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ASYMPTOTICALLY OPTIMAL TESTS FOR
FINITE MARKOV CHAINS'

By Luis B. Boza

Bell Laboratories, Inc.

A discrete time, finite Markov chain with fixed initial state and
stationary transition behavior is considered. Using Whittle’s formula a
large deviation result (similar to Hoeffding’s result for one multinomial
distribution) is obtained for the transition count matrix of a path of the
chain of arbitrary length. This result is then used in the asymptotic com-
parison of a given sequence of tests about the transition probability matrix
with a suitably constructed sequence of likelihood ratio tests. It is assumed
that the sizes of these tests decrease to zero at a certain rate as the length
of the observed path increases. The comparison is carried out at fixed
alternatives in terms of the behavior of the ratio of type-Il-error proba-
bilities.

1. Introduction. One approach for the asymptotic theory of inference about the
parameter of a Markov chain is described in Billingsley (1961a), (1961b). The
transition behavior is assumed to be stationary. One path of the chain is observed
and the asymptotic theory is developed as the length of the observed path increases.
The parameter is supposed to be in some open subset of n-dimensional Euclidean
space, and hence, under some conditions, the transition probability matrix itself can
be regarded as the parameter in the finite case. For the testing problem about this
matrix a suitable central limit theorem is obtained and then used to compute the
limiting null distributions of several test statistics. These give asymptotic level
results. A few considerations are made for power at “close alternatives.”

Bahadur and Ragavachari (1970) consider the finite state space case and show
that likelihood ratio tests are optimal in the exact slope sense, when testing hypo-
theses about the unknown transition probability matrix.

Johnson and Roussas (1969) consider a discrete time, real-valued, ergodic
Markov process with a one-dimensional parameter space. The observation is again
a path of the chain. In the testing problem the null hypothesis is assumed to be
simple, and the alternatives one-sided. Wald’s optimality criterion (Wald (1941)),
essentially of “‘close-alternatives” type, is used. LeCam’s contiguity techniques
(LeCam (1960)) provide a way for relaxing Wald’s regularity conditions and for
obtaining asymptotically locally most powerful tests, and under a further assump-
tion, asymptotically mosi powerful tests. Johnson and Roussas (1970) consider also
the two-sided alternatives case and obtain similar results, still for a one-dimensional

Received September 15, 1970.

! Research partially supported by the National Science Foundation, Grants GP-8690 and
GP-15283, at the University of California, Berkeley.

1992

I8 ()
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é} 5\3
The Annals of Mathematical Statistics. STOP\

®

Www.jstor.org



OPTIMAL TESTS FOR FINITE MARKOV CHAINS 1993

parameter. The extension of these results to the case of a multidimensional
parameter will be considered by them in a forthcoming paper.

Another approach is that of Anderson and Goodman (1957), where the under-
lying process is a finite Markov chain. Instead of observing just one path of the
chain and developing the asymptotic theory as the length of the path increases, they
consider independent replicates of a stretch of the chain of fixed, finite length and
then develop the asymptotic theory as the number of replicates increases. Relying
deeply on multinomial arguments, they obtain limiting null distributions for certain
test statistics, and hence, asymptotic level results. Some power considerations are
made for close alternatives, but moreover, a stochastic comparison of tests is
suggested. Although their setup will not be considered in detail in this paper, some
remarks will be made in Section 8 about the applicability of the methods developed
here to their case. .

In 1965, W. Hoeffding’s work (Hoeffding (1965)) on comparison of tests for
multinomial distributions was published. In his approach, the asymptotic compari-
son of tests is made, at fixed alternatives and decreasing levels of the tests, in terms
of the behavior of the ratio of type-II error probabilities. By the very nature of this
method, large deviation theory rather than central limit theorems becomes the basic
tool.

In this paper tests for the transition probability matrix of a discrete time, finite
Markov chain are asymptotically compared. The observation consists of one path
of the chain. As in Hoeffding’s work, the asymptotic comparison is done in terms of
the behavior of the ratio of the type-II-error probabilities at fixed alternatives, when
the sizes of the tests go to zero at a certain rate as the length of the observed path
increases.

The notation is introduced in Section 2. A basic large deviation result is obtained
in Theorem 3.1 and then used for getting a preliminary result on comparison of
tests (Theorem 4.4). The Kullback information function which appears in Theorem
3.1 is studied in Section 5. In Section 6 the concept of “‘equally informative
sequences of sets” is introduced and then used in Section 7 to simplify the mini-
mization problems needed for the applications of Theorem 4.4, thus leading to a
new theorem on comparison of tests (Theorem 7.1). In Section 8 the applicability of
this method to Anderson and Goodman’s approach for the asymptotic theory of
inference in finite chains is briefly discussed.

