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A NOTE ON HARMONIC FUNCTIONS AND MARTINGALES!

By CHARLES W. LAMB
Stanford University

1. A decomposition theorem. In this note we will be concerned with the problem
of decomposing a positive harmonic function 4 into a sum of three positive har-
monic functions h,, h,, and k5, each of which behaves quite differently when
composed with Brownian motion. This problem has been treated in a very general
context by Blumenthal and Getoor (1968) and, in fact, our main result (Theorem 1)
is contained in Theorem 5.14 of Chapter IV. We present here a direct treatment
based on the theory of conditional Brownian motion which, in addition to giving
the required decomposition, characterizes the functions 4, 4, and A5 in terms of
their Martin boundary representations (Corollary 1). As will be seen in the examples,
this last characterization is useful in understanding the nature of the non-uniformly
integrable martingale component #,. It is assumed throughout that the reader is
familiar with the relationship between harmonic functions and Brownian motion
as described in Doob (1954)and (1957a), and with the theory of the Martin bound-
ary and conditional processes as developed in Doob (1957b) and (1958). Before
stating the main result, we introduce some notation and recall a few facts.

Let D be a domain in n-dimensional Euclidean space which has a Green’s
function g. Let d.D denote the Martin boundary of D and let 0D, denote the subset
of 0D consisting of the minimal points. K(, - ) will denote the minimal harmonic
function associated with n € D, which is normalized so that K(n, £,) = 1 for a
fixed &, € D.

Let Q be the function space consisting of all continuous functions w:[0, c0) —
D v 0D, with the property that, if w(s) = n € dD,, then w(t) = y for all t = s.
X(¢) will denote the rth coordinate function on Q. Using the notation of Blumenthal
and Getoor (1968), let (Q, #, #(¢), X(t), 0(t), P;) denote the standard Brownian
motion process on D, stopped when 0D, is hit. Note that we can write P, (or E)
for £ e D U dD,, but that each point of 0D, acts as an absorbing point. Define
the lifetime © by the equation

t(w) = inf{t: X(t)edD,}.
If h is a positive harmonic function on D, then lim, , . h[X(#)] exists P,-almost

everywhere (¢ € D) and, in fact, & defines a Borel measurable boundary function
(which we continue to denote by /) on 0D, such that

1) ‘ lim,n h[X(1)] = h[liman(t)]

P.-almost everywhere (¢ € D). When dealing with a given measure P,({ € D), we
adopt the convention that A[X(¢)] equals the quantity in (1) if # = 7. With this
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notation, the process {A[X(¢)],0 < ¢.< oo} is a supermartingale with respect to
each of the measures P,(¢ € D).

We shall make use of conditional Brownian motion processes which are condi-
tioned to converge to certain minimal points # € 0D,. If p denotes the transition
density function of killed Brownian motion on D, then p " will denote the conditional
transition density function

p (ta 6’ G) = P(t, 6’ O')K(fl, G)/K(”’ é)
A conditional process governed by p" will be denoted by
@, F1, F1(t), X(2), 6(t), P,").

THEOREM 1. Let h be a positive harmonic function defined on D. The function h
can be written uniquely as a sum of three positive harmonic functions h = hy+h,+h;
where, for every & € D and corresponding measure P,

(@ {[X(?)],0 =t £ o} is a martingale,

(b) {h,[X(1)],0 = t < oo} is a martingale and lim,_, , h,[ X(2)] = O almost every-
where,

(©) {As[X(1)],0 £ t < oo} is a supermartingale with lim,_, , h3[X(2)] = O almost
everywhere and lim,_, , E{h;[X(1)]} = O (a potential).

It will be convenient for us to state two Lemmas before proceeding to the proof.

LeMMA 1. Let h be a positive harmonic function whose canonical measure
tn (B(E) = [50,K(n, &) pu(d, n)) is singular with respect to pi,. Then

lim,_, , B[ X()] =0
Pgalmost everywhere (¢ € D). In addition
) E{[X(0]} = [ EL{K[n, X() ]} ua(dn).

Proor. The statement involving almost everywhere convergence is well known
and so we will prove only (2). Fubini’s Theorem implies that

fi<sh[X(®)] APy = [i< J K[n, X(0](dn) dP¢
= jjt<tK[’7’ X(t)] dPg ,u;,(dﬂ)

lim, ; . R[X(8)] = lim,_,,, A[ X ()] =0
P.-almost everywhere, we have
Ji<ch[X()]dP, = E{R[X(D]}-

Since p, is singular with respect to ;, it follows that the measure ¢, (unit mass
concentrated at 7 € dD,) is singular with respect to u,, for y,-almost every 7. Hence,
by the same reasoning which led to the proceeding equation,

It<tK[”’ X(t)] dP{ = E{{K[rh X(t)]}

for u,-almost every # and (2) follows.

Since



2046 CHARLES W. LAMB

LeEMMA 2. For a fixed y € 0D,, the function v defined by
v(€) = P,"[t = o0}
is either identically O or identically 1.

ProoF. A standard argument shows that v is a bounded K(#, - )-harmonic func-
tion on D. Since K(, - ) is a minimal harmonic function, v is necessarily equal to a
constant ¢. On the set where T = o0

lim,, , o[ X(t)] = lim,, , P}, {t = 0}
=lim,, P,"{t = oo | #"(t)}
=Pt =00| Vo F(1)}
=1Ii=w)
=1

P."-almost everywhere. It follows that, if v({) > 0 for some ¢, then ¢ = 1 and, if
v(€) = 0 for all &, then ¢ = 0.

