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Let {X(¢), —c0 < t < 0} be a stationary Gaussian process with
covariance function satisfying: (1) r(f) = 1—Cl|t[*+o(|t[?) as ¢t— 0:
C>0,0<a=2;and(2) r(t)= 0" ast— 00:y > 0. Then for all -
positive increasing functions ¢(¢) on [a, ©0), P[X(t) > ¢(¢) infinitely
often] = 0 or 1 as [° ¢(¢)>/*~ lexp {— ¢2(¢)/2} dt < o0 or = 0.

This result generalizes the paper of Watanabe [Trans. Amer. Math.
Soc. 148 233-248] by replacing his condition that r(¢) = o(1/t) as t -
by condition (2). Our result is extended also to the nonstationary process
treated by Watanabe. Our proof treats the problem as a trossing problem
using a recent result of Pickands [Trans. Amer. Math. Soc. 145 51-73] and
a modification of the Borel lemmas.

0. Introduction. Let {X(¢), —00 < t < o0} be a real separable Gaussian process
defined on a probability space (Q, o/, P). We assume EX(¢) = 0 and 0v*(t) =
EX?(t) > 0. Denote the correlation function by p(s, t) = EX ) X(®)/(w(s)v(2)). This
paper is concerned with the probability of the event

E, =[3to(w): X(t) S v()p(t) forall t=ty(w)].

One of the authors in [3] gives conditions on the correlation function so that PE, =
lorOas/, < oo or = co, where the quantity I, = [* ¢(t)**~ " exp {— d*(¢)/2}dt,
and « is given below. He considers the problem as a type of the so-called law of the
iterated logarithm which appeared in the study of sums of independent random
variables. In this paper, we treat the problem from a different point of view as a
type of crossing problem. The resulting simpler proof shows the above 0-1
behavior holds for a larger class of processes, and also makes the intuitive content
of the result clearer. The Gaussian processes (or rather the corresponding cor-
relation functions) now included satisfy:

I There are positive constants A, C;, C,, T, and a with 0 < « < 2, such that
1-Cih* Z p(t,t+h) £ 1-Coh*for0 = h < Aandallt = T; and

II p(¢, t+s) = O(s~?) uniformly in ¢ as s — oo for some y > 0.
Condition II replaces the condition that p(t, +s) = o(1/s) in Watanabe (1970).
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There is also a slight improvement in condition I.
Section 1 gives the proof for stationary processes making use of a recent result

due to Pickands [1].

A well-known theorem of Slepian [2] is used in Section 2 to extend the results of
Section 1 to nonstationary processes described by conditions I and IT above. It has
been pointed out in [3] that the result of Section 2 can be made to yield (by a time
transformation) the analogous 0-1 behavior for a class of Gaussian processes
containing Brownian motion.

1. Stationary case.

THEOREM 1.1. Let {X(t), —c0 < t < o0} be a real separable stationary Gaussian
process with EX(t) = 0 and covariance function r satisfying

1) @) = 1—C|t|"‘+o(|t|“) ast — ofor some C > o and some o, with) < o < 2;
and
@) r(t)=0("") ast— «© for somey > 0.
Then for all functions ¢(¢) that are positive and nondecreasing on some interval
[a, 0), it follows that
PE, = P[3ty(w) > a:X(t) < (1) forall t=ty(w)]=1 or 0
as the integral

I, =2 ¢(1)** Texp{—¢*(t)/2} dt is finite or infinite.

Note that the condition (1) implies the process X(¢) has continuous sample
functions. The following lemma will be needed for the first half of the proof of this

theorem.

LEMMA 1.2. If condition (1) of Theorem 1.1 holds and A(t) = inf {(1—r(s))/ |s|*:
0<s=Z1t}>0, then

P[max, <, <, X(s) > x]

. — 1/ — -+.,.-1 _—x2/2
lim,_, 2P (x) C'"H,,  where¥(x)=(2n) *x e and

0<H,=limp,, T [ e P[supo<,<1 Y(t) > s]ds < oo,

and Y(t) is a nonstationary Gaussian process with mean EY(t) = — |t|°‘ and co-
variance function (s, t) = — |s—t|"‘+ |s|°‘+ |t|°‘.

