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A POLYNOMIAL ALGORITHM FOR DENSITY ESTIMATION!

By GRACE WAHBA
University of Wisconsin, Madison

An algorithm for density estimation based on ordinary polynomial
(Lagrange) interpolation is studied. Let F,(x) be n/(n+ 1) times the sample
c.d.f. based on n order statistics, #,, ¢, * * * #,, from a population with density
f(x). It is assumed that £ is continuous, v =0, 1,2, -, r, r = m—1,
and f ™ € L,(— 00, 00). F,(x) is first locally interpolated by the mth degree
polynomial passing through F(fix,), Fu(t(is1ykn)s =+ Fultcivmok,), Where ky
is a suitably chosen number, depending on n. The density estimate is
then, locally, the derivative of this interpolating polynomial. If &, =
O(n?m-1I2m) then it is shown that the mean square convergence rate
of the estimate to the true density is O(n=¢2m~1/(2m) Thus these con-
vergence rates are slightly better than those obtained by the Parzen kernel-
type estimates for densities with » continuous derivatives.

If it is assumed that f ™ is bounded, and k, = O(n?™/(3m+D) then
it is shown that the mean square convergence rates are O(n~ 2m/(2m+D)
which are the same as those of the Parzen estimates for m continuous
derivatives. An interesting theorem about Lagrange interpolation, concern-
ing how well a function can be interpolated knowing only its integral at
nearby points, is also demonstrated.

1. Introduction and summary. Let ¢, ¢,, --- ¢, be the order statistics from a
random sample of size n from a population with unknown density f (x). We are
interested in estimating the density f (x). Suppose that f has r bounded derivatives
in the neighborhood of x. Then the Parzen or kernel-type estimate f,(x), for f (x),
(see Parzen (1962)) has the property that

(L.1) E(f,(x)=f(x))* = O(n™/Cr*D), r=1,2,-

In this note we consider a very simple type of density estimate as follows. Let f
possess r continuous derivatives and suppose f™ e L,(— o0, o), with m = r+1.
Let F,(x) be n/(n+1) times the sample cumulative distribution function. Let &, be
an appropriately chosen sequence depending on n(k, = O(n®™~1/2™))_Let I be the
greatest integer in (n—1)/k,. Let

fn,m(x) = 0’ x < t2k,,

d .
(1.2) =('1_;Fn,m(x), Lok, = X < tuome+ Dk
=0, Limm+ Dy = X
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where F, ,(x) is defined as follows:

Form =1,
Fo(ti+1y,) — Fulti,)

Lt 1)k~ Lk

> tikgy S X <tisiyns i =2,3,1—1

Fn,l(x) = Fn(tik,.)+x

Form = 2,let F,,, (x), i = 1,2, --- [—m—1, be the mth degree polynomial which
interpolates to F,(x) at the m+ 1 points X = ty,, b+ 1y =" L+ myknr FOT X €[t 1yks
ti+aw,), define F, .(x) to coincide with Fppmix),i=12--1-m—1. A more
symmetric positioning of the local interpolating polynomial may be made, the
present choice is primarily for notational convenience. Similarly, the definition of
f,,,m(x) for x ¢ [t51,,tu—m+1y,) is arbitrarily chosen for notational convenience,
and to simplify the proofs.

Suppose, further, that f is bounded, f () > 0 for u in"a neighborhood of x and
[u(1—Fw)| £ M, u 2 x, |uF@)| £ M, u < x. We prove

THEOREM 1.
(1.3) E|f(x)—fomx)|> = O(n~Gm=D/2m) m=12,--

Thus with the main added assumption of the square-integrability of the m =
(r+1)st derivative, this simple algorithm improves upon the rate of the Parzen

estimates.
If, in addition, we assume f ™ bounded, and let k, = O(n*"/?"* 1), we prove

THEOREM 2.
1.9 Elf(x) _fn’m(x)lz — O(n~2mICm+ D),

Thus, this algorithm achieves the same convergence rate as the Parzen estimates.

