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RANDOM VARIABLES WITH INDEPENDENT BINARY DIGITS
By GEORGE MARSAGLIA

McGill University

Let X = .bb,bs -+ be a random variable with independent binary
digits b, taking values 0 or 1 with probability p, and g, = 1—p,. When does
X have a density? A continuous density? A singular distribution? This
note gives necessary and sufficient conditions for the distribution of X to be:
discrete: X min (p,, g,) < 00; singular: X X[log(p./gn)]*> = oo for every m;
absolutely continuous: X®[log (ps/ga)]* < oo for some m. Furthermore,
X has a density that is bounded away from zero on some interval if and
only if log (p./g») is a geometric sequence with ratio 4 for n > k, and in that
case the fractional part of 2*X has an exponential density (increasing or
decreasing with the uniform a special case).

1. Introduction. It is well known that one can construct a uniform random vari-
able by choosing the binary digits with successive flips of a good coin, (p = %).
Such considerations date back to the beginnings of probability theory—indeed, to
the development of measure and integration theory.

For bad coins, 0 < p < 1, p # 3, the resulting number has a distribution that is
continuous but singular, as it is concentrated on a set of Lebesgue measure zero.
This note is concerned with the case where the binary digits are independent, but
not identically distributed. Are there any interesting random variables that arise
from this situation ? It turns out that there are some interesting singular distribu-
tions, and that there are distributions which have densities. This note will show
that there is essentially one conventional type density that can arise this way—the
exponential (increasing or decreasing, with the uniform a special case), if by con-
ventional we mean a density that is positive on some interval. We will also find
necessary and sufficient conditions that the distribution be singular. If it is not
singular, it will be absolutely continuous. The conclusion is that independent binary
digits lead to one of three possibilities:

(i) A singular distribution. This happens if and only if the series ) s, 10g” (p,/4,)
diverges for every m. Some interesting continuous but singular distributions arise.
See Section 3. A special, but uninteresting, case is the discrete distribution arising
when p,g, = 0 for all suitably large n. There are non-trivial discrete distributions,
when Y min (p,, g,) < oo. See Section 4.

(i) A piecewise-exponential density, with pieces equally spaced and of similar
shape. This happens only when the tail of the sequence log (p,/g,) is geometric with
ratio %. It is the only way to get a distribution which has a positive derivative on
some interval. See Section 2.
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(iii) A distribution with a density, but a strange density that vanishes at least
once in every interval. This will happen if the tail of ) log? (p,/q,) converges but is
not geometric with ratio 3.

2. Distributions with reasonable densities. The most interesting case seems to be
the assignment of probabilities to the bits so that the resulting random variable
has a conventional density function. We will show that there is essentially only one
way to do this. The general statement is Theorem 2 below, but by shifting the binary
decimal point to the right far enough we may assume we are dealing only with the
fractional part taking values on the unit interval, and in that case we can formulate
the basic requirement as follows:

THEOREM 1. If X is a random variable on the unit interval with independent binary
digits, )
X =.bibyby-- =3, b,27",
b’s independently 0 or 1, and if the distribution function of X, say F(x), has a positive
derivative at %, %, %, --- that is, F'(.1), F'(.01), F'(.001), --- all exist and are positive,
then X has an exponential distribution with density

B

f(x)=e7:'1, O0<x<l,—0o<f<o

and the probabilities for the bits of X are given by the formula
1 e
P[b, =0] =15 P[b, =1] =137

ProOF. Represent the probabilities for the bits of X as follows:

C

e“
P[b, =0] ={re P[b, =1] =130

We will get a relation between the ¢’s by representing F’'(.1) as the limit of two
sequences of difference quotients:

F(.101)—F(.1) F(.1001)—F(.1) F(.10001)—F(.1)
o) L ) WoED L

and

F(.1)—F(.01) F(.1)—F(.011) F(.1)—F(.0111)
(2) 2—2 ) 5-3 , 2_4 , e

The general term of sequence (1) has the form
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and the general term of sequence (2) has the form

exple,+es+--+¢,]

" [14e%
.ﬂ( 2 )

Since F'(.1) exists and is positive, we conclude that the infinite product converges,
that

C1 c2tc3t e

e

@ (Te\ 2 (1+e"
1) 1(=)
1 1

and hence ¢; = ¢, +c3+

A similar argument on F’(.01) shows that ¢, = ¢;+<,4+---; on F'(.001) shows
c3 = c4+cs+---and thus we conclude that thereisa f such thatc¢; = B/2,¢, = B/4,
c3 = P/8, --- . This provides the formulas for the probabilities of bits of X as given
in the theorem. We still must show that if the bits of X have those probabilities,
then X has an exponential density with parameter . (Note that § can be either
positive or negative, with 8 = 0 giving the uniform density.)