ProoF. This is Lemma 2.9 of Pickands [1]. In addition to condition (1), Pickands
required that A4,(¢) = inf{(1—r*(s))/ Is[“: 0 <s £t}>0. However, checking
Pickands’ proofs, we note that this requirement can be replaced by only the require-

ment that A(¢) > 0.
In other words, these proofs permit r(s) = —1 but not r(s) = 1 in the interval

O0<s=t.
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REMARK. If it should happen that A(¢) = 0, then there is a smallest s, > 0 such
that 7(sq) = 1 and then both #(¢) and X(¢) are periodic with period s,. Since
maxp,.; X(s) = maxy,, X(s) where 7 = min(t,s,), the requirement that
A(t) > 0 can be eliminated from Lemma 1.2 by replacing the denominator
tx*"¥(x) by tx¥“P(x).

PROOF OF THEOREM 1.1 WHEN I, < co. Only condition (1) of Theorem 1.1 will
be required for this half of the proof. Considering the sequence of intervals [n, n+1]
with integer end points, we obtain oo > I, = Y 2y ¢(n+1)**¥(d(n+1))(2n)*
where the lower limit @ = N of the integral I, is chosen large enough that the
integrand of I, is a decreasing function in the argument ¢. Define F, =

[maxn§s§n+1 X(S) é ¢(n)]
Since by Lemma 1.2, there is a positive constant K such that
PF,* ~ Kop(m)*'*¥($(n))

as ¢(n) — oo, we obtain ) 2y PF,° < co. The Borel-Cantelli lemma completes this
half of the proof.

Before proceeding to the second half of the proof, we will need the following
lemmas.

LeEMMA 1.3. If condition 1 of Theorem 1.1 holds and A(t) > O, then
P[maxg < <m X(kax™ %) > x] H,(a)
tx2/*P(x) a’

where a > 0, m = [tlax™?/*] and [ ] denotes the greatest integer function, and H, (a)
is a certain positive constant.

=C1/a

lim, _,

ProoOF. This is Lemma 2.5 of Pickands [1]. All the remarks given for Lemma
1.2 also apply here.

LeMMA 1.4. If Theorem 1.1 for the case I, = o is true under the additional restric-
tion that for large t, 2 log t £ ¢p*(t) < 3 log t, then it is true without this restriction.

PROOF. A similar statement could have been made for the case I, < oo, but it
was not needed in the proof. The restriction that ¢?(¢) < 3 log tis treated in Lemma
4.1 of [3], and the restriction that ¢2(¢) = 2 log ¢ is only a slight modification of
Lemma 4.1 [3] when a < 2. Suppose a = 2. Since X(z) > ¢(¢) occurs infinitely
often (as t — oo) implies X(¢) > ¢(¢) occursi.o. for any ¢ = ¢, we need only show
that I, = oo implies I¢ = oo for ¢ = max (¢, u) and u(r) = (2 log t)*.

Letting A = {t > a:¢(t) < u(t)} and B = {t > a:P(t) > u(t)} we write I, =
Ay+By = 0,1, =A,+B, = ,andI$ = Ap+ B = A, + B, where for example
B, means [z exp {—*(t)/2}dt. We may suppose B4 < oo for otherwise the lemma
follows immediately. Note that if ¢, € B, then there is a (largest) nonempty interval
in B containing ¢,. Consequently, B is a union of such (disjoint) intervals I, whose
lengths and left end points will be denoted by A, and ¢,. (Unfortunately, it may not
be possible to index the #,’s according to their order on the line.) However, we
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assume ¢(¢) crosses u(t) infinitely often as t — oo, and therefore that the A,’s are
finite numbers and the sequence {z,} is infinite. If ¢ does not cross u(¢) i.o., then
either ¢ < wand I = I, = o0, or ¢ > uand Ip = I, = oo for some a. Note that
o(t,+A,) = u(t,+A,) since the jumps of ¢ are never downward. Now

A,
o > B, =Z:L exp{—@?/2}dt =Y A, exp{—¢*(t,+A,)2} :;t A

and

A, 1
ézn: exp{—uz(tn)/2} =2An/tn :Zt +A {1—An/(t +A")}'

Since A,[(t,+A,) - 0, we have ), A,/t, < co. Finally B, < co implies 4, = oo
which in turn implies I = 0.

LeMMA 1.5. Let X(t) be a Gaussian process with zero mean function and covariance
Sunction r(s, ty withr(t,t) = 1. Let E, = [X(t,,) £ x,, :v=0, -, m] with all t, ,
distinct. Then

|P(mi‘Ek)_n?PEk| = 221 §i<j§nzzlio Z;”io I"I j(1> d)(xi,v: Xjus Ar)da,
where ¢(x, y;Ar) is the standard bivariate normal density with correlation coefficient
= Ar(ti y, t;,)-
Proofr. This type of lemma now appears in many proofs of asymptotic indepen-
dence for crossing problems. We include the “standard” proof with the necessary

differences.

