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TESTS OF COORDINATE INDEPENDENCE FOR A
BIVARIATE SAMPLE ON A TORUS

By EDWARD D. ROTHMAN
The University of Michigan

1. Introduction and summary. This paper studies the problem of testing the
independence of two random variables X, Y from a random sample, (X;, ¥),
(X,, Y,) - (X,, Y,), of size n, where X and Y are angular variates (i.e., reals
modulo 1). In the standard case where X and Y are ordinary real variables, the
following approach has been useful. Suppose (X, Y)has the continuous distribution
function F(x, y) with marginal distribution functions F;(x) and F,(), respectively.
It is desired to test Hy: F(x, y) = F{(x)F,(y) against the alternative H,: F(x, y) #
F(x)F5(y). Let F,(x, y) denote the sample distribution function of the random
bivariate sample, i.e., if H(x) denotes the left continuous Heaviside function then

1 n

Also, let F,,(x) and F,,(») denote the sample distribution functions associated with
the first and second components of the random sample vector.
In terms of H(x)

1.n
® Fu() =5 Y, He=X)
and

1 n
) Fua) = ¥, HO=Y).

Blum, Kiefer and Rosenblatt [1] studied the following distribution free tests of
independence based on the sample distribution function. Reject for large values of

) A, =sup,, |T,(x, )|

or

&) B, = n[[[T,(x, »)]* dF,(x, ),
where

(6 (%, y) = Fu(x, Y) = Fay(X)F2(y)-
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The first statistic, constructed in the spirit of Kolomorov-Smirnov statistics, has
good power properties, cf. [1], Section 4, but its asymptotic distribution is unknown.
The statistic B, is analogous to the Cramér-von Mises statistic and.is also equivalent
to a statistic originally proposed by Hoeffding [3]. The characteristic function of
the null asymptotic distribution of B, is (cf. [1] and [3])

, oo 2iz z
(7) EetzB — I_I <1_W> .

Jk=1

Asymptotic power properties are given in [1].

As in Rothman [9] the difficulty in modifying these tests in the toroidal case is
that there is no natural origin for the distribution functions ona circle. Moreover,
different arbitrary starting points give the test statistics 4, and B, different values.
In this paper we propose that the statistic C, be used for our problem, with the

surface of the torus replacing the plane.
® Cy =n{{Z (x,y)dF,(x,y)
where
Z,(x,y) = T,(x,y)+ [ | T,(x, y) dF(x, y) = | T,(x, ) dF ;(x) = [ T,(x, y) dF,5(»).

We note that C, may be rewritten in the following form which we shall refer to in
Section 3:

©)  Co=1n? Y [V {TUX, Y+ T(X, Yo) = T(X,, Y) — T(X ;. Y31
We shall also have occasion to use the random variable,
D, = n[[Z,*(x,y)dF (x) dF(y),
where
Z,%(x,y) = T,(x, )+ [ [ Tu(x, y) dF ((x) dF ,(y) = [ T,(x, y) dF 1(x) = [ T,(x, y) dF ().

An outline of the paper follows: In Section 2 it is shown that when H,, is true,
C,— D, — 0 in probability. The invariance of C, under changes of origin is proved
in Section 3. Finally the asymptotic distribution of C, under the null hypothesis is

obtained in Section 4.

2. Asymptotic equivalence of tests. In this section it is shown that C,— D, — 0 in
probability when the null hypothesis of independence is true. Use will be made of
the following result due to Kiefer and Wolfowitz [6]:

THEOREM 2.1. [Kiefer and Wolfowitz]. Let
Kn = Sup—oogx,y<oo IFn(X,J’)—F(Xa J’)l

and
G,(r) = Prob[n*K, < r].
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For every F(x, y), there exists a distribution function G such that the sequence of
distribution functions G, converges to G at every continuity point of G as n — .

In [1] it is stated that the asymptotic distribution of n*4,, exists. Using this result
one derives

THEOREM 2.2. Under the null hypothesis, Hy: F(x, y) = F(x)F,(y) the following
random variables converge to each other in probability,

Co=n{[Z,(x,y)dF,(x,y)
C,* =n{{Z2(x,y)dF (x)dF(x)
C,** =nf[[Z,**(x, )T dF (x) dF ()
where
Z,** = T,(x, )+ [ [ T,(x, y) dF ((x) dF () = [ T,(x, ) dF,1(x) = | T,(x, y) dF12(y)
D, =n[{Z,*(x,y)dF(x)dF(y).