Writing

F'(1) =

by b, bs
X =51+§—2+§'3+

we express the characteristic function of X as an infinite product
© 1+e(B+it)/2k
kl;[l |: 1+e”/2k :l )
Using the relation

1—ef =(1+e)(1—e?) = 1+ )1+ (1 —e*) = -

we have
n—1 ez

n (1+e*) = 1—&7

e B R 1—e|[1-e*"
D 7o | = | T=d || T=e™ |
The right side converges to
1—-e* || B
1-é || z

which, with z = B+it, is the characteristic function of X with density ye** on
0<x<l

and hence
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To get a more general theorem, we note that if the distribution of Y, say F(y),
has a derivative that exists and is positive on some interval, F'(y) > 0,a <y < b
then there are integers r and k such that

r r+1
a =< 3,;< y< -Ek—é b
and hence the distribution of the fractional part of 2¥¥ has a derivative that exists
and is positive on the unit interval; the above theorem applies, and we have:

THEOREM 2. If Y is a random variable with independent binary digits, and if Y has
a distribution whose derivative exists and is positive on some interval, F'(y) > 0,
a <y < b, then Y may be scaled by a power of 2, that is, its binary decimal may be
relocated, so that its fractional part is exponentially distributed with density

B e’
ef—1

0<x<l1.

(For some B, — o0 < B < o0, with the uniform density corresponding to p = 0.)
In other words, Y may be represented in the form 2X(M + X) where M is a random
integer, independent of the fractional part X having density yef*, 0 < x < 1.

3. Singular distributions. Let p, = P[b, = 0]. If some subsequence of the p’s
converges to a value other than 1, then the distribution of X = .b,b,b; --- will be
singular, for it will be concentrated on a set of Lebesgue measure 0. It is easy to
get many representations of singular variates in this way. In particular, one can get
two singular distributions whose convolution has an exponential or a uniform
distribution, by writing

Xl = .0b20b40b60 A
X2 = .b10b30b50b7 A

where the b’s take values with probabilities given by Theorem 1. Then X, + X, has
an exponential density ye?* on 0 < x < 1.
To get two singular distributions whose convolution is the ordinary exponential

density ae™™ , 0 < x < o0, write
X =--dydydidgd_id_,d_5-
where
P[d, =0] =-1—+—lea-2-k
and

X, =:-d30d,0.d_,0d_;0d_;---
X, =+ d,0d,0d,.0d_,0d_,0 -
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We now turn to the general question of when the distribution of X = .b,b,b5 ---
is singular, where b, takes values 0 or 1 with probabilities p, and g,. If p, does not
converge to } then the distribution of X will be singular, but what happens when
D, — % but not according to the formulas of Theorem 1? We know that X cannot
have a continuous density but if p, — % very very quickly we might expect that X
will have some kind of a density, though a weird one. The answer is yes, there is
always a density if p, — 4 quickly enough.

We first point out that there is no in-between; the distribution of X is either
singular or absolutely continuous. This follows from a theorem of Jessen and
Wintner (1935) that any convergent series of independent discrete random variables
has a pure law, either singular (including discrete) or absolutely continuous. The
theorem uses the zero-one law; for an excellent elementary account see Breiman
(1968), page 49. .

We will show that the distribution of X is singular (including discrete) if and
only if Y ., log? (p,/q,) = oo for every m. To prove this result we need a prelim-
inary lemma which gives a formula for F’(x) when it exists:

LeEMMA 1. Let X = .b;b,by -+ have independent binary digits with
P[b, =0] =p,  P[by=1] =4,
Let F be the distribution function of X. If F' exists at v = .v,0,0; +-+ then
3 F'(v) = [29(v1)][29,(v2)][295(v3)] -+
where g,(0) = p, and g,(1) = g,.
PrOOF. Since F'(v) exists it can be represented

F(t)—F(s)

F,(U) = lims,t—»v;s<v<t t —5

and we may write
F'((vy0505 ) =lim,_,  2"[F(.0q0, - 0,+27") = F(0,0, -+ 1,)].
Then (3) follows from the fact that the expression in brackets is g,(v1)g2(02) - g,(0)-

THEOREM 3. Let X = .b;b,b; -+ have independent binary digits with b, taking
values O or 1 with probabilities p, and q,. In order that X have a singular distribution
Sfunction (derivative equals zero almost everywhere) it is necessary and sufficient that
for every positive integer m,

v m 108 (Palg)]* = 0.

If, on the other hand, Y - . 1og* (p,/q,) is finite for some m, then the distribution of
X is absolutely continuous, but with a density that vanishes at least once in every
interval, except when the sequence log(p,/q,) has the form B, B/2, B4, B/8, --- for
n = k, and in that case the fractional part of 2*X has density yef* (uniform density
when = 0).
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ProOF. Let F be the distribution function. It has a finite derivative almost every-
where. Thus from Lemma 1, for almost all x = .x;x,x; --- we have F' expressed as
an infinite product:

4) F'(.xyx3%5 ) = [29(x1)][292(x2)][293(x3)] -+,

where ¢,(0) = p, and g,(1) = g,.