The event (\E, involves N = [} (m;+1) random variables X(z,,), and the
corresponding covariance matrix will be denoted by Y ; = (r,;), where the doubly
indexed random variables X(z,,) have been renumbered by a single index k (the
k in rk,).

Partition } ; = [);;] so that each submatrix )_, ; is the covariances of the random
variables of E; with those of E;. Now the events E) would be independent if and
only if the corresponding covariance matrix were Yo =[] with ¥ =, but

= 0 matrix for i # j. ’

Let Y= AY1+(1—2) Y, =(r;;) be the covariance matrix for the standardlzed

multivariate normal density ¢, (y), and
FQ) = 218 - [t [ [=my(y) dy,
where dy = dy, dy, - dyN We now have
|P(N1 E)—1i PE,| = |[F(1)—F(0)| = |[s F'(2)dA| < [5 |F'(2)| dA.

Since F'(2) = [ 8¢,/0A dy and dr,;,/dA = O or ry according to whether (k, /) refers
to a diagonal ) ;, or not, we obtain by the chain rule for d¢,/04

o[l

= ;Z*I 1| (i Xy Ayg).
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The double sum ) * extends over all (k, /) that refer to covariances ry; of ) ;. Inte-
grating this inequality with respect to A finishes the proof.

PRrOOF OF THEOREM 1.1 WHEN I, = co. Note that condition (2) of Theorem 1.1
eliminates the periodic case discussed immediately following Lemma 1.2. Define a
sequence of intervals by I, = [nA, nA+f] for A> 0 and 0 < f < A. Let G, =
{te, = kA+(v/n);v = 0, -, [Bn,]} be a set of points in I, where n, shall be chosen
later.

Let E, = [max,.g, X(5) £ ¢(kA+p)]. Now for a = NA sufficiently large oo =
I, < Y2y Ap(kA) Y *P($(kA))(2m)*implies that Y. Bo(kA + B> *¥($(kA + B)) = .
If we choose n, = [¢p(kA+ p)*/*], then Lemma 1.3 implies there is a positive con-
stant K such that PE,° ~ KB(kA+ B)**V(d(kA+B)) as p(kA+B) — 0. So we
have ) PE,¢ = 0.

As in the Borel lemma, the main step is

I_P[Ekci.o.] = limm_,oo 1_[;.: PEk+limm_,oo {P(ﬂ':) Ek)—‘]._‘['c:lJ PEk}.

The first limit is zero because ) PE,® = co, and the second limit will be zero
because of the asymptotic independence of the events E,. Note the separation
between I.’s is A—f. By Lemma 1.5, we have

Am,n = IP(n; Ek)—l—_[':n PEkI é ZZm§i<j§nZE;ﬂ£{)]ZEﬂ=n:)] lrl Ié g(¢(lA+ﬁ)a
d(JA+B); Ar)da,

where r = r(t;,—t;,) and g(x, y;Ap) denotes the bivariate normal density.
Because 7 ,—1t,, = jA—iA—f = A—p, and because of condition (2) of Theorem
1.1, A can be chosen large enough that [r(t;,~#;,)| < My(jA—iA—p)~7 for all
Jj > i = m and some positive constant M, and such that ]r[ < ¢ = min (4, 7/6).
In fact, for M = My(1—p/A)™?, we have ]r[ < M(jA—iA)™?. Now by Lemma 1.4,
we can choose m large enough that ¢p3(kA+B) = u*(kA+p) = 2log (kA+p) and
d*(kA+P) < w?(kA+B) = 3 log (kA+p) for all k = m. We obtain

9(¢(iA+p), p(JA+B); Ar)
< (207 (=07 exp { —3[$*(IA+B) —2|r|p(iA+ B)d(jA+ )+ ¢*(jA+B)]}
< (2m) 7' (1-6%) " exp {—3[u?(IA+ B) = 2|r|w(iA + B)w(jA + B) +u*(jA+ )]}

. . 1 1 1-3]|r|
<)~ (1-96%) %(iA+ﬁ)<7A_+_ﬁ> :

By Lemma 1.4, n; = [¢(iA+p)**] < (3 log (iA+p))"/% and since w(iA+p) <
w(jA+ ) and |r| < &, we have

log (jA+)*"( 1 Ly
wesizy S () )
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This double series can be seen to be convergent by letting & = j—i and obtaining

2o (log(kA+zA+[3))2/“ 1\
»EK Y 2 k% ()(E)

, 0 © (log(kA+lA+[3))2/“ 1+6 1 1+0
=K' 2L (k+i) <z> (?E) < .