The proofs proceed by breaking the mean square error into two major terms.
These terms might be viewed as the squared bias and the variance. The bias term
may be viewed as the error made in approximating a smooth density at a point by
differentiating a polynomial which interpolates to actual values of the c.d.f. in the
neighborhood of x. The variance term then results from the fact that the c.d.f. is
not known but estimated. We use the following theorem about polynomial
(Lagrange) interpolation which tells us about the bias error.

We suppose x, < X; < -+ X,, are m+ 1 real numbers, and ), v = 0,1,2, -+ r
absolutely continuous on [xg, X,,], f ™ € L,[xo, X,,]. Let L,(x; Xxo, X1, -+ X)) = L,(X)
be the mth degree polynomials satisfying /,(x,) = d,,, 4, v=10,1,2--- m. Then
we have

THEOREM 3.

m 4 Xy
L5 |f()- ;Od—xlv(x)J f(©dc

2 Xm
éa(m)f [T dExm—xo| ™"

x€[Xgs Xmlsm =1,2;x€[Xq, Xpp—1], m =3

where a(m) is a constant depending on m.
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To minimize the mean square error, k, is chosen so that the bounds for the
squared bias and variance terms are of the same order of magnitude.

The polynomial algorithm for m = 1 (r = 0) coincides with an algorithm
recently studied by Van Ryzin (1970) (‘“unsymmetric case”). He obtained the
interesting result that if k, = o(rn?*), and x is a point at which f” exists and is con-
tinuous, then

(1.6) (ke (fC6) = Fon,1(3)) = (0,1 3(x)).

Van Ryzin’s theorem tells us what happens if we proceed here as though f were
only square integrable (e.g. k,” = O(n?)) but in fact f exists and is continuous at x.

We remind the reader that an extensive literature exists on density estimation.
For a bibliography, see Wegman (1970).

2. Description of the algorithm and the main theorems. It is convenient to have
some general formulae for interpolating polynomials. Let x,, xq, -*- X,, be m+1
distinct real numbers. Let /,(x) be defined by

H:t”=0 u#v(x_xu)
2.1 1) = 1(X5 X0, X 15 " Xpw) = Fror— ,v=0,1,2,---m.
( ) (X) ( 01 * ) Hu=0,u$v(xv_xp)

It is easily seen that /,(x) is the mth degree polynomial satisfying
22) L) =1, w=v
=0, uw #v.

Let t,» b+ 1yk " Li+myk, D€ the order statistics indicated by the subscripts, and,
for convenience, define ;; ,(x) by

(2.3) 1i(X) = 1005 B ik 1ok~ L4 mykn)-
The estimate f,,,,,, defined in (1.2) is given by

" (i+v)k,+1
(2.4a) Jom(x) = I VZ,O u,v(X)—‘(m o1 =1(x), X €[ o ta—m+ 1yk,)

=0 otherwise
where i(x) is defined for x€[t5,, ;- m+ 1y, as that value i which satisfies
(2.4b) Lt D = X < Bt 23k,
for m = 2, and by that value i which satisfies
(2.4¢) Lk, = X < it 1)k,

when m = 1.
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That is to say, ) Vol (X)[(i+V)k,+1]/(n+1) is the mth degree polynomial
which interpolates to F,(;,y,), v = 0, 1,2 --- m. In view of the fact that

(2.5) Z:’n=0 lip(X) =1
we may rewrite (2.4) as

. dar vk, o
(26) fn,m(x) = d_x ZO li,v(x) (n__'__T)’ X€e [tana t(l—m+ 1)k,.)3 1= l(X)

=0 otherwise.

We may now write

mod iy vk n
(2.7 SX)=Fom(x) = {f (x)— ; 'd—x'li,v(x)ﬁ T f©) dﬁ}
+{ : dx li, v(x)‘/’t v} X€ [t2k,.’ t(l—m+ 1)k,.)
=f(x) X E [t ok tt—m+ 1yky)
where
(2.8) i=i(x)
vk,

Yiv = F(tis ) — F(ty,)— i

and F(r) = L, f(&)dE. It is appropriate to view the two terms in brackets in 2.7
as the bias and the variance terms, respectively.
From (2.7) we may write

i+ V)kn 2

. rod
[f ()= Fum|* £ 2| f(x)— ; Tx u,v(x)ﬁ f(©d¢

m d 2

+2m Z (d_;li,v(x)> '1bi2,v> X€ [tZk,,a Li—m+ 1yk)
v=1

= f2(x) x [t Limm+ 1)

The bias term may be studied via Theorem 3, which we state below and prove in
Section 3.