2. Notation. Let m be a fixed finite integer greater than one and s € {1, 2, ---, m}.
LetQy = {s},Q, = {1,2, ---,m} fort = 1, 2, ---, and %, the discrete g-algebra on
Q,fort=0,1,2, . LetQ = [[2, Q, and % the product o-algebra on Q. Let M,
be a probability measure on (Q, %) under which the coordinate process Xy, X,
X,, -+ is a Markov chain with time homogeneous transition probability matrix
P = (.pij)~

ForT = 0,1, 2, ---, leto/; be the sub-o-algebra of # generated by Xy, Xy, -+, Xr,
and Py = Mp | . Occasionally in the course of this paper, the symbols P;° and
Py will be used for Mpo|sf s, Mp|ol 1, respectively.
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For any path we€Q, the corresponding transition count matrix at time T is
denoted by C(T)(w) and defined by

T—‘
C(T)ij(w) = Y120 T xwy=is s 1) = 1

foranyi=1,2, -, mandj= 1,2, --- m. Let
C(T);.(w) = ); C(T); [(w),
C(T). () = 3;C(T) ().

It is clear that for any w € Q, the corresponding transition count matrix at time
T fulfills the following conditions:

and

(1) C(T);(w) is a nonnegative integer for any i, j;

@ X CM)ifw) =T; .

(3) forany i, C(T);.(w) = C(T). (w) = 6;,—9;;«) Where flw) = Xy(w) and & is
the Kronecker delta function.

ForT =1,2, - let ¢;* = {Cl Cis an m x m matrix fulfilling (1), (2), (3)} and
F ¥ = {F| F = (F;j) = (C;;/T) for some C € ¢,*}. Note that, for each 7, there is
a one to one correspondence between €;* and & *.

For a fixed C e €1* let A(C) be the set of all w € Q whose transition count
matrix at time T'is C. Clearly A(C) €1 for any such C. Abusing the notation for
simplicity let, for any C € ¢1* and the corresponding F = (C;;/T) € # *, P1(C) =
P(F) = Pr(A1(C)).

Whittle (1955) and later on Billingsley (1961a) showed that for any C € € 1*

P(C) = Af(C,s),s(Hi C. !/l_[ij Cij!) Hij Pg'”a
where
(a) f(C, s) is the unique (time 7) state defined by C and the initial state s through
the restrictions (3);
(b) As(c.s),s is the cofactor of the (f(C, s), s) entry in the matrix I' = (T';;) with
rij = 5” if Ci‘ = O aI‘ld r‘” = 61}'—(CU/C!') if C,'.> O;

(c) by convention p§¥ = 1if p;; = C;; = 0.

The above mentioned formula is usually referred to as “Whittle’s formula”. Note
that ) cec» Pr(C) = 1and also that the restriction A ¢ 5, = 0 removes from Cr*
a set of zero Py-probability.

At time T, C(T) (or equivalently the corresponding F = (C(T);;/T)) is a sufficient
statistic for P, and the maximum likelihood estimator P = (5, ;) of P is given by

bij = C(T)ij/C(T)i- if C(T);. >0,
if C(T),. =0,

for any i, j, where the «;;’s are arbitrary within the restrictions a;; 2 0 for all i, j,
and ) ; a; = 1 for all i.

= aij
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DEFINITION.
(a) (gT = {Ce CT* l Af(C,s),s > O}.

(b) F1 = {F|F = (Cy/T) for some C e C.}.
(Again note that for each T, there is a one to one correspondence between Er
and £ 1.)

() F = {F|Fisanm x mmatrix F;; 2 alli, j; ¥, . F;; = 1}.

(d) Foranyset 4 = & let Ay = A% 1, where A% ; denotes the intersection of
the sets 4 and Z ;.

() 2 = {P|Pism x mmatrix; p; = 0alli, j; Y, p,; = 1alli}.

(f) @ is a function from # x 2 to the extended real line defined by: for any
FeF,anyPe P, O(F,P) = ) ;x>0 ), Fijlog (F;;/F;.p;;), where by convention
Fijlog (F;/F;.py;) is taken to be zero whenever F;; = 0.

3. Basic large deviation theorem. In this section a large deviation result is proved
for the transition count matrix of the chain. It is similar to Theorem 2.1 of
Hoeffding (1965) which, in turn, is a stronger version of a result due to Sanov
(1957). This large deviation theorem will be used repeatedly in the rest of this paper.

THEOREM 3.1.
(a) For any Fe #  and any Pe P
Pi(F) = exp (O(log T) — T®(F, P))
where O(log T') is uniform in Fe % ; and P € P.
(b) For any set A< & and any P P
Py(4) = Pr(47) = exp (O(log T)~Td(Ar, P))

where ®(Ar, P) = infp.,  ®(F, P) (defined to be + oo if Ay is empty) and where
O(log T) is uniform for A = & and P e 2.

Proor.

