The Annals of Mathematical Statistics
1971, Vol. 42, No. 6, 1949-1956

A LOCALLY MOST POWERFUL TIED RANK TEST IN A
WILCOXON SITUATION!

By J. KRAUTH

University of Miinster*

1. Introduction. Various ways of treating ties have been suggested and investi-
gated, but little is known about tied rank tests which are optimal against specific
alternatives. To my knowledge the only results in this field were achieved by
Vorlickovd (1970). The author makes use of the concept of contiguity and
generalizes the corresponding theorems of Hdjek, Siddk (1967) to the case of rv’s
which take the valuesk = 0, +1, +2, --- only. She proveg that tests based on linear
rank statistics are asymptotically most powerful against suitably chosen alterna-
tives, if the method of averaged scores is used. Considering a discrete analogue of
the logistic distribution one may derive in this way the two-sample Wilcoxon
midrank test as an asymptotically most powerful test.

This paper presents a general framework for constructing optimal tied rank tests
in the two-sample problem.® In particular, we will consider a class of discrete
alternatives, analogous to some continuous alternatives against which the Wilcoxon
test is locally most powerful, and construct a corresponding locally most powerful
tied rank test. The test statistic is the sum of ranks obtained by ranking the distinct
values in the pooled sample.

2. A general procedure for obtaining optimal tied rank tests. We assume that all
occuring discrete distributions are lattice distributions on a real lattice

M = M(€0’ 5) = {ék: fk = £0+5kak = 09 il’ i‘2, }, 5 > 0’

or on a set M’ derived from M by applying any continuous and strictly increasing
transformation of the real line onto itself respectively.

Considering X, ---, X;,, independent rv’s with df Fy, and X, ---, X,,, with
F,, we want to test F; = F, against F; < F,. (F; £ F, means, that F(x) £ F,(x)
holds for all real x and this strictly for at least one x.) We get in the usual way
R(x) = (Ry(x), Ry(x)) = (ry15 "> Finy> 215 **» F2n,) @S @ maximal invariant statistic
relative to the group of the above mentioned transformations. The ranks are
defined as follows: In the pooled sample x = (x,,, ---, Xx,,,) tied observations are
regarded as one observation. Let 7' denote the size of the reduced sample x’. For x’
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the ranks i = 1, .-+, T are defined as usual. These ranks then are also used for the
original sample. In particular, equal ranks are assigned to equal observations.
Besides these ranks, those ranks can be used which we get by applying a strictly
increasing transformation to i = 1, ---, T. By this we cover e.g. midranks, but not
ranks that are assigned at random.

Depending on circumstances it might be sensible to restrict oneself to a fixed
lattice M. In this case R is a maximal invariant too, if we consider those trans-
formations which stretch the distances between adjacent observations in a finite
extent, and define invariance in an appropriate way (cf. Krauth (1969)).

To characterize a special test among the invariant tests we follow the proof of the
corresponding theorem for continuous distributions (cf. e.g. Lehmann (1953)).

We get each unbiased test for H against K to be similar on the boundary J (of H
and K). J = {(Fy, F,): F, = F,} for the problem under'consideration. We deter-
mine the rank test of level a which is optimal against a specific alternative K, =
(Fs, F,) given by a one-parameter subclass of distributions P,(0 < A < A))
dominated by P,. Then a solution ¥,*, 0 < A < A, of

(a) Ey = a, and
) Enb = sup {E)': Egl' = a} 0<A<Ap

is the best level « rank test against the alternative K.

In contrast to the case of continuous distributions condition (a) is not equivalent
to Eqy = « for all § €J, as the distribution of the rank statistic R depends on the
underlying distributions even for § € J. In other words, we have no distribution-free
test. The reduction by invariance in this case does not yield a similar test.

