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MAXIMUM LIKELIHOOD ESTIMATION OF A TRANSLATION
PARAMETER OF A TRUNCATED DISTRIBUTION:!

By MICHAEL WOODROOFE
University of Michigan

Let fo(x) = f(x — 0), 6, x€ R, where f(x) = 0 for x < 0 and let 6 be
the maximum likelihood estimate (MLE) of ¢ based on a sample of size
n. If @ = lim f’(x) exists as x — 0, and 0 < @ < oo, then under some
regularity conditions, it is shown that a(8 — 6) hasan asymptotlc stand-
ard normal distribution where 2a,% = anlog n and that if 4 is regarded
asa random variable with a prior density, then the posterior distribution
of an(f — 0n) converges to normality in probablhty

1. Introduction. Let f be a uniformly continuous density which vanishes on
(—o0, 0] and consider the one parameter family of densities f,, 6 € R, defined by

(1.1) fi(x) = fix — 0), xeR.

If X, ---, X, is a random sample from f; for some unknown value of 6, then
the likelihood function

L,(t) = T fuX)) teR,
will attain its maximum at some point interior to the interval (— co, M,) where
M, = min(X,, ..., X,). Thus, MLE’s exist. That is, there is a random vari-

able d, = 6,(X,, - - -, X,) for which L,(d,) = max, L (f) w.p. 1. Moreover, if

the entropy

7 —log f(x) - f(x) dx
is finite, then it follows easily from the result of Wald [11] that §, is a con-
sistent estimate of #. Since the support of f; depends on 6, the classical results
on asymptotic normality of MLE’s (e.g., [1] or [10]) do not apply in our
case, however.

Recently, LeCam [7] has obtained a general theorem (Proposition 6) from
which the following result may be deduced (Lemma 4.3 of [5] or its generali-
zation Proposition 7 of [7] are useful in checking the conditions imposed by
Proposition 6).

ProposITION 1.1. Let f be absolutely continuous with derivative ' and let the
Fisher Information

1.2 ( S ’(x)2>
(1.2) = 7
be finite. If 0, is any consistent sequence of MLE’s then nia (0, — 6) has an asymp-
totic standard normal distribution.
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Even this result does not cover all interesting subcases of (1.1), however, for
if lim inf f’(x) > 0 as x — 0, then it is easily verified that ¢ must be infinite.

Here we consider the asymptotic behavior of §, — 6 in the case that a =
lim f”(x) exists as x — 0 with 0 < @ < co. Subject to some regularity condi-
tions to be detailed in Sections 2 and 4, our results may be summarized as
follows. Let 2a,’ = anlogn, n > 1. Then, (1) a,(0, — ) has an asymptotic
standard normal distribution; and (2) if ¢ is regarded as a random variable
with a prior density, then the posterior distribution of a,(6 — 4,) converges
in probability to normality.

It is interesting that in both cases, ¢2 < co and 0 < a < oo, the MLE@n
converges to ¢ strictly faster than does the minimum A7, thus justifying the
additional work required to compute ah MLE (See Lemma 2.1). In particular,
if fis a log normal density, then M, converges more slowly than any power
of 1/n, while 6, converges at the rate 1/n? by Proposition 1.1.

Fisher [4] conjectured the correct asymptotic distribution for n¥@, — 6) in
the special case of a Gamma distribution for which ¢? < oo and the fact that
ni(@, — 0) = o,(1) in the case of a Gamma distribution for which 0 < a < co.
Polfeldt has considered variance bounds [8] and systematic statistics [9] in a
non-regular case similar to ours, and Dawid [2] has considered the asymptotic
shape of posterior distributions in cases where the support of the density may
depend on the unknown parameter.

Our results concerning maximum likelihood estimates are stated precisely
in Section 2 and proved in Section 3. Posterior distributions are discussed in
Section 4, and Section 5 consists of several concluding remarks.

2. Conditions and theorems. Throughout this section and the next, f, 0, f;,
and X, ..., X, will be as described in the introduction. That is, @ is fixed,
and X, - .-, X, are independent with common density f;, which is defined by
(1.1). In the statement of our results, it will be convenient to refer to the
following conditions.

P (positivity): the support of fis the interval (0, b) where 0 < b < oo and by
support we mean the set of x € R for which f(x) > 0.

D (differentiability): f is continuously differentiable on (0, b) with derivative
f', a = lim f7(x) exists as x — 0, and 0 < a < co. Moreover, f” is absolutely
continuous on every compact subinterval of (0, b) with derivative f”, and
lim xf"(x) = 0 as x — 0.