(i) Whittle’s formula and the convention stated in the definition of ® can be used
to obtain, in a straightforward way, the following result: for any Fe & 1*,

P1(F) = Pr(F)exp (—T®(F, P)),
where P(F) is computed using Whittle’s formula, but with P instead of P.
(ii) Clearly, for any F € & p*,
Pr(F) = exp (—TO(F, P)).

(iii) To obtain a lower bound for Pr(F) a two-step procedure is used. The first
step is valid for any F e & 1*, while the second is valid only on & .
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From Stirling’s estimate for the factorials and the fact that 0 £ C;; < T for any
i, j, it follows that for any Fe & *,

PT(F) 2 Af(C,s),s(zn’T)_M(m_ 1)/2,

where C = (TF;) € €r*.

A lower bound is now obtained for A, ¢ ;) ., Where C = (TF;;) and F € % . First
assume that the set I(C) = {i| C;. = 0} is empty. Then Ay = Afco.sl
[lizs Ci., where Afc  is the cofactor of the (f(C, s), s) entry in the matrix
I'* = (Cy.0,;—Cy)). Since Fe F 1, Afc, is strictly positive. Moreover, since I'*
has integer entries, Afc ) = 1. Finally, since 0 < C;. < T'for any i, Ayc.o).s =
T~ m=D,

Consider now the case where I(C) is nonempty. F € & 1 implies that s ¢ I(C), and
hence that 1 < #I(C) < (m—1), where #I(C) denotgs the cardinality of the set
I(C). If f(C, s) ¢ I(C), the same argument of the preceding paragraph can be
applied to a square submatrix of C, of dimension (m— # I(C)), which contains all
the positive entries of C. Hence, in this case,

Af(C,s),s g T—(m—l— #I(C))g T —(m— l)'

On the other hand, if f(C, s) € I(C), it follows from the restrictions (3) and from
s ¢ I(C), that C.; ¢ = 1, and that there is a unique state k ¢ I(C) such that
Ciricsy = Copic,sy = 1. It is clear that, after deleting the f(C, s)th row and the
sth column of I', the f{C, s)th column of I' contains only one nonzero element,
I'y.r(c.s)» Not smaller—in absolute value-than T ~1 It now follows by the argument
of the previous paragraph that

Af(C,s),s ; T—(m-#I(C)) g T—(m_l)-
The result in (i), together with those already obtained in (iii), imply that
PL(F) = (2m)~mm=1I2=(m=1)(m+2)/2 ex 5 (— TO(F, P)).
This result and the one in (ii) imply part (a) of Theorem 3.1.
(iv) Let A be a subset of & and A; = A ;. Then,
Pr(A) = Pr(4r) = ZFGAT P(F).

But, since Ay is a finite set, the infimum ®(4, P) is attained for some F° € A;.
Hence, by (iii),

Pr(Ar) 2 Pr(F%) 2 2m)~ "= DI2p=(m=Dm¥ 272 exp (— TD(Ar, P)).
For the upper bound note that
ZFGAT P(F) £ exp (—=T®(A4r, P)) ZFEAT L.

But the number of points in A is obviously smaller than the total number of ways
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of placing exactly T ones into m X m places without any further restriction. It is a
well-known combinatorial result Feller ((1962) page 36) that this number of ways is

T+m?—1
m*—-1 |

4. Preliminary results on comparison of tests. Let A be a nonempty subset of 2.
Consider the problem of testing H,: P € A against H,: Pe 2 —A.

LEMMA 4.1. For each T, the class of likelihood ratio (L.R.) tests of H, against H,
is given by the class of rejection regions

{{F e Z|0(F, A) 2 HTH|0 < KT) < oo},

Part (b) of this theorem follows.

where
D(F, A) = infp, O(F, P).
PROOF.
suppep Pr(F) = suppes (Pr(F) exp (—TO(F, P)))
= Py(F)exp (—T®(F, A)).
Similarly,

Suppeg Pr(F) = Pr(F) exp (—~TO(F, 2)).

But, as will be seen in Lemma 5.1, ®(F, 2) = 0 for any F € &#. The result follows.

Note that the actual rejection regions at time7'are of the form {Fe % [ O(F,A) =
b(T)}. The differences between these sets and the corresponding sets
{Fe # | ®(F, A) = b(T)} have Py probability zero.

LEMMA 4.2. The size of a L.R. test whose rejection region at time T is R =
{Fe Z | ®O(F,A) 2 b(T)} isexp (O(log T)—T®(R;™, A)), where R;" = RDF,
and

(D(RT(T), A) = ianE Rp(T) (I)(F, A)
(defined to be + o if R\™ is empty).

Proor. Follows from Theorem 3.1.

THEOREM 4.3. Let UM = F(T = 1,2, ---) be a sequence of rejection regions
corresponding to a certain sequence of tests of H, against H,. Define a sequence of
L.R. tests by their rejection regions

RD = (FeF | O(F, A) = IV}, T=12

with
1D = ®ULT, A).