Let Bdenote in the following both a configuration of ties and the set of all points
of the sample space which satisfy B. Two points x, x’ € M" hence belong to the
same B, if in xp, (i.e. the ordered pooled sample) and in x{,; equal components of
the same number stand at the same place. For example, the samples (3, 5, 7, 2, 5,
5, 7) and (30, 52, 30, 52, 1, 30, 9) belong to the same B of the type (1, 2, 3, 3, 3, 4, 4).

The conditional distribution of R given B is distribution-free under the hypo-
thesis, and can therefore be used to construct a distribution-free conditional test.
In fact for all § € J the distribution of the statistic R given B is the discrete uniform
distribution over the n!/(¢,! --- t;!) possible rankings r. By ¢,, -+, t; we denote the
lengths of the ties in x[; including ties of lengths 1.

Then y,* is determined from

(") Eo(|B) = o
(b") EA(':blB) = sup {EA('V|B)3 Eo(‘pllB) = o} O <A <Ay.

For simplicity in the following a conditional expectation E(Y ]A) equals O when
P(4) = 0. Without loss of generality we may exclude the case P,(B) = 0. From
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P,(B) > 0 we get Po(B) > 0, as P, is dominated by P,. Denote by ¢;,, ---, t;r, the
lengths of the ties in ry, i = 1, 2, and let

n,! n,!

m(r,B) = .
tiglee t1T,!t21!"' tsz!

Obviously we have

, n!
;m(r ,B) = t1'—tT' .
Now let x = (xyp3, Xzr9), R¥(X) = (Ry(x;19), Ra(x2ry), fa or fo the (discrete)
density of F; or F, respectively. It suffices to compute .the probabilities P,(R* =
r* | B) instead of P(R = r|B). In the following we omit the asterisk for simplicity.
Since Po(R = r|B) = m(r, B) Y .. m(r', B), and

m(r, B) " "2
PR =7r)= ?A(_B‘)‘ .. B;RZEX):”: lfA(xl[i]) JIJlfo(xz[j]),
we have
Py(B)
PyR=r|B) = PAO( By PoR =7 | Byn(r, A),
with

np X ;
e =t 125

i=1

)

We may interpret the above relation as a discrete analogue to Hoeffding’s Formula.

According to the Neyman—Pearson Lemma the critical region of ,* is given by
n(r, A) > crit (A, B), i.e.,consistsof those [o (n!)/(¢,! -+ t!)] points towhich belong
the largest values of n(r, A). If those points are not uniquely determined, we have to
randomize in the usual way.

On condition that n(r, A) can be expanded into a power series about A = 0 for
each r (for the cases considered this is fulfilled), just as in the continuous case there
exists (cf. Witting, Nolle (1970), Theorem 3.16) for each B a A*(B) > 0 such that
the test Y ,* under B is a uniformly most powerful rank test of size o for testing
{Py: 3 € J} against {P,: 0 < A < A*(B)}. That is, we have a locally uniformly most
powerful rank test under the condition B.

Finally, conditional local optimality given B implies unconditional local
optimality because (for given sample size #) the number of different B’s is finite.

3. Locally linear alternatives. In contrast to Section 1 and Section 2 we shall
now consider continuous alternatives (F,, F,) with densities f,(x) = k(x, A)/(b—a)
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fora £ x £ b, =0 otherwise, a, b real numbers, a < b,0 < A < A,. In regard to
the function x(x, A), 0 < A < A,, we require

(D jﬂ K(x,A)dx =b—a

2) k(x,A)=0 for a<x=<bh

(3) x(x,0) =lae.,, if a<xZb; k(x,0) =0, if x<a or x>b.
(6)) [2k(x,b)dx £ z—a for a<z=b, 0<A<A,.

Let k(x, b) have an expansion into a power series about A = 0 fora < x < b.

A

0 x—a
©) K’(x)Eax(x,A) |A=0=A13T‘;+A2 for .a <x < b, Ay >0.

By (1)—(4) f, is a probability density, F, is the df of the uniform distribution over
a £ x £ band P, dominates {P,: 0 < A < A,}. For the distribution functions we
have Fy(x) £ Fy(x),i.e., (Fy, Fy) € Kfor0 < A < A;. In view of condition (5), we
use the term ““locally linear alternatives.”