THEOREM 3. Let xo < x; < --- X,, be m+ 1 real numbers and suppose f (x) satisfies
£ O (x) absolutely continuous on [xo, Xpls £ (x) € L[ X0, x,,), m = r+1. Then

Xy 2
(2.10) |/ (x)— z ~ L5 X0 X1, %) | f(E)dE
< a(m) [Zr [ S ()T dE|x,,—xo| ™
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with
a(l) =1 XE[xo,xm], m=1,2
a(2) = (3)? x€[X1, Xp_1],m =34,
2(m+3) .
a(m) = e |’ mz=3.

Then, applying (2.10) to (2.9) we may write
Q@11) £ —frmX)|* < 2a(m)fiemrn [f T dE|t 4 myt, — tie| "

m d 2
+2m Z’1 I:d';zi,v(x)il '//iz,w i =i(x),xe [tZk,.a t(t—m+1)k,,)
<fAx) . XE[ L2k ta—m+ 1)k,

In the case | f™(&)| £ ¢, —0 < & < 0 we may write
(2.12) lf(x) '—fn,m(x)lz = 2a(m)02|t(i+m)k,,— tik,.lzm

m d 2
+2m Z’1 <‘d—xti.v(x)> Wiz,v, i =i(x), X €[t ta—m+ 1)k,)
=f*(x), XE [tk ta—m+ 1)k

Therefore

(2.13)  E|f()—fum)|? < max;2a(m) [, [/()]? dE E|t 4 mye, — tie,| "
m 4
+2m VZH E*}[% li’V(x):l EX},
+12(%) PAX ¢ [ Lo ta—m+ 1))}
(2.14) < max;2a(m)sup_ o, <¢<ow lf(m)(€)|2E|t(i+m)k,.— Lik, am
m d 4
+2m vZ1 E’}I: J;,i,v(x)] EXf,

+12(x) P A{x ¢ [tons t—m+ D)}

We now proceed to bound the expressions on the right of (2.13) and (2.14).
Since

d = - v(Xx—1
(2.15) ) = [IE=0 e kpery (X —La+ppr,)

u=0,u#v H?=O,§¢V(t(i+\')kn - t(i+§)kn) '
We have, as a loose upper bound, good for 5, < X = L4 myk,
1

M m
min, =g g m— 1 (b vt 1y — LGt vk)

(2.16)

< MG myen,— tin)" !

d
;1_); li,v(x)

2 We believe that the Theorem is also true for x € [xo, X.], m = 3, but have been unable to
obtain a general proof.
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and

4
2 8(m—1
=m E*(t(i+m)k,,—tik,.) =1

d
Eli,v(x)

(2.17) E*

1
‘EX — .
<m1nv= 0,1, m—1 vt 1ykn— t(i+v)k,,)8m>
We will use the following Lemma 1, proved in the Appendix:

LemMA 1. (a) Suppose f (1) = A for ue[x—e, x+&], and max,s .+, [u(1 —F)| <
M, max,,éx_eluF(u)l < M. Let i = i(x) be the random integer defined by (2.4b) and
Q.4c) for. xe[ty  tymme1yw,)> and i(x) = —(m+1) otherwise. Let t, =0 for
& < 0. Then, for fixedp (1 £ p £ k,/2),

1 [ mk,\? (1
(2.18a) E(t gt myen— bit)” = P\nti (m{1+0 k)
(b) Suppose f () £ A. Then, for any j, and fixed q(1 £ q £ k,), and m < k,,

+1) 1
(2.18b) Et 4 mye,— i)~ = Aq((?nk,,)) (1 * O<E))'

Thus, assuming the hypotheses of the Lemma,

4 AP 1 n+1\?
g (120(z)| (5

3

(219) E dxh,v(x)
The {y;,}v~, are centered coverages, that is
2.20 vk
( . ) ) Wi,v"pv'_n_l_l
where
(2.21) p, ~ Be(vk,,n—vk,+1)

E vk,

Py =Tty
In the Appendix we show the following
LEMMA 2.