Then
(a) UT(T) S RT(T)s T= 1, 2’ Tty
(b) log size R'™ = O(log T)+log size U™.
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(©) If TI;'M/log T — 0 as T — oo then, as T — oo, the sizes of the U'" and the
R tests converge to zero faster than any power of T.

(d) ForanysetA < Flet ~A = F—A. Let P € P—A be such that Pr(~UD)
> 0, and that

T{®(~RD)y, P)—®(~ UM, P)}log T — 00 as T — 0.

Then T*Py(~R™M)[Pp(~U™) - 0 as T - oo, for any k.

PrOOF.

(@) Fe UM = ®(F,A) = I = Fe R ".

(b) Since U™ is a finite set, ®(U;", A) is attained in U™, and hence,
O(Ry™, A) = DU, A) = 1D,

(b) follows from Theorem 3.1(b).

() is a direct consequence of (b), and (d) follows from Theorem 4.1(b).

Notice that since U™ < Ry for all T, the sizes of the R™-tests are not
smaller than those of the U‘M—tests. The aim of the next theorem is to construct

new L.R. tests, with sizes not larger than those of the corresponding U‘™~tests, for
which results similar to those in Theorem 4.3 can be shown.

THEOREM 4.4. Let U = #,T = 1, 2, ---, be a sequence of rejection regions for
testing H, against H,. Then

(a) there are numbers Ay, 0 < Ay = O(log T|T) for which the likelihood ratio tests
with rejection regions SV = {Fe & |®(F,A) 2 It + Ay} have sizes not larger
than those of the corresponding U™ tests;

(b) let Pe?— A be such that Pr(~U™) > 0, T{®((~ RM)y, P)—0((~ U™y, P)}
/log T — oo and

{(O((~ R ™), P)—O(~SD)r, PH{®(~ RD)p, P)=B(~UD)y, P)} - 0
as T — . Then

T*P1(~ST)[P(~UT) -0

as T — oo for any k.

PrOOF. Similar to the proof of Theorem 3.1 of Hoeffding (1965).

5. Study of the function ®. In this section we prove some facts about the function
® which are relevant for the comparison of tests for simple hypotheses.

DEFINITION.

(a) A transition probability matrix P € 2 is said to be regular iff there is a
positive integer N such that P is strictly positive entrywise, where P™ is the
matrix of N-step transition probabilities.

(b) Py = {Pe P | Pis regular}.
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(c) For a fixed Pe 2 let D(P) = {(i, ) | pi; = 0}, F(P) = {Fe F | F; =0 if
(i,)) € D(P)}, and Fo(P) = {Fe &F | F;; = 0iff (i, j) € D(P)}.

Note that if P is strictly positive entrywise then #(P) = &. Otherwise F(P) is
the intersection of those faces {F € & | F;; = 0} of the simplex & corresponding to
pairs (i, j) € D(P). Moreover, for any P € # and any T, P(#(P)) = 1.

LEMMA 5.1
(a) 0 S O(F,P) < oo forany Fe F, any Pe 2.
(b) ®(F, P) = 0 <> for any i such that F;. > 0,
(Fy/F..) = pi; all j.
(c) ®(F, P) < o0 < Fe F(P). .
(d) For any P € 2, the function ®(-, P) is bounded and continuous on ¥ (P).
ProOOF. Essentially similar to the proof of Lemma 4.1 of Hoeffding (1965).

LEMMA §5.2. Forany Pe 2 and A = &, ®(A, P) < oo iff AF(P) is nonempty. In
this case ®(A, P) = O(AF (P), P).

ProOF. The proof follows from Lemma 5.1.
LeEMMA 5.3. For any P € 2, the function ®(-, P) is convex in F.

ProOOF. Let G and H be arbitrary points in &. For a€(0, 1) let F(a) =
aG + (1—a)H. Let Ng = {i|G;. > 0}, Ny = {i | H;. > 0}, N = Ng U Ny, U =
NNy, V = (~Ng)Ny, W = Ng(~Ny), and N(®) = {i | F();. > 0}. .

Clearly, N(o) = N = U+ V+ W for any « € (0, 1). The lemma follows by study-
ing separately the contributions to ®(F(x), P) made by entries in U, V and W, and
then putting together these contributions.

DEFINITION.

(a) & = {Fe.?*'[F,-.—F.,- = 0 alli}.

(b) ff(T) ={Fe% | F,,—F. = T“,Ff.—F., =T 4 F.—F,=0alli#
s, f}.

© AD = Uy, A0,

REMARKS.