Let g(x) = log f(x), 0 < x < b. If condition D is satisfied, then g will be
continuously differentiable on (0, b) with derivative g’ = f’/f, and ¢’ will be
absolutely continuous on every compact subinterval of (0, b) with derivative
9" = (ff" — f*/f*. We also need
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I (integrability): for every o > 0, §} ¢'(x)*f(x) dx < oco.

B, (boundedness): foreverya,0 < a < b, therearey > 0and 0 < d < min (a, 7)
for which
§a7 sUpy <5 |97 (x — D] f(x) dx < oo,

where b — 5 = oo if b = oo.

B,: b < oo,limsup g”(x) < oo as x — b (may be —oo), and there are 7 > 0,
B < 1, and an increasing function # on (0, ™) for which ¢"(x) = h(b — x),
b—n<x<b,and

§8, h(B(b — 2)f(x) dx > —oo .

If b = oo, then the 7 in condition B, is irrelevant. If g’ is continuous and
B, holds for some @ > 0, then it also holds for every choice of 0 < a < b. An
easily checked condition which implies B, will be given below.

Let N, = max(X,, - - -, X,) and let conditions P and D be satisfied. We will
say that an estimate ¢, = ¢,(X;, - - -, X,) of ¢ satisfies the likelihood equation
if the relations N, — b <¢, < M, and L,'(¢,) = O are both satisfied w.p. 1
for every 6. Clearly, any MLE satisfies the likelihood equation.

THEOREM 2.1. Let conditions P, D, 1, and B, hold withb = oo and let 2a,? =
anlogn, n = 1. If@, denotes any consistent sequence of roots of the likelihood
equation, then (0, — 0) has an asymptotic standard normal distributionasn — oo.

THEOREM 2.2. Let conditions P, D, 1, B,, and B, hold with b < oo and let
2a,? = anlogn, n > 1. If 8, denotes any consistent sequence of roots of the
likelihood equation, then a8, — 0) has an asymptotic standard normal distribution
asn — co. Moreover, if P and D hold withb < oo and if f"'(x) = (b — x)"L(b — x)
where y > —1 and L(x) varies slowly as x — 0, then condition B, is satisfied.

Condition I has an information theoretic interpretation. Condition B, and
the requirement of a second derivative in D have no nice statistical interpre-
tation, but conditions of their type are quite common in work with MLE’s.
The novel conditions are B, and the requirement that xf”’(x) — 0 as x — 0.
The latter merely rules out wild oscillations by f”” near zero, and the former
is, at least, reasonably general, as indicated in Theorem 2.2. In particular,
conditions D, I, and B, are satisfied by any density of the form f{(x) = cxe™*,
x>0, or f{x) = ex/(1 + x)**7, x > 0, for any y > 0; and D, I, B,, and B,
are satisfied by any density of the form f(x) = cx(b — x)'*7, 0 < x < b, for
any y > 0 and any b > 0.

We will prove Theorems 2.1 and 2.2 in the next section. We conclude this
one by recording the asymptotic behavior of M, and N, and thereby justifying
the comparison between 6, and M, which we made in the introduction.

LEMMA 2.1. Let fbe absolutely continuous. If a = lim f'(x) exists and is finite
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as x — 0, then lim Pr (n}(M,, — 0) > ) = exp(—3at*) asn — oo forall t > 0;
and if 0* < oo, then lim Pr (n}(M, — 0) > t) = 1 asn— oo forall t > 0.

Proor. Let F denote the distribution function of f. Then,
(2.1) Pr(n}(M, — 0) > t) = (1 — F(tn~%)"

for all £ > 0. Thus, the first assertion of the lemma follows from the easily
verified fact that if f7(x) > a < co as x — 0, then F(x) = Jax® + o(x?) as x — 0.
Similarly, the second will follow if we can show that the finiteness of ¢? implies
F(x) = o(x?) as x — 0. This follows from

(2.2) Fx) = §§(x = f"(»)dy

< (5 (L) o) i - yrren @y

which is bounded by o(1)xF¥(x) as x — 0 if ¢* < 0.

Since only the local integrability of f”/f was used in (2.2), we also have (by
interchanging the roles of 0 and b)

LEMMA 2.2. Let condition P be satisfied with b < oo, let f be absolutely continu-
ous, and let condition 1 be satisfied. Then, asn — oo, limPr(nt(b — N,) > 1) =1
for all t > 0 where N, = max(X,, - - -, X,).

3. Proofs. In this section we will prove Theorems 2.1 and 2.2 Conditions
P, D, and I will be assumed throughout, but conditiions B, and B, will only
be imposed as needed. We may, of course, and will restrict our attention to
the case 6§ = 0.