Since this series is convergent, we have lim,_, 4no =0 where 4, ., =
|P("\wE)—T1wPE,|. This completes the proof.

2. Non-stationary case. We now extend the result for the stationary case to the
nonstationary case treated in [3]. Here, let {X(¢), —c0 < ¢ < oo} be a real separable
Gaussian process with zero mean function.

We assume v%(t) = EX?(t) > 0 and denote the covariance function of X(¢)/v(r)
by p(s, t) = EX(s)X(#)/(v(s)v(z)). We shall assume also p(s, t) is continuous.

THEOREM 2.1. Suppose the above process X(t) satisfies

(3) there are positive constants 6,, Cy, Ty and o with 0 < o < 2 such that
p(t, t+h) = 1—Ch* for 0 < h < &, and all t > Ty. Then for all functions ¢(t) that
are positive and nondecreasing on some interval [a, ) such that

I, =[2 ¢()¥* 'exp{—¢*(1)/2} dt < o0,
we have
P[Ato(w) > a: X(t) S v(t)Pp(1) for all t=ty(w)]=1.
This theorem is Theorem 1 of [3], but we include the following different proof.

PrOOF. Let Y(¢) be a separable stationary Gaussian process having a covariance
function g(h) satisfyingg(h) = 1—C* - |h|*+o(|h|*) ash —» Oandg(h) £1—C;h*<
p(t, t+h) for 0 < h < §;* and t 2 T,. This second requirement follows for
C,* > C,. By the nonstationary version of a well-known result due to Slepian (1962)
(see Theorem 1), the fact that g(h) < p(t, t+h) for all t = T implies

P [sup(nA,nA+A) Y(s) Sul =P [Sup(nA,nA+ n X () = u

for A < 6,* and nA > T,. Now following the “proof of Theorem 1.1 when
I, < ,” we have ) PG,° <) PF, < oo, where F, = [suDPgana+a Y(5) =
¢(nA)] and G, = [SUPyana+a) X(s) £ ¢(nA)]. The Borel-Cantelli lemma applied
to the G,’s completes the proof.

THEOREM 2.2. Let the above process X(t) have a correlation function satisfying:

(3") There are positive constants 6,, C,, T, and o' with 0 < o’ < 2 such that
p(t, t+h) £ 1—C,h* for 0 < h < 6, and all t > T,; and

@) p(t, t+s) = O(s™?) uniformly in t as s — oo for some y > 0.
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Then for all functions ¢ as in Theorem 2.1 with I, = oo, we have
P[X(1) > v()p(2) i.0. in t]=1.

PrOOF. Let Y(¢) be a separable stationary Gaussian process having a covariance
function g(h) satisfying q(h) = 1—C,*|h|*+o(|h]|*) as h — 0 and p(t, t+h) <
1—-C,h* < q(h) for 0 < h < §,* (C,* < C,). Applying Slepian’s result (see
Theorem 1) and the“proof of Theorem 1.1 when I = 0,” we obtain oo = Y PES <
Y PH,’ for B < 8,*, where E, = [max,.g, Y(s) < ¢(kA+p)] and H, = [max,cq,
X(s) £ ¢(kA+B)]. Consequently, it only remains to show that the events H, are
asymptotically independent (i.. in the nonstationary case). Lemma 1.5 yields as
in the “proof of Theorem 1.1 when I, = c0”

where p = p(t; ,, t;, ,) and g(x, y; Ap) denotes the bivariate normal density. Again
we chose A large enough that |p| = |p(ti.. t;,)| £ M(j—i)7" and |p| <d =
min (1/3, y/6) for all j > i and some positive constant M. Consequently we may
estimate 4,, ,, and complete the proof of Theorem 2.2 exactly as we did for the
stationary case, i.e., Theorem 1.1 when I, = co. []

REMARK. If conditions (3) and (3') hold simultaneously, then « < «’. The non-
stationary case theorem exactly analogous to Theorem 1.1 holds if conditions (3)
and (3') with « = «’ and condition (4) hold.

Of course, Theorem 6 of [3], which is used by Watanabe as a proof of the asymp-
totic 0-1 behavior of Brownian motion, can be improved by using a hypothesis
analogous to condition (4) of Theorem 2.2.
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