1. Any w € Q such that X;(w) = s produces, at time 7, a transition count matrix
C(T)(w) for which the corresponding F = (C(T);{(w)/T) € £. Any w € Q such that
Xr(w) = f # s produces, at time T, a transition count matrix C(T)(w) for which
the corresponding F = (C(T);(w)/T) € # ;7. Hence it is only the Tth coordinate
of the path that determines whether its normalized transition count matrix at time
Tis on % or on one of the sets f(T>_ This remark, together with the facts that &
and the o ,("’s are convex sets, and that % does not depend on T, suggests the
very important role that the set % will play in the rest of this paper.
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2. Clearly, for any T,
?T=$5"'TU.}{(T)§T.

LeEMMA 5.4. Assume that P € P, and let A be a subset of F such that AL F (P) is
nonempty. Denote by A€ the closure of A in & and let P(A°YF) = {Pe P, | there
is an F € A°Y such that (F;[F,.) = p;; for all j and all i such that F;. > 0}. Then,

(a) there is an F e AL F(P) such that
O(F, P) = (A%, P) = (AL F(P), P);

(b) If P € Py(A L), then (a) is satisfied by any F € A°L F (P) such that (F;/F;.) =
pijfor all j and all i such that F;. > 0. In this case ®(AZ, P) = 0.

©If PePy—Py(A°YL) then P(AZL,P) > 0 and any F satisfying (a) is in
0(A) X F (P), where (A) denotes the boundary of A in F.

PROOF.

(a) By Lemma 5.2, ®(4.%, P) < o since AL Z (P) is nonempty by hypothesis.
Part (a) follows by closedness of 4°¥#% (P) and Lemma 5.1(d).

(b) Consider the system of equations
78 =ZIT=1 Vi Pui i=1,2,.,m,

with the restrictions ;. = 0 for all 4, and Y /-, ¥;. = 1. Since P € 2, there is a
unique solution (Y., -+, ¥ ) to the system, and this solution is strictly positive
(Kemeny and Snell (1963), pages 70, 71). Note that (¥ {*, ---,¥,r.) are the stationary
probabilities corresponding to P.

Hence F* = (*p;;) is the unique point in % such that FJ/F* = p;; for all i, j.
The condition P € 2,(A°¥) is equivalent to F* € A°¥. Moreover it is clear that
F* e #(P). Part (b) now follows from Lemma 5.1(b).

(©) In this case ®(4.Z, P) > 0 by continuity of ®(-, P) in #(P). Suppose that
there is F, € (int 4)L % (P) such that O(F,, P) = ®(AZ, P). Let F* be the point
defined in the proof of (b). Under the hypothesis F* € ZF(P)— A° ¥ % (P). If, for
a €(0, 1), we let F(a) = aFy+(1—a)F*, it follows from the convexity of ®(-, P) on
& and from ®(F*, P) = 0 that ®(F(x), P) < a®(F,, P) = a®(4Z, P). But, since
F, e (int A)# F (P), it follows that there is an a, € (0, 1) such that F(a,) € AL F (P).
Hence

D(F(og), P) < D(AZL, P),

and thus we have a contradiction.

Results similar to those of Lemma 5.4 can be obtained for each ,(T), instead of
2, for large T.
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DEFINITION. Let P € 2.
(a) A hyperplane in #(P) is a nonempty set
{Fe Z(P)| Lp¢ pep bisFi; = b}
with the b;;’s not all equal.
(b) A hyperplane in #(P).# is a nonempty set
{FeF(P)Z | Yj)¢ pip bijFij = b}
with the b;;’s not all equal.

THEOREM 5.5. Let PeP,, 0 < a < maxggp, O®F, P), and R(a) =
{FeZ |®(F, P) 2 a}. Let F° be an arbitrary point in 0(R(a))<Z .

(@) If F° € O(R(a)) L F o(P) then, for any F € F(P),
®O(F,P)—a =®(F, (F}(}/Fi(?)) +Zi,j (F;; —Fi(}) log (FS-/F}‘.)PU)-
The unique supporting hyperplane (in £ F(P)) to (~ R(a))%Z at F° is
H = {FeZF(P)|Yq.¢ ory (Fij— F) log (Fij/Fp) = 0}.

(b) If F° € d(R(a))& — 0(R(a)) L F (P) then, for any (i, j) ¢ D(P) such that Fy; = 0,
H; = {Fe F(P) | F,; = 0} is a supporting hyperplane (in £F (P)) to (~ R(a))&
at F°. These sets, and their intersections, are the only such supporting hyperplanes.

PRrOOF. Since @(-, P) is bounded on Z(P), it follows from the hypothesis on a
that (~R(a))°¥ = {Fe F |®(F, P) £ a}¢ < ZLF(P), thusany pointin d(R(a))&
is in F(P).

(a) The identity follows easily. From it, and from ®(F, (Fi‘j./F 2) = 0, it follows
that H is a supporting hyperplane (in L% (P)) to (~R(a)¥ at F°. To show
uniqueness let ¥° be a neighborhood of F° (in Z#(P)) totally contained in
FLFo(P). For any (i, j) ¢ D(P), the derivatives of ®(F, P) with respect to F;; are
continuous in ¥°. Hence H is unique in ¥° and therefore in Z#(P).