2.22 gyt < (Lo )Y
( . ) lﬁi,v:(n_'_l)Z + n+2 .

We next invoke Lemma 3, proved in the Appendix:

LEMMA 3. Let n —» 0, k,/n — 0, x such that F(x) > 0, | the greatest integer in
(n—1)/k,, and m fixed. Then

Ky
(223) P,.{X ¢ [tZk,.7 t([—m+ l)kn)} = 0<—;;E> *
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Putting together (2.13) and (2.14) with (2.18), (2.19), (2.22) and (2.23) gives

‘ , k, ¥~ 1 k,
(2.24) E|f()=fum(¥)|* < {A<(n+1)> +B i }+0<?>

< k, \*" 1 k,
22 = () +oay o)

where
0 m 2m—1 1
(2.26a) A= 2a(m)J FARGI L (7) m (1 + 0<-];->>
2m+ 33 A 1 ki
(2.26b) B=m 7/12(,,,_1)31r 1+0 I—{; +0 W

(2.260) C = 2a(m)Sup_ o <e<o 'f(m)(£)|2<%) mm <1+O<kl>>‘ ,

A lemma given by Parzen (1962, Lemma 4a) tells us how to choose k, to minimize
the terms in brackets on the right-hand side of (2.24) and (2.25), namely, take®

1/2m
= —— (2m—1)/2m
(2.27) ke <(2m_ 0 A) (n+1) :
for (2.24), and
B \l/@m+1)
(228) kn = <Z—n?:> (n+ 1)2m/(2m+ 1)’
for (2.25).
We then have
(2.29) E|f(X) = Fym(X)|? £ Dn=@m=01m 4 (= (m=1/2my
(2.30) < Gn~(mI@mE D | o= (m)/2m+ 1)y
where
2m
(231) D :WT(ABZM_I)UZ'"
2m+1
(232) G = 2m2'" (CBZM)I/(2m+ 1)-
We have thus proved:

3 We assume A, C # 0. The dominant term of 4 and C equals 0 if fis a polynomial of degree
=< m—1 on its support set. In this case we would like k, as large as possible, which happens if
exactly m order statistics are used to estimate the density.
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THEOREM 1. Let f(u) £ A, all u, let f(u) = A for u in a neighborhood of x, let
|u(1—Fw))| and |uF(u)| be bounded, respectively, for u = x and u < x. Let f©,
v =0,1,2, - rbe continuous, let f ™ e L, [0, 0], m = r+1, and let the estimates
Ju.m(X) be given by (2.4), with k,, chosen as in (2.27). Then

(2.33) E| ()~ (9| S Dn=Cm= /2 1 oy~ m=1212m)
where D is given by (2.31).

THEOREM 2. Let f (x) satisfy the assumptions of Theorem 1, and in addition suppose
SUPe ¢ [ao,07 | F(E)|? < 0. Then, if k, is chosen as in (2.28),
(2.34) E|f(6) = Fom(X)[2 S Gn™ 212+ ) o™ 2m/2m 1)
where G is given by (2.32).

3. The interpolation theorem. This section is given over to the proof of the
following:

THEOREM 3. Let x4 < x; < ++ < X,, be m+1 real numbers and suppose f (x)
satisfies fP(x) absolutely continuous on [xg, X,], v =10,1,2, - r, f™(x)eL,
[Xo, Xpl, m = r+1. Let 1(x) = 1,(x; xo, Xy, *** X,,) be the mth degree polynomial
with 1 (x,) = 5u wit,v=20,1,m. Then

(3.1 f(X)— v(X)J f(€

< a(m) [Er[fME TP dE [xm—%o|/*" ™" x€[X0,Xp],m = 1,2,

XE[X,Xp_1,m=3

with
a(l) =1
(3.2) a(2) =(3)*
2(m+3)]
a(m) = [m] , m 3.