PRroOF. It is first shown that C,— C,* — 0 in probability. Clearly

|C— C*| < K (nsup | Ty, y)))? § [ d|Fx, y) — F(x, )

where K, is a constant. Since F,(x, y) converges to F(x, y) uniformly with proba-
bility 1 and Prob (n? sup |T,(x, »)| < r) converges toa distribution function, thenas
n — o, C,—C,* — 0in probability. Again

1€, ¥ = C,*¥| < Ka(nFsup Ty, y))? [ [ d|F,(x, y)— F(x, )| 1F((x) dF (),
and the above reasoning shows that C,* — C,** asn — oo. Similarly C,**—D, - 0
in probability.

3. Invariance of C,. The result of this section is contained in the following:

LEMMA 3.1. C, is invariant with respect to choice of origin on the torus.

ProoF. The term { } in equation (9) may be shown to be
(10) T(X;,Y)—T (X, Yj) - Tn(Xj’ Yo+ Tn(Xj7 Y) = i((”ij,ij/”)"(” . ij/n)(nij- [n))

where n;; ;; is the number of observations in the rectangle with corners (X, Y,
(X, Y), (X;, Y), (X}, Y)), including the “northeast” corner while

ni;. = n‘Fln(Xi)—Fln(Xj)‘ and n.; = n‘an(Yi)‘an(Yj)|-

Let X,, k = 1,2, ---, n be replaced by X,' = X, +c (modulo 1) where c is some
constant. It is sufficient to consider the effect of this transformation on the term in
{ } when the “bottom” X “rolls” off the bottom to the top. This will be accom-
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plished by examining each of 3 nontrivial cases in turn. First assume that X; < X
and Y; < Y, then if X;' > X;' we have

(D) FXLY)=F(X Y) = FA(XL YD +F(X L Y) = (. —ny)in

and

(12) = Fu(X;Fo(Y)+ F (X F oY) + Foy (X F,o(Y) = Fou (XD F,(Y))
=[1—(n;;./m)][n.;;/n].

Subtracting (12) from (11) shows that only the sign of the term in { } is altered.
Thus the result is verified in this case. Suppose now that X; < X;and Y; > Y;and
X' > X;'. Then the sign of the right member of (10) can be shown to change from
a minus to a plus, and hence the result is proved in this case too. Similarly, we can
treat the cases X; > X,, Y;> Y, or ¥; < Y; with X;' < X;'. By symmetry
different choices of the Y coordinate of the origin will leave C, unchanged.

4. The asymptotic distribution of C, and D,. It is most convenient to find the
asymptotic distribution of E, = nD,/(n—1). Clearly E, and D, will have the same
asymptotic distribution. Since F(x, y) is continuous, so are the marginal distribution
functions. Hence, we may use the probability integral transformation as in [1] to
obtain the following

nZ 1 r1 1 r1 1 .
(13) E,==— T.(x, »)+ j T.(x,y)dxdy—| T(x,y)dy
0,JO 0,JO 0

1 2
—f T.(x,) dy] dxdy
0 .

where
(14) T;,(X, y) = Fn(xa y)—Fnl(x)FnZ(y)

F (x, y) is the empirical cdf of (F,(X,), F»(Y})), -, (Fy(X,), F(Y,)) and F,,, F,,
are the corresponding marginals. Therefore under H, we may assume that X, X,,
-+, X,and Y, Y,, ---, Y, are independent U(0, 1) rv’s. Let Z,,, denote the double
Fourier coefficient of the term in braces in (13).

(15) Zim = [0 §6 Z,¥(x, y) exp (—2mikx) exp (—2nimy)dx dy.
It is easily seen that

Zoo =0,
(16) Zo =0, allk

Zom =0, all m.



1966 EDWARD D. ROTHMAN

Fork #0,m #0
{818 Fo(x, y)exp (—2mikx) exp (—2nimy)dx dy

I 1

17 = Y J H(x—Xj)exp(—2nikx)dxf H(y—Y;)exp(—2nimy)dy
i=1o o

18 : Ly 2mikX -

(18) “4nkm ;j;leXP(— nikX ;) exp(—2nimY;)

1 n
+= ) [eXp(——2nika)+exp(——27tiij)]—1].
=1

Also

1~: . 1 » exp(—2nikX;)—1
(19) fo Fy(x) exp (—2mikx) dx =;J§1 2nik

t ) 1 » exp(—2nimY)—1
(20) L Fyo(y)exp(—2mimy)dy =;j; 2mim ’
which imply that

5(1) sé Fnl(x)FnZ(y) exp(_znikx)exp(_znimy) dx dy

21 ! Ly ikX Ly 2nimY,
(21) =l ﬁjglexp(—%u ) njglexp(— nimY;)