(b) That the H;;’s and their intersections are, in this case, supporting hyperplanes
(in ZF(P)) to (~R(a))Z at F° is clear. To show that they are the only such
hyperplanes it suffices to show that any straight line in %% (P) passing through F°
and an arbitrary point X € L& ((P), intersects set (~ R(a)).Z.

Let Z(a) = (1—a)F°+aX,ae(0,1). Let N = {i| F? > 0}and M; = {j| F$> 0}.
Then, as o — O,

d
a"‘D(Z(a),P)=Z Y X;loga+0(1).
« 1N je(=M)

The range of the previous summation is nonempty since X e &% y(P) and
F° e #(P)— Fy(P). So, as a — 0, d/dou ®(Z(a), P) - — 0.
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On the other hand, by convexity of ®(-, P) and the fact that {i l X;. >0,
F?. > 0} is not empty, it follows that d?/da® ®(Z(«), P) > 0 for o € (0, 1). Thus

a =®(F°, P) = ®(Z(), P)—a 3% D(Z(x), P),

and therefore, for small enough «, ®(Z(x), P) < a and Z(«) € (~ R(a)) Z.

THEOREM 5.6. Let Pe P, and let A be a subset of F such that A°LF (P) is
nonempty. Assume further that P ¢ P (A°YL). Then there is a unique point Y € 0(A)¥
such that ®(Y, P) = ®(4A.%, P).

'PROOF. Let (~B) = {Fe F | ®(F, P) < ®(4.Z, P)}. By the convexity of the
function ®(-, P) on &, and the convexity of &, it follows that (~ B).Z is a convex
set. Also, since A°¥ZF(P) is nonempty, ®(4.%, P) < o, and hence (~B).L c
L% (P). Furthermore, by definition, the convex sets (~.B).% and A% have no
points in common.

Let (YF, -, %) be the unique, strictly positive, stationary distribution of P,
and F* = (Y*p;)). Clearly F* € (~ B)¥Z(P).

The point Y is obviously in #(P). If Y € #(P)— Z o(P) then the only supporting
hyperplanes (in LZ(P)) to (~B)¥ at Y would be those described in Theorem
5.5(b). No one of these planes separates (~.B).% and 4% because both these sets
contain points in & o(P). Since a separating hyperplane in £ % (P) must exist, it
follows that Y e & y(P), and therefore, by Theorem 5.5(a), this hyperplane is
unique and has an explicit form. The theorem follows by noting that Y is the unique
point in (~ B)°% that lies in this hyperplane.

REMARKS.

1. Theorem 5.6 is very useful in the computation of type-1I error probabilities of
tests for H,: P = P, against H,: P # P,, which have convex acceptance regions.

2. The previous results are all that is needed for the comparison of tests for
simple hypotheses. If composite hypotheses were to be considered, double infima of
the type ®(4, A), (4 = F, A = 2) would be needed. Results similar to those in
Hoeffding (1965) can also be proved in this case.

6. Almost equally informative sequences of sets. Even in the case of simple hypo-
theses (which the rest of this paper will consider) the computation of the infima that
appear in the theorems of Section 4 may prove to be extremely difficult. It is thus
desirable to look for conditions under which these discrete minimization problems
could be replaced by simpler ones. Heuristically, the problem can be motivated as
follows: suppose we wish to minimize a certain smooth function over the discrete
set AF r, where A(S &) is smooth enough. For large T, since the set £ is ““close”
to all the sets o7, the infimum of the function over

A«JWT = AgcjﬂT v (Ufaﬁs Aff(T)yT)

should not be “too different” from the infimum over AL 7.
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Furthermore, by definition of the sets & 1, the infimum over 4% % ; should not
be “too different”, for large T, from the infimum over 4.%.

DErINITION. Let AT, BD T = 1,2, --- be two sequences of subjects of # and
let P e 2. These sequences are said to be “almost equally informative with respect
to P (a.e.i.—P)” if there is a T, such that for all T = T,

|®(4P, P)—®(B™, P)| < O(log T/T).

LEMMA 6.1. Let AT, T = 1, 2, --- be a sequence of subsets of # and let P P. If
D) ADL and A™(L U A D) area.e.i~P, (2) ADYL and AV & are a.e.i.~P, then
A" and AV L are a.e.i—-P.

PROOF. A\ D% < A" < AD(Z U 4 ™) and hence
(D(A(T)(g o '%/‘(T))a P) é (D(AT(T)5 P) é (D(AT(T)g’ P)

So by hypothesis, for large T,
O(AD L, P)—0(og TIT) £ ®(4, 7, P) £ ®(4‘DZL, P)+0(log T/T).