Proor. The assumptions on f tell us that it has a Taylor series expansion in
[xo, x,,] of the form

m—1 v Xm o, ym—1
(3.3) f(x) = 2 FOx0) +f ((m )1), S (u) du Xo X £ Xy
where
3.4 W), =u, u=0

=0 otherwise.
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We may then write

d x,,, v
(3.5) f0)—T(x) = { Y f<v>(xo)f— T z L(x) z o) f —d&}

i E A [

m

d *
(3.6 Je) = T ) f f©)de.

where we are writing

We first show that the first term in (3.5) is identically zero. By examining the
coefficient of /) (x,), v = 0, 1,2, --- m—1, it is sufficient to show that

v d Xy £V
3.7) x——— Z lv(x)f %dé.

Integrating both sides of (3.7) from x,, to x, it is sufficient to show that

(3.9) f e 3 lu<x)f "

Since both sides of this equation are polynomials of degree no greater than m, it is
sufficient to show that they coincide at m points. But the right-hand side is exactly
that polynomial which interpolates to

X é\’
;dé for X =Xg, X1 " Xme

Xo

We can now use (3.5) with the term in brackets set equal to zero, and the Cauchy-
Schwarz inequality to write

(3.9 |f(x)—f(X)|2§J m[f‘"‘)(u)]zduLm

G-wit d 2 w(E—wynt P
[ CE) l"(")j (m—1)! dé] du.

X0

It is our purpose to examine the integrand
D T AN (et L &
(310 [(m—l)! “ax 2 WO | T 9]
Let h,(x) be defined, for u, x € [xo, X,,] by

x _ym—1 M
(3.11) h..(x)=j -k d§=(x u)y

x (m=1)! m!
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and p,(x) by

m Xy (£ __ym—1 m
(312) pu(x) = vgl lv(x) (im )1)' dé = Z lv(x)h (x ) - Z lv(x)hu(xv)

thus p,(x) is the mth degree polynomial which interpolates to 4,(x) at the points
Xos X15 *** Xy

Thus (3.9) may be written
2

Xm Xm d
G13)  |f)-fx[? éL Lf "”’(u)]zdufx [3; (h..(x)—pu(x))] du

We calculate directly a bound on |(d/dx)(h,(x)— pu(x))| for m = 1, 2, and then give
a general bound good for m = 3.

Form =1
B = pu(x) = (x—u), — ((x ~ x"))( X1~ 1)
and
d
(314) ‘_i;(hu(x)_pu(x)) = (X—u)(.),.'—(gjl xo)) 1.
Form =2

(3.15)  hy(x)—pux)
(x““)i {(x—xo)(x—xz) (xl““)i (x—x0)(x—x,) (xz—u)z}

2! _(xl“xo)(x1—x2) 2! (x2—=x)(x3—x0) 2!

We have

(3.16) =|(x—u)| £ |x2—%o)|-

d
7 1)

The maximum of |(d/dx)p,(x)| clearly occurs at x = x,. We have

d (%2 —Xo) (x =) (x;—x1)+(x; —x0) (x, —1)*
(3.17) dx PuX) |x=x2 - (x1—=x0)(x1—x;) 2! + (2 —=x1)(x2—Xo) 2!

For u = x,, the first term is zero, and since (x, —u)* < (x,—x,)?, the second
term is clearly bounded in absolute value by |x,—x,|. For xo < u < x;, a re-
arrangement of terms gives
(x—u)? (x,—u)?

(xz—xo)_(x1 —Xo)

d 1
(318) apu(x) |x=xz = 5—!'{ +(x2—u)+(xl —u)} u < X1,

which is clearly bounded in absolute value by $ |x,—x,|. Hence

s
Il
I

(3.19) u(¥) = Pu(0)]| = $|x2—%o]
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We now assume m = 3.
By the Newton form of the remainder for Lagrange interpolation (see, for

example, Isaacson and Keller (1966, page 248), we have, that
(320) u(x) Z =0 lv(x)h (x ) l_[ O(X xv)h [x()axl, s Xm> x]

where h [x,, Xy, -+ X,,, x] is the (m+ 1)st order divided difference of &, at the points
Xg, X15 *** Xy X. It Will be convenient to use identities relating the (m+ 1)st to the
mth and (m— 1)st order divided differences, in particular

hu[xl’ ""xm’x] _hu[an 2 X — I,X]