1 n
+; Y (exp(—2nika)+exp(—2niij))—1]-
=1
Combining (14), (19), (20) and (21) one obtains,
§8 18 To(x, y) exp (—2nikx) exp (—2nimy) dx dy

j=

1 1/ n
(22) = m[ﬁi (j;1 exp(— 2nika)) < Zl exp (—2mim Y,))

1 n
- Y exp(—2ni(ka+ij))]o
ji=1

Hence, if k # 0, m # 0 it follows that

1 [1/ . Lo )
(23) ka=47t2mk|:;l- Y. exp(—2mikX;) ;j;lexp(—&mij)

ji=1

exp (—2mi(kX;+ ij))] :

1 n
=

j=1
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Applying Parseval’s theorem to (13) and (15) yields

Z Z Ika|2'

(24) E, =

This representation has an immediate consequence. Suppose
(25) X;=X;+¢, (modulo 1)
Y, =Y, +c, (modulo 1) i=1,2,--,n
where ¢; and ¢, are arbitrary constants. Under this transformation |ka| becomes
lexp (—2mike,) exp (—27nimey)| | Zim| = |Zim|s

whenever k and m are both #0, therefore D, is invariant with respect to the choice
of the origin. Under the null hypothesis of independence

(26) EZ,,=0 all k,m,
5kk’($mm’ n—1 .
27 EZ . Zw = Toi2mi\ if k#0,m#0;
=0 otherwise,

where J;, is the Kronecker delta.
Let C(x, y; u, v) denote the covariance kernel of the random process
n?[(n—1) Z,*(x, y), then

2

{[EZ,*(x, y)Z,*(u,v)]—[EZ,*(x, ) L EZ,*(u,v)]}.

(28) CCvy3u0) = ==

Letting {C,,..s} be the Fourier coefficients of C(x, y; u, v) relative to the basis

{exp (2mikx) exp (2mimy) exp (—2miru) exp (—2misv); — o0 < k,m,r,s < o0},

2 2

n n
(29) Ckmrs = n—1 E[kazrs] - ;-__—1- [Eka] [Eer]
! if k dk 0
(30) = Tonmik2 ifk=r,m=s,and k,m #
=0 otherwise.

The Fourier series for C(x, y; u, v), which converges in mean square, is

C(x, y;u,v)
=30 > Or 25 Cromes €Xp (2mikx) exp (2mimy) exp (—2miru) exp (—2misv),
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which in view of (27), reduces to
(31) = -——41—2—2exp Q2rik(x—u))exp 2rim(y —v)).
w21 iz 16n*mk
It may be shown that
C(x, y5u,0) = [Hx—u)* = 4|x —u|+ 5130 —0)* 4|y —v|++45

which may be rewritten in the form of a product of two covariance kernels obtained
by Watson (1961) for U,? namely,

C(x,y;u,v) = (min (x,u) —3(x+u)+L(x—u)*+ %
“(min (y, ) =3y +0) + 3y —0)* +).
Consider the integral equation ‘
(32) [ 18 Cx,y;u, 0)d(u,v) dudv = A(x, ).

From the series representation of C(x, y; u, v) and (32), the four complex eigen-
functions exp (—2niku), exp (—2nimv), exp (2nimv), exp (2nikv) exp (—2mimv)
and exp (2niku) exp (2mimv) correspond to the eigenvalue %n*k?m?(k, m > 0).
Since any linear combination of these is also an eigenfunction with the same
eigenvalue, one can take 2 sin (2rku) sin (2nmv), 2 sin (2rnku) cos 2nmv), 2 cos (2rku)
sin (2mmv), 2 cos (2nku) cos (2mmv) as a basis for the eigenmanifold. Having
obtained the eigenvalues and eigenfunctions, the usual argument, cf. [1], gives the
asymptotic characteristic function,

o o 2i -3¢
33 o0 =11 11 [(176—;5—) ]

o . it -2
_k,,l,ll T 8ntkim?)

Applying a result of Zolatorev’s [11], one may approximate the upper tail of the
distribution function, T(x), of E, as follows:

34 i 1~ T() ] 1 -
(34 Moo Prob [(d) > 16n°x] m,k=1;<m1_[,k)¢<1,1) Km?
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