DerINITION. Let F(D, T = 1, 2, --- be a sequence of points in .. It will be said
to be “bounded away from zeroas T — oo’ if there are numbers y > 0 (independent
of T) and T, such that F{" = y for any i, j, and any T = T,

THEOREM 6.2. Let AP, BD, T =1, 2, --- be two sequences of subsets of F and
let Pe P,. Assume that for any T, BT = A, If there is a T, such that for any
T>T,

(a) there are points F e AT bounded away from zero as T — oo such that
O(F™, P) = ®(4™, P);

(b) there are points G e BT such that |G’—F’| < aT~' where a 2 0
independent of T} then the sequences A", BT, T = 1,2, --- are a.e.i-P.

PRrOOF. It suffices to show that under the hypothesis ®(G™, P)—®(F™, P) <
O(log T/T), since by hypothesis ®(G", P)—®(F™, P) = 0. In most of what
follows the superindex T will be deleted for simplicity.

Let Npg = {i| F;. > 0, G;. > 0}, Np = {i| F.. > 0,G;. =0}, Ng = {i| Fi. =
0, G;. >0}, Mg(i) = {J| F;; >0, G;>0}, M= {]l F; >0, G; =0}
Mg() = {jl F;; = 0,Gy; > 0}. From the hypothesis that Fis bounded away from 0,
it follows that the sets Ng, Mg(i) are empty for sufficiently large T. From the
hypotheses that F is bounded away from 0 and that |G;;— F;;| < aT ™" it follows
that, for sufficiently large T, the sets Ny and M (i) are empty. So for large T’

O(G,P)—D(F,P) =Y icNpe 2je Mrat dis = 2 2 ijs

where d;; = G;;10g (G;j/G,.p;;) — Fy; 1og (Fy;/F;.p;j). The rest of the proof follows in
a manner similar to that of Lemma A.1 of Hoeffding (1965).
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7. Further results on comparison of tests. In this section we study theorems like
those of Section 4, in the cases where the approximation procedures described in
Section 6 can be applied.

THEOREM 7.1. Let UD, T = 1, 2, --- be a sequence of subsets of & . Assume that
the sequences Up™” and UT £, T = 1,2, --- are a.e.i. with respect to P € #. Then
P(UD) = P(Ur™) = exp (0(log T)-TOUD Z, P)).

PROOF. It follows from the definition of a.e.i.—P sequences and Theorem 3.1(b).

THEOREM 7.2. Let UD, T = 1, 2, --- be a sequence of subsets of F to be used as
rejection regions of some sequence of tests for Hy: P = P, against H,: P # P,,.

Let ¢D =®UDL, Py), cr" = DU, Py) and R(x) = {FeF |O(F, Po) Z x}.

Assume that U™, UDZ, T =1, 2, --- are a.ei-P, and that R(c™) % and
R(c™)p, T=1,2, - are a.e.i~P,. Then: .

(a) There are numbers Ar, 0 < Ap = O(log T/T) such that
PrO(R(cP+Aq) £ PrO(UTD).

(b) Let Pe P, P # P,. Assume that the sequences (~U Nyand (~UNZL, T = 1,
2, - are a.ei~P and that (~R(cP+ip))(Lw H D) and (~R(P+Ap) %,
T=1, 2, - are ae.i-P. Assume further that P (~R(cP+Ap) >0 and
P (~UT) > 0. Then

Pr(~R(c™+1p)) < {exp [0(log T)—Tdr(P) + Ter(P)}Pr(~ U ™)
for sufficiently large T, where
er(P) = O((~R(c ") £, P)—®((~R(cP+17)Z, P) 2 0,
dy(P) = O((~R(c")Z, P)—(~UD)Z,P) 2 0.
PrOOE. 7 —0(log T/T) < ¢r™ < ™+ 0O(log T/T) for large enough T, since
U™ and UPZ are a.e.i—P,.

Case 1. ¢ < oD
In this case 0 < ¢ P —cM < O(log T/T). So
Fe UMDY = ®(F, P,) = ¢V = Fe R(c™),
Fe UpD = ®(F, Py) 2 ¢iP = ¢™ = Fe R(c').