(3.21) A [xg, X1, s X X] = (e —x)
1 hu[xb""xm’x]—hu[xo’""xm—-l’x]
(xm—xo){ (x —X)
_hu[xla” Xin — 1,X] hu[xo’ 2 X — Z’X:I}
(Xm—-1—%o) '

Thus we may combine (3.20) and (3.21) to write

d
(322)  —(h()~ pux))
){hu[xl’ X255 Xims X] —hu[x()s X1 s Xm—15 X]}
(x—x;)

- vZO (_’];[v (xm_xo)

O(x xv) h [XZa : xm’x]_hu[xl’ ""xm—l’x]
(Xm"xo) {dxl: (Xm—x1)
__hu[xn"' m—15X] = R, [ X0, Xy 2,3‘]]}
(Xm—1—%0) ’

Now if y, < y; < :-- < y,, are any m+1 points in the interval [x,, x,,]), we
show that

(323) lh [.Vo’J’l, . aym:” = Supxo<§<xm( 1)| lh " (é)l

This follows by writing

hy’y"aym h[)’,y,',ym
(324) |hu[J’o,Y1,"‘,}’m]| [ =2 (1 _yo)o - I]I

Then, since & has m—1 continuous derivatives, we may write, by the mean value
theorem, that for some &; €[y,, yul, &1 € [0, Ym-1l,

1
(325) hu[yl’ Y, ym] =(m_1)! hu(m_l)(éz)

1
hu[yo’yl"'aym 1] (m 1)' (m 1)(61)
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and

(326) hu[yOa Vi "'yym]

1 |1~ D(E5) =R, (&)
~(m-1)!] Im—Yo

1 (m)
= SUPxos e xn(m — 1)1 |1 ™(E)|-

Similarly, it can be shown that
d .
(327) ahu[)’o, Vi ym—2’x] = hmA-’O hu[yOa Yis s VYm-25 X,X+A]

1
= Squogggxmm lhu(m)(€)|~
Now, for x, < u < x,,, we have
h,™(x) =1 X>u
h,™(x) =0 x < u.

Thus, combining (3.22), (3.26) and (3.27) results, for x; < x £ X,,_4, in

d
(328 (- px)
2 m
=D {Z

(m+3) —
=< ZW Ix,,,—xll 1

H'}':o, j;ev(X—xj)

(xm - xO)

]_[;L(,(x—xj)( 1 1 )
(

Con—%0) \Cim—%1) (o1 —%0)

}

Substituting (3.14), (3.19) and (3.28) into (3.13) gives the theorem.

4. Concluding remarks. This work was prompted partly by the results of an
investigation into the use of polynomial spline interpolation for density estima-
tion. Suppose we are given /+1 ordinates y;, i = 0, 1, 2, --- [, and /+1 abscissae
Fly) =i/l,i =0,1,2, -, of the function F(x). Let m be an odd positive integer
and let F(x) be that function in the class of all functions defined on [y,, y;] with
absolutely continuous (m—1)/2th derivative and square integrable (m+1)/2th
derivative, which minimizes

“‘;3 [F’(m+ l)/Z(u)]Z du

subject to the conditions F(y,) = F(»,), i =0, 1,2, --- I. The solution F(x) is a
polynomial spline on [y, y]; it is a polynomial of degree m in each interval
Vi Yisd, i =0,1,2,---1—1, and it possesses m—1 continuous derivatives on



1882 GRACE WAHBA

[0, ¥]. Suppose f(x) = F'(x), x €[y,, ¥}, and f(x) has m~1 continuous and m
square integrable derivatives. Then theorems of the form
2

= O( A2m—- 1)

d
4.1) S(x)— d——xF(x)

where A = sup; |y;+1 —;| are well known.