ProoF OF THEOREM 1. Decompose the canonical measure p, associated with A
by the formula u, = u,*+ u,° where u,* is absolutely continuous with respect to
U, and p,’ is singular with respect to uy. If u,*(dn) = f (n)u,(dn), then

3 h(&) = [K(n, &) f(m)us(dn)+ § K(n, E)wS(dn).

The first term on the right of (3) is denoted by 4, and is simply the Perron-Wiener-
Brelot solution to the Dirichlet problem corresponding to the Martin boundary
function f. Hence A,[ X(¢?)] is uniformly integrable and (a) is well known.

In order to decompose the second term on the right of (3) still further, we define

I'y ={nedD,:P/"{r = w0} =1 for all £eD},
I', ={nedD,: P,"{t = oo} =0 for all £ D}.
According to Lemma 2, D, = I'; u I',. Since
Pz >t} = [ p(t, &, 0)K(n, 0)/K(n, &) do

is a measurable function of #, it follows that I'; and I", are Borel measurable
subsets of 0D,. Let

hy(8) = fr, K(n, ©)w(dn),
h3(&) = jrz K(n, Hun’(dn).
Since u,° is singular with respect to y,, it follows from Lemma 1 that

lim,, o, [ X ()] =0
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P -almost everywhere (£ € D) for i = 2, 3. Lemma 1 also implies that
E{ho[X(0]} = Jr, E{K[n, X()]}u'(dn)
= |r, [J p(t, ¢, 0)K(n, o) do T, (dn)
©) = [r, K(n, OL[ (1, €, 0) do ] (d)
= jr, K(n, Pt > t}w(dn)
= Jr, K(n, O)us(dn)
= hy(£).
Equation (4) implies that {#,[X(?)], 0 < ¢ < oo} is a martingale and (b) is proved.
Furthermore, .
E{hs[X(D]} = [r, K(n, ©)P'{z > t}p°(dn)
L fr, K, O)P¢'{x = oo} (dn)
=0
as t — oo and (c) follows easily.

The uniqueness of the decomposition follows from the following observations:
hy(&) = E{lim,_., LX()]},
%) h,(¢) =lim,., , E{h[X()]} — by,
hy =h—h,—h,.

The proof is now complete.

We remark that the proof of Theorem 1 could have been carried out without
mentioning the Martin boundary. We could simply define 4,, 4, and k5 by (5) and
proceed from there. However, our method has tied the decomposition to the Martin
boundary representation of the functions involved and we summarize the connec-

tion in the following Corollary.

COROLLARY 1. The canonical measures p,,,, j,, and w,. of the functions hy, h, and
hy of Theorem 1 can be characterized by the following conditions:

(a) py, is absolutely continuous with respect to u,,

(b) uy, is singular with respect to u, and is concentrated on Ty,

(c)  uy, is singular with respect to p, and is concentrated on T ,.

2. Examples and comments. Let D = {(x,y): —00 < x < 0,0 < y} be the
upper half plane in 2-dimensional Euclidean space E2. It is known that the Martin
boundary 0D(= 0D,) may be topologically identified with the lower Euclidean
boundary together with the point at infinity (which we denote by c0). We claim
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that every point of the lower boundary belongs to I', while co belongs to I';. We
leave the routine verification of these points to the reader and remark only that
the functions A, h,, k5 in the decomposition of a positive harmonic function 4
on the half plane take the form

hi(x, ) = [2 o f$)yI[(x—s)* + y*] ds,
h2(x’ y) = Cy,
ha(x, ¥) = [2 yI[(x—5)*+ y*]u(ds),

where ¢ is a nonnegative constant and pu(ds) is singular with respect to u, (or,
equivalently, with respect to Lebesgue measure).

As a second example, let D be the unit disk in £2. The Martin boundary of D
coincides with the Euclidean boundary and by symmetry one of the sets I'; or I',
is empty. Since the lifetime of almost every Brownian path from a point ¢ is finite,
it follows that P,"{t < oo} = 1 for K(, &) pu,(dn)-almost every n and hence I'; is
empty. It follows that A, = 0 in the decomposition of any positive harmonic
function on the disk.

As a final remark, we state a theorem concerning the decomposition of a positive
supermartingale {x,, #,, n = 1} which is analogous to Theorem 1.

THEOREM 2. Let {x,, #,, n = 1} be a positive supermartingale. There exists three
uniquely determined (up to sets of measure zero) positive processes {x,’, #,, n = 1}
(i = 1,2, 3) such that x, = x,' +x,>+x,> forn 2 1 and

(@) {x,', #,, n 2 1} is a uniformly integrable martingale,

(b) {x,%, F,, n = 1} is a martingale and lim,,_, , x,> = 0 almost everywhere,

(© {x,, F, n = 1}isasupermartingale withlim,_, , x,> = 0 almost everywhere
and lim,_, , E{x,*} = 0 (a potential).

[\

ProoOF. Let

1

'xn1 = E{limm-'ooxm Iﬁn}’
|.97,,}—x,, s

x,2 = lim,,_, , E{x,,
X2 = X, —Xp' —x,°%.

The proof now follows by standard arguments (see the proof of the Riesz decom-
position theorem given in Meyer (1966, page 89).
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