ExampLES. a. Let x(x, A) = AQx—a—b)+1 for a < x £ b, =0 otherwise,
A = 1/(b—a). Then (1)—(5) are valid.

b. If F, is the distribution function of the uniform distribution overa < x < b,
we get for the nonparametric alternatives with

Fy(x) = (L=A)Fo(x) +AFo*(x) and  fy(x) = (1=4) fo(x) +2Afo(x)F o(x):

xX—a
K(x,A) = A<2b_—71_1)+1 for a < x £ b, =0 otherwise.

For A < 1 conditions (1)—(5) are valid.

For the particular case of Example b, Lehmann ((1953), page 34) proved that the
Wilcoxon test is locally most powerful. Because of Fy(x) = (x—a)/(b—a),
Lehmann’s proof may easily be extended to the general case.

A discrete analogue to the locally linear alternatives introduced above may be
defined as follows.

Consider N = 2 points 1, -+, ny € M(n; < --+ < ny) and functions fy(n;) =
k(n;, A)JN,i=1,--, N, for 0 £ A < A; with

1) Yk, A) =N
@) K(n;, A) = 0, i=1,-,N,
(39 k(n;,0) =1, i=1,---,N,

“) Yok, A) <k (A>0),k=1,-N.
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k(n;, A) may permit an expansion into a power series about A = 0,i =1, ---, N.
0
(Sl) K,(ni)EEZK(nbA)h:O =Dl+Ea D>O9l =1a"'aN'

By (1")—(4') f, is a probability density, f; corresponds to the discrete uniform
distribution over#,, -+, ny, and P, dominates {P,: 0 < A <A, }. For the distribution
functions Fy, F, we have Fy(x) < Fy(x), i.e., (F, Fy) e Kfor 0 < A < A,.

ExXAMPLES. a’. Let k(n;, A) = 1+AQRi—N—-1)d,i=1, -, N, A < 1/6(N—1).
Then (1')—(5’) are valid.

b’. For the nonparametric alternatives with F,(x) = (1 — A)Fy(x) + AFy*(x) we get
Fat) = (L=A)fo(md) + Ao 2 Fo(nd) —fo(i))s k=1,-N.

If F,y corresponds to the discrete uniform distribution, i.e., Fo(;) = i/N,i =1, ---,
N, we get k(n;, A) = 1+AQRi—1—-N)/N,i =1, ---, N. For A < N/(N-1)(1")—(5')
are valid.

In Krauth (1969) it has been shown that discrete locally linear alternatives
converge to continuous ones under appropriate conditions. Since Wilcoxon is
locally most powerful against continuous locally linear alternatives, the test
proposed in Theorem 1 (cf. Section 4) seems to be a reasonable extension of
Wilcoxon for tied ranks.

4. Main result. This section contains the following theorem and its proof.

THEOREM 1. Let ri; (1 £ ry; £ T) be the rank of X,; as defined by ranking the T
distinct values in the pooled sample, i.e., r; = k if X,, is equal to the kth smallest
distinct value. The conditional (given B) test based on Y ;L r; is the locally most
powerful test against the class of locally linear alternatives.

PRrROOF. The locally most powerful test is based on the statistic

0 n 0
n'(r) = ('—)_An(", A) IA=O = 'Z& E0<(—3KfA(X1[i]) |A=0/fo(X1[i]) | "),

which is difficult to compute for most discrete distributions. The calculation will
be simplified if we consider the discrete locally linear alternatives, introduced in
Section 3.