By replacing (3.1) by (4.1) it is not hard to show that the bias term in a density
estimate using odd degree spline interpolation goes to zero at the same rate as the
bias term using Lagrange interpolation of the same order. It is conjectured that
the variance term using spline interpolation also behaves as the variance term using
Lagrange interpolation, but a proof was not found. If this conjecture is true, spline
interpolation for density estimation is appealing because of the convergence
rates as well as the continuity properties of the estimate. Boneva, Kendall and
Stefanov (1971) have recently deduced some appealing kernels to use in a kernel-
type estimate, by using splines.

APPENDIX

This appendix is given over to the proofs of Lemmas 1, 2 and 3 in Section 2.

LeEMMA 1. (a) Supposef (u) > Aforue[x—e, x+¢l, andmax“gxﬂ.lu(l —Fu)| =
M, maxuéx_e|uF(u)| < M. Leti = i(x) be defined, for x€[ts ,tq-—m+1y,) as that
value i which satisfies t;i iy, S X < g4, form = 2, and by that value i which

satisfies ty, < X <tgign, when m = 1. Let i=i(x) = —(m+1), for x¢[ty,,
tu-m+1)k,) and let ty = 0 for £ < 0. Then, for fixed p (1 < p < k,/2)
) 1 [ mk,\? 1

(A.1) E(t 34 myken = tit) §'I{'p — (m|1+0 k)

(b) Suppose f (u) < A. Then, for any j, and fixedq (1 < q < k,), and m < k,,

» . n+1\? 1

(A.2) Elt(j+m)kn-tﬂc”| é A mkn 1+0 I-C; .

PROOF OF (a). Define the events

Bit g = X <t )i
Bt e, S X <I(rmp,
Aj(u,v): tix, € (U, u+du) Ot my, €(v,v+dv) N B;
Aj*(u,v): tir, € (U, u+du) Ot my, € (v, 0+dv) N B;*

forj=1,2,,l—m—1.Since form = 2, B; ¢ B;*, then 4; = A;*, and we have
E|t 4 myton = ten]” = 2521 E{| 4 mptu = ta|” | B} P(B))
(A3) = 20T  uss Jozx | —u|PP(4,(u, 0))
= Z‘i;nll-l juéx.(vzx lv_“]pP(Ai*(u’v))'
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Form = 1, (A.3) is valid with B; and 4 replaced by B;* and A4 ;*.
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For simplicity, write v; = jk,, j = 1,2, -+, l-m—1,k = mk,, and define gy x(u, v)

by

n!

Then,
(A.5) P(4;*(u,0)) = g5, 1(u,v) du dv,
=0
Now, note that, for x—¢e S u < x L v £ x+¢,
(A.6) pou] L
F(v)—F(u)= miny_ e <cr<x+ JET A
Also, foru < x—¢, v = x+¢,
(A7) F(v)—F(u) = F(x+¢)—F(x—¢) = 2,

usx,v=x

otherwise.

and so, using [v—u|? < 2°7'[|v|?+|u|"], and the assumptions on the tail behavior

of F one obtains
(A.8)  |v—ulPF " *(W)[F(v)—F(w)]*~[1—F()|"~*

p

p—
=2 (2/18)21’

p—1

Therefore
Z ; ljx aSu<xSva+e”U ulpP(A *(u D))
+ZJ ljqu € 02x+alv ulpP(A *(u D))

n!
1=t G DIk— D —v,— 1)
I Y i)

;- D'kt p—D)l(n—v,— k)]

: Jx—e§u§x§v§x+ejgc,tkp+p(ua l)) du dU

ST TP WF() —F@) ]2~ 1 F)|" ™

P @)[F)— F@ 2 [1—Fo)P s+,

n!
MP It G D) (k—1) (n—v,— k)
+ T ey Z‘ (n+p)!

(v;—1=-p)l(k+2p—1)!(n—v;—k)!

- ju§x—ajv§x+ag:,+—pp,k+2p(u’ U) du dl)
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n!
MP Tt G D) (k=D (n—v,—k)!
TG X, tp)!

vi=DIk+2p-1)!(n—v;—k—p)!

.,‘.u§x—eju;x+ag'\::kp+2p(ua D) du dl).

