PrOOF. Clearly it suffices to show that if D € 9, then it satisfies the condition
in (3.2). Let {T,,} and T be as above and let A = {X(T,) € D, i.0o., T < {}. Since D
is nearly Borel, A € # ;. Now define R, = T, if X(T,) € Dand R, = oo if X(T,) ¢ D
so that each R, is a stopping time. Finally let S, = inf, >, R,. Then {S,} is an
increasing sequence of stopping times and we let S = lim S,. But on A, R, = T,
infinitely often and so S =7 and X(S,)eD for all n. Consequently
P*(A; X(T) ¢ D) = 0 establishing (3.2).

It is now easy to check using (3.2) that 2 is closed under finite unions and
countable intersections. It is evident that the complements of sets in & form a base
for a topology on E. We call this the d-topology and it is clear that it is finer than
the original topology on E.

The following definition will be useful in the next section.

(3.9 DErFINITION. A numerical function f on E is strongly d-continuous if
f~Y(C) € 2 for all closed subsets C of R.

In view of the properties of 2 it is clear that fis strongly d-continuous if and
only if £ ~1([a, b]) € 2 for all closed intervals [a, 4] in R.
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4. Regularity of excessive functions. We say that a numerical function f on E is
smooth provided fis nearly Borel measurable and almost surely ¢ — f(X,) is right
continuous and has left limits on [0, c0). In light of (II-2.12) arid (II-4.8) of [1]
every excessive function is smooth, and every smooth function is finely continuous.
(Of course, continuity of numerical functions is defined relative to the usual
topology on R = [— o0, 00].) A numerical function f on E is regular provided that
it is smooth-and that almost surely ¢ — f(X,) is continuous wherever ¢ — X, is
continuous on [0, {). Finally a numerical function f on E is quasi-left-continuous
(qlc) provided whenever {T,} is an increasing sequence of stopping times with
limit T, then f(X7y,) — f(Xr) almost surely on {T < {}.

Although the following proposition is well known, at least for special standard
processes, we include the proof for completeness.

4.1 PROPOSITION. A4 smooth function f is regular if and only if it is qlc.

Proor. First note that there is no loss of generality in assuming f bounded.
Indeed if g:[—o00, —0] > [—1,1] is defined by ¢(t) = ¢—1 if + <0 and
q(t) = 1—e™"if t Z 0, then f'is smooth, regular, or glc if and only if g o fis. We also
note for later use that f'is a-excessive if and only if g o fis. See the proof (I1-2.12)
of [1].

Now suppose f is regular and that {7,} is an increasing sequence of stopping
times withlimit 7. Onthe set of w’s for which ¢ — X,(w) is continuous at T(w) < {(w)
one has f(Xr,) = f(Xr) by the definition of regularity. On the set of w’s for
which ¢ - Xy(w) is discontinuous at T(w) < {(w) one must have T,(w) = T(w)
for all sufficiently large 7 because of the glc of the process X, and so f(X. ) = f(X7)
is this case also. Thus fis glc. Here again we have omitted the phrase “almost
surely.” Conversely suppose fis smooth and that fis not regular. Then for some
¢ > 0 and some x one has PX(T < {) > 0 where T is the stopping time defined in
(2.3). Thus by (2.2) there exists an increasing sequence of stopping times {R,} such
that with positive P* probability {R,} increases to T strictly from below on {T" < {}.
Consequently f'is not qglc, establishing (4.1).

4.2) PROPOSITION. A smooth function f is regular if and only if it is strongly
d-continuous.

PROOF. Again there is no loss of generality in assuming that fis bounded. Suppose
firstly that f'is regular. Let F be a closed subset of the real line and let D = f~(F).
Let {T,} be an increasing sequence of stopping times with limit 7 such that
X(T,) € Dforalln, thatisf(Xr,) € F. But fisregular and so by (4.1), f(X7,) - f(X7)
if T < (. Therefore f(X1) € F or X7 € D. Thus fis strongly d-continuous.

Conversely suppose that f is smooth, strongly d-continuous, but not regular.
Then for some ¢ > 0 and some x one has P*(T < {) > 0 where T is defined in
(2.3), and it follows from (2.2) that there are a set A € #; with A < {T' < {} and
PX(A) > 0 and an increasing sequence of stopping times {R,} which increases to T
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strictly from below on A almost surely P*. But then there exists an integer k such
that if

r= {7 sk 0 fes 000 <Sta T <

then PX(I') > 0. Let

43) D =f'1|:(—oo,lf;—18]u|:lc—:—23, w)];B =f'1<[i—:s,l—€:—13:'>.

Clearly D and B are disjoint nearly Borel sets and that D € & since f'is strongly
d-continuous. But almost surely P* on I, {R,} increases to T strictly from below,
and consequently X(R,) € D for all large n while X(T) € B. This contradicts the
fact that D € @ completing the proof of (4.2).

We come now to the main result of this section. Recall that a nearly Borel set B
is called finely perfect if B = B'. Clearly such a B is finely closed. Let 2 denote the
class of all nearly Borel finely perfect sets. Finally recall that #* denotes the
collection of all a-excessive functions, a = 0.

4.4 PROPOSITION. If o > 0 all a-excessive functions are regular if and only if
P < 9. This statement is also true when o = 0 provided there exists a strictly
positive bounded Borel function h such that Uh is finite.

PROOF. Suppose first of all that ? < 2 and let f be a bounded smooth function
that is not regular. We argue exactly as in the second paragraph of the proof of
(4.2) until we come to (4.3). In place of (4.3) we define

ourf(ce S ()

Then G is nearly Borel and finely open and G = D where D is defined in (4.3).
Let ¢(x) = E*{e~"¢}. Then if H is the fine closure of G we have

H=GuG ={¢p=1}cD,

which shows that H € 2 and that H and B are disjoint. We now obtain exactly the
same contradiction as in the proof of (4.2) except that we use the set H in place of
D. Thus ? = 2 implies that every smooth function is regular, and so the elements
of &* are regular for any o = 0.

Conversely suppose « > 0 and that the elements of #* are regular. If Fe 2
let ¢;%(x) = E*{e"*T%}. Then F = {¢* = 1} is in & by Proposition 4.2. If & = 0
and Fe 2 let ‘

¢p(x) = Uh(x)— Py Uh(x) = E*[JF h(X ) dt.

Since 4 is strictly positive F = F" = {¢y = 0}. But Uh and PrUh are finite and
regular because they are excessive, and so ¢y is regular. Now once again Proposition
4.2 implies that F = {¢; = 0} € 9, completing the proof of Proposition 4.4.
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REMARKS. We have actually shown that Z < &2 implies that all smooth functions
are regular. The above proof also shows that a sufficient condition that Z < @
is that for some a > 0, ¢4* is regular whenever G is a finely open nearly Borel set.
Finally it is not difficult to see that a finely perfect set is in 9 if and only if it is
projective as defined in (V-4.2) of [1].
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