Hence UM% = R(c™); U™ < R(c™P); Ur™ = R(c'™)y, which implies that
PO(UD) £ POR(c™M)). So the size of R(c¢™) is not smaller than that of U™,
However, log size U = O(log T)—Tcr" = O(log T)—T e™, log size R(c") =
O(log T) —T®(R(c' "), Po) = O(log T)—Te™ since R(c™); and R(c™)Z are
a.c.i—P,. (a) follows in this case. Also R(c'"+1r) < R(c‘T) since Ay = 0. Under
the hypothesis that Pr(~R(c™™+4z)) > 0 and Pr(~ U™) > 0 it follows that

Pr(~R(c+p))
— {exp [O(log T) — T@((~ R(c™+Ar))r, )= (~ U™)p, PYPr(~ UP).
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But by hypothesis
O(~ U D)y, P) £ O((~U")Z, P)+0(log T/T)

and
O((~R(cP+ )1, P) Z O(~R(c "+ 2L U ™), P)
= O((~ RV +Ap) &, P)—O(log T|T).
Thus
Pr(~ R+ ir))

< {exp [0(log T) —T(@(~ R(c'" + A7) Z, P) =~ @((~ U")Z, P)]}Pr(~ UTD)

and (b) follows by adding and subtracting T®((~ R(c'").#, P) in the exponent.
Moreover, since (~R(c™)Z < (~R(cP+11)ZL, ex(P) = 0. And since
(~R(c")& = (~UM)Z, di(P) = 0 also.

Case 2. ¢D = cD.

In this case, 0 < ¢P —¢, T < O(log T/T). So Fe UNZ = ®(F, Py) = T =
FeR(c™)% which implies that UPZ c R(c™)Z < R(c™). (Note that
U™ < R(c') is not necessarily true.)

So the size of the U™ test need not be smaller than the size of R(c‘™) test in this
case.

However, log size U™ = O(log T)—Tc'", log size R(c'™) = O(log T)—Tc™™
because Up ", UDZ and R(c ")y, R(c\V)Z are a.e.i-P,.

So in any case it is true that there are A;’s 0 £ Ay = O(log T/T) such that size of
R(c™ + Ay) is not larger than the size of U”.

The rest of the proof follows exactly in the same way as in Case 1.

COROLLARY 7.4. Under the assumptions of Theorem 1.3, if Tdr(P)/log T — o0 as
T — oo and ep(P)[dr(P) —» 0 as T — oo, then

Pr(~R( T+ Ap)P(~UD) > 0as T - o

faster than any power of T.
Theorem 7.3 can be used to obtain results similar to those in Hoeffding (1965). In

the case of testing Hy: P = Py(P, € P,) against H : P # P, it is clear that any
reasonable test will eventually discriminate between the null hypothesis and any
alternative P for which D(P) # D(P,). For alternatives P such that D(P) = D(P,),
the theory developed in this paper can be used to show results similar to those in
Hoeffding (1965). In particular it can be shown that given a sequence of chi-square
tests for the above described problem, whose sizes go to zero at a not too fast rate,
there is a sequence of L.R. tests with sizes not larger than those of the chi-square
tests, and with type-1I error probabilities much smaller, for large 7, than those of
the chi-square tests, at every alternative P of interest (i.e. such that D(P) = D(P,))
except for those lying on a well-defined curve. This, and other related results, will be
presented in a forthcoming paper.
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8. Remarks about replicates. A different approach for the asymptotic theory of
inference in finite state space, discrete time Markov chains was developed by
Anderson and Goodman (1957).

In this approach a fixed, finite T is considered. Independent replicates X,
X™, -, X;; n=1,2, -, N, are observed. The transition count vector is
(C(l)la 2"', C(T)) where C(t) = (Cy(1) and Cift) = Yo=1 Ix™, =i.xm =
t=1,2--,T.

If the chain has a nonstationary transition behavior characterized by the vector
of stochastic matrices P(1), -+-, P(T) then (C(1), -+, C(T)) is a sufficient statistic for
P(1), ---, P(T) at stage N.

If the chain has stationary transition behavior characterized by P then the
pooled transition count matrix C defined by C = (CU), =31, Cyt)is a
sufficient statistic for P at stage N.

In the nonstationary case, it is clear that, at stage N, C;(r) = 0, ) ;; C;i(t) = N.
Y, Ci()=Y;Cit—)fort = 1,2, -, T.

Under the assumption that C;.(1), i = 1, ---, m are known, and that C;.(1)/N —
n;>0fori=1, -, mas N— oo, Anderson and Goodman derive asymptotic
distributions for (C(1), -+, C(T)) in the nonstationary case and for C in the
stationary case.

Not surprisingly, because of the implicit multinomial structure, a large deviation
result (similar to that of Theorem 3.1 of this paper and to that of Theorem 2.1 of
Hoeffding (1965) for Pry((C(1), C(2), -, C(T)) € A) can be derived in the non-
stationary case. Also a general theory like that in Sections 5, 6, 7 can be developed
from the large deviation result. The notation, though, becomes extremely cumber-
some. It can be conjectured, however, that results like those mentioned at the end
of Section 7 of this paper should also hold in this case.

In the stationary case, the large deviation result for Py(C € 4) does not hold
uniformly in 4. An example of this fact can be easily constructed. The class of sets
on which the large deviation result holds uniformly must thus be restricted. This
smaller class of sets should include the acceptance and rejection regions of the tests
to be compared so that the theory developed in this paper carries over to this case.

(n)
’
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