Let C; ;P betheevent s, ,4p < X < Syipn+ » where s, . ,is the vth order statistic
from a sample of size n+p. Then

(A.10) P(CY3P) = fugx fozx9vi(u, 0) du dv.
If 2p < k,, then

(A.11) Cﬁf,k‘& pN (6 =3
(A.12)

n+p n+p _
Cn—p,k+ 2p N Cv,—p,1+2p - Q
n+p —_
(A.13) Cv, ir2pNVC 2y =

whenever |j—I| = m+1.
Therefore, by (A.10) and (A.11), the first term on the right of (A.9) is bounded by

1 n!  (k+p—1)! 1 (mk, !
A L e l”<n+1)(m)<1+0<"")>

Furthermore Y277 " [uccms fozx+e 90 Fppr 2, v)dudo and 352071, or,
jv;xﬂgvﬁkup(u, v) du dv are both bounded by (m+1)x P, {less than k+2p—1
observations out of n+p in [x—e, x+¢]}. Since F(x+¢&)—F(x—¢) = 2¢l, the above
probability is O(1/n), (for k,/n — 0) by Chebychev’s Theorem.

Thus the sum of the second and third terms in (A.9) is bounded by

MP n! (k+2p—DI[(;—1=p)! (n—v;—k—p)! 1
27 105 (n+p)! (k—1)! [(v,.—m Rl em—s T

o3

"= f,<, | [o—u| %", W(u, v) du dv.

(A.15) max;

PROOF OF (b).
(A.16) Et + myen =t
Using the fact that

FO-MO) < maxysw 5 A,
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the right-hand side of (A.16) is bounded by

n!

(A.17) (= DYk = D = v, — )t A"J J 978 (u,v) du dv

(n—q)!
n+1\? 1
-(5) (1+0())

v;=DWk—gq—-1D!(n—v;—k)!
LEMMA 2. Let Yy = p—[k/(n+1)], where p ~ Be(k,n—k+1), then

. 3K 2%k [k
Ey =(n+1)4(1‘(n+2)+"(2 :

ProoF. Using the formula for the moments of a Be(k, n—k+1) random variable

I(n+1)I(k+7)
M = T+ 1+0I(k)

gives

EY* = py—Apapy +6popy® —4pgpy® + gt
(k+3)(k+2)(k+ 1Dk 4(k+2)(k+ 1)k? 6(k+1Dk? 3k*
T+Hn+)n+2)(n+ 1)—(n+3)(n+2)(n+1)2+(n+2)(n+1)3_(n+1)4'

Letting

(n+1)° 6 19 27
S = GG i) (1D +3) | (A D+ +2)
(n+1)* 3 4
L= 1G5 m+2) =+2) +3)(n+2)
(n+1) 1

Ss=1-G32) =W+2)

f4 =0
we have

k 1
Ey’ = =Gm+D) {(n e [(k+3)(k+2)(k+1)—4(k+2)(k+ Dk +6(k+1)k* — 3k3]}
~GED g 5 {(——n ; 55 L3k )k 2) D=7k 2) e+ D36k + 1>k2]}

3K 2% k
=(n+1)4(1“(n+2)+"(2) :
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LemMA 3. Let t, be the vth order statistic of a sample of size n from a population
with c.d.f. F. Suppose F(x) > 0. (i) Let v/m = 0. Then

\J 1 v
Pt >x} =7 +1)2(n+2)< oy 2=0<F>'
9-531)

(i) If (n—v)/n = 0O, then

(n—v+1) 1 -
Pty <"}-(v+n1)2v(n+2)( )2=0(n—nz_v>'

n+1 —F()

Proor. (i) P{t, > x} = P{p, > F(x)}, where p, ~ Be(v, n—v—1). But, since
Var p, = v(n—v+1)/[(n+1)%(n+2)], Chebychev’s inequality gives for vi(n+1) <
F(x),

V > F v
| ) b

P{p,> F(x)} = P,{ R

< v(in—v+1) 1
= (n+1)*(n+2) v\
F(X)———=
n+1
A similar equation is written for (ii).
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