We begin by remarking that since f’(x) — « and xf”(x) —» 0 as x — 0, we
must also have f(x) ~ ax, ¢’'(x) ~ 1/x, and ¢"(x) ~ —1/x* as x — 0. These
relations will be used without further comment. Let G,(¢) = log L,(?),
N, —b<t< M, Then,

LemMa 3.1. Ifb = oo and B, is satisfied, then for sufficiently small § > 0,
there are events C,, n = 1, for which lim P(C,) = 1 as n — oo and for each
nz=1, C, implies G,”(t) < 0 for —0 <t < M,. Moreover, if b < oo, and if
B, and B, are both satisfied, then there are events D,,, n = 1, for which lim P(D,) =
1 as n — oo and for each n = 1, D, implies G,''(t) < 0 for N, — b <t < M,.

Proor. Let a > 0 be so small that ¢"(x) < —1/2x* for 0 < x < 2a, let
0<d<a, and for 0 < c <d< oo let )¢ denote summation over all i =
1, ..., nfor which ¢ < X; < d. If b = oo and B, is satisfied, then the event
M, < 0 implies that
1 " —1 e - 1 [ 4

G0 < (5) Ze (X + 0y + () 7 supyys 197X, — 1)

n

3.1)
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for —6 <t < M,. The right side of (3.1) converges in probability as n — oo to
(3-2) —3§5 (x4 0)7f(x) dx + 7 supy 55 (97 (x — O] ) dx

which, in turn, diverges to —oo as 6 — 0. The first assertion of the lemma
follows on taking C, to be the intersection of the event M, < d with the event
that the right side of (3.1) is less than one half of (3.2) for sufficiently small 4.

To establish the second assertion of the lemma suppose that b < oo and that
B, and B, both hold. Then, there are 4 > 0 and » > 0 for which ¢"(x) < 4
for b — 27 < x < b. Let a beasabove and let § < min(a, ). Then, M, < o
and b — N, < ¢ imply that

1

(3 —

G0 = (5) Zi (X + o)

+ <—,1,‘> 27 sup g |97 (X — )] + <%‘> S A,

for N, — b <t < M,. Since the right side of (3.3) also diverges to —oo as
n— oo and § — 0 (in that order), the second assertion of the lemma follows
easily.

Thus, if b = oo and B, is satisfied, then with probability approaching one,
G,’ will be a decreasing function (—d, M,) for sufficiently small positive 9.
Since, by assumption, the §, of Theorem 2.1 is a consistent sequence of roots
of the equation G,’(d,) = 0, it follows easily that

(3.4) Pr(a,f, < t) = Pr(G,/(ta,™) < 0) + o(1),

as n — oco. Here we include in the event G,’(fa,™!) < 0 the requirement that
G,'(ta,™") be defined—that is, the requirement that ta,~* < M,. By Lemma 2.1,
the latter requirement is satisfied with probability approaching one. Similarly,
if b < oo, and if both B, and B, are satisfied with probability approaching one,
G,’ will be a decreasing function on (N, —b, M,), so that (3.4) holds in this
case too. (In this case the event G,’(fa,™*) < 0 includes the requirement that
N, — b < ta,” < M,. This requirement is also satisfied with probability
approaching one by Lemmas 2.1 and 2.2.) Therefore, either Theorem 2.1 or
2.2 may be established by showing that its hypotheses imply that a,™'G,'(ta,™)
is asymptotically normal with mean —¢and variance one. This will be deduced
from the expansion

(3.5) a,”'G,/(ta,”") = ,7'G,/(0) + a,* §¢ G, (s, V) ds
(valid for N, — b < ta,™ < M,) by considering G,'(0)and G,""(sa, ™) separately.
LemMa 3.2. a,7'G,/(0) has anasymptotic standard normal distributionasn— oo.

Proor. Let Y, = ¢'(X;),i=1, ---,n. Then, Y,, .., Y, are independent
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and identically distributed, E(Y;) = 0,and G,’(0) = —(Y, + --- + Y,). There-
fore, by Theorem 2 of [3], page 546, it will suffice to show that p(y) ~ alogy
as y — oo, where

#(y) = §5, ¥\'dP
and B, is the event that |Y,| < y, y > 0. To see this let 0 < ¢ < 1 be given,
let 6 > 0 be so small that | f{x) — ax| < aexand |xg’'(x) — 1| K efor0 < x < 9,
and let 4 be the event that X, < 9. Then, 4 implies ¥, < (1 + ¢)/X;, and 4B,
implies (1 — ¢)/y < X; < 9. Since also f(x) < a(l + ¢)x for 0 < x < d, we
have, as y — oo,
M(Y) = Supy XLPdP + § 0 