Under these alternatives we have

ny 1 ni
n'(r) = ) Efk'Xy)|1) =—"m K'(X1p;
( ) igl 0( ( it ])l ) ml(N9B)i=Zl xeB;;(x)=r ( it ])
with a positive constant m (N, B). If ry; = k, then x;;; = x,, where x;, denotes
the kth smallest distinct observation in the pooled sample. x;, can take the values
Ni+s (s = 0, -+, N—T), and in the sum over R(x) = r for fixed i (in the preceding
formula) it will take the value #, ., exactly (*371)("r ¥ %) times. (Each term of the
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sum corresponds to a choice of the values of x(;), -+, X(r, and there are (*;27'
ways of choosing (x 1}, -, X(4—1,), and (Mr5e%) ways of choosing (X4 1 = X(13)-)
Hence, the sum over R(x) = ris

__N_T ' N-— kts—1 o K (Ti+s) N-— k+s
CH) = T €O )T =k T s ORI,

=
Under condition (5'), using the identity
YiZeENEH = (i) (a, b, c nonnegative integers, a = b)

(cf. Netto (1927), page 15), we have C(k) = D(}i1)k+E, and hence
D o
n’(r) (N B) )';,"I})Z r11+n1E
or equivalently m,'(r) = ) 3L, r,;. For fixed B we have to order the rankings (r;;,
rary) corresponding to R given B according to decreasing n,'(r) and have to
consider that discrete distribution, which assigns to the point (r;(;, ryry) the
probability

m(r, B[y, m(r', B) = (1) - (7. )IG)-

An equivalent test is obtained by regarding equal ranks formally as different and
considering the discrete uniform distribution over all (;,) rankings.

Finally it should be noted that the test has been proved to be unbiased only for
restricted hypotheses given by a relation connecting F; and F, involving monotone
relative densities.

5. Asymptotic results. When applying the test of Theorem 1 the computing
effort with increasing sample size n grows so quickly that in practice the test
becomes useless. We therefore need the asymptotic distribution of the test statistic
on the boundary J. We now present a conditional asymptotic distribution theorem,
of a type similar to the theorem of Kruskal ((1952), page 538). We get the following
result:

THEOREM 2.

1 T(n) 5 T(n) 1T(n) 2714
([Z s ,t,(n)] /[n("nlf 1)j=1tj(n)< LT ktk(n)>]

for 1/n, +1/n, — 0, if one of the following two conditions for B(n) holds true:

B(n)) -, N(,1)

1. 2 £ T(n) £ T, for natural Ty and all n > 1, and there are j, k € {1, -+, To},
j # k, such that lim inf t;(n)/n > 0, lim inf £ (n)/n > 0.

2. lim inf T(n)/n > 0.

The approximation is considerably improved by a continuity correction.
The proof of Theorem 2 is based on a result of Hoeffding ((1951), Theorem 4).
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For either of the two conditions mentioned above we can prove the sufficient
condition (13) of Hoeffding’s paper to hold true, if we make r = 3. The details of
the proof are given in Krauth (1969).

Looking at ties as random variables, i.e. considering the unconditional test, we
may prove consistency for restricted hypotheses, which are defined by distributions-
with positive probability only on a finite set. By a comparison with uniformly most
powerful tests in exponential families we get the test to be asymptotically uniformly
most powerful (cf. Krauth (1969), Chapter 7). The proofs run along the lines of
Putter’s paper (1955), for which we consider the statistic

Spin, = Z?é 1Ry = lecv=1 sgn (U, + Vk)Z?:k U;
or more precisely the asymptotically equivalent statistic _
Sn1 = Z’I(v=1 kUk‘

In addition one can consider a corresponding asymptotically distribution-free
rank test (in analogy to Putter (1955), Chanda (1963) and Biihler (1967)) based on

the statistic
%
nin, 1 1
Tymy = (T) (n—IZR1i—,;ZR21)/Qn,

where Q, is a suitable random factor.
In either case we get the asymptotic optimality property by considering binomial
alternatives

L) =N +A T A-p-AVT, i=1,---,N,

0 <A< 1-p,0<p < 1. This is interesting when compared with the result of
Vorli¢kovd (1970) for the midrank test as mentioned in Section 1.
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