Another interpretation of the fact that F has a derivative almost everywhere is
to say that if .v,v,v5 -+ is chosen at random with the v’s independently 0 or 1 with
probability %, then with probability 1 the product in (3) converges to a (possibly
zero) constant. According to a standard theorem on infinite products, (see, e.g.,
Knopp (1948), page 223), the tail of the product in (4) converges to a nonzero
constant e if and only if for some m,

=mlog[2g,(x,)] = L.

Thus the question of whether F’ is positive almost everywhere or zero almost
everywhere hinges on the convergence of the random series

nmlog[2g,(v,)],

where the v’s take values 0 or 1 with probability 2. We apply the three series
theorem (see, e.g., Fisz (1963), page 248) after computing

E{log[2g,(v,)]} =%log(4p,q,),  Variance = }[log(p,/g,)]*.

If the tail of Y log® (p,/q,) converges, so does the tail of —Y log (4p,q,), for the
terms of the former dominate the terms of the latter. (Write 2p, = 1+¢,2q, = 1=¢
then note that log? [(1+1)/(1—1)]+log (1—2?) = 0for —1 <t < 1))

Applying the three series theorem to the random series Y log (2¢,(v,)) and inter-
preting the result in terms of the infinite product (4) we conclude: If Y 2, log? (p,/q,)
converges for some m, then F'(x) > 0 for almost all x and F, being of pure type, is
absolutely continuous; if it diverges for all m, then F'(x) = 0 for almost all x and
hence F is singular.

4. Discrete distributions. The above results do not distinguish between singular
distributions that are discrete, continuous, or a mixture of both. The following
theorem shows that the distribution of X is either continuous everywhere or purely
discrete, and gives conditions:

THEOREM 4. If X = .b,b,b; -+ has independent binary digits, b, = 0 or 1 with
probability p, and q,, then its distribution function F has a point of increase if and
only if

H,‘,";l max (p,, q,) > 0, or what is the same, Yo ymin(p,, q,) < ©

and in that case F is purely discrete, with jumps at those points v = .v,0,05 -+ Which
differ from s = .s5,5,55 --- only in a finite number of binary locations, where s, = 0
or 1 according to whether p, = q, or p, < q,.
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PrOOF. Once again, using ¢,(0) = p, and g,(1) = ¢, we find that the jump at
F(oyoy03 -) ds lim, ., F(vg0, - 0,4+27") = F(v0; - ) = g1(v)92(v2) -
and if [ max (p,, ¢,) = O then F will have no jumps. On the other hand, if
[] max (p,, g,) > O then F has a jump at s and a jump at every v whose binary
expansion has the same tail as s.

If we add the jumps at all v’s that agree with s beyond the mth binary place, i.e.,
Un+1 = Smtt1s Umt2 = Smazs --- We get [ [i% .+ ;max (p,, g,) which is as close to 1
as we please. From that we conclude that the sum of the jumps of Fis 1.

5. Expansions for bases other than 2. Using the ideas above for the binary expan-
sion we can establish the following general theorem:

THEOREM 5. Let
X = .d1d2d3"‘ =d1/k+d2/k2+d3/k3+"'

have independent digits in its expansion to the base k. Let d, take values 0, 1, 2, -,
k—1 with probability p,i, Pu2> > Pux- Then the distribution of X is either purely
discrete, purely absolutely continuous or purely continuous singular, and conditions are:

discrete if and only if' Y [l —max (P,q, Puzs s Pui)] < 00

absolutely continuous if and only if
Z[(l - kpn1)2 +(1 - kpn2)2 +o +(1 - kpnk)2] < oo.

PrOOF. Application of the zero-one law assures us that X has a pure law, refer-
ring once again to the Jessen-Wintner theorem as given in Breiman (1968), page 49.
The condition that X be discrete follows as in Theorem 4 above. To establish
absolute continuity we argue as in Theorem 3, that the two series ). a, and ) s,°
must converge, where a, and s,2 are the average and variance of the k numbers
log kp,;, log kp,,,, -+, log kp,,. Let kp,; = 1+1,;, so that ) 5_, 1,; = 0. Each ka,
has the form )’ log (1 + 7,), and using the Taylor expansion with remainder we have

Yilog(l+7) =Y fu—3Y 1o +o[(Xi7)?].
Thus there is a § such thatif ), 7, = 0and ) 7> < 6,
A9Y b2 < =Y flog(1+71) < .51) f 7%

It follows that Y’ a, converges if and only if Y (14, + -+ +7a) converges, and the
latter is the series in the statement of the theorem. It is easy to show that its con-
vergence implies that of ) s,%.

Note that the condition for the binary case, Y log? (p,/q,) < co, may be replaced
by Y. (1—2p,)* < oo, as the two series converge or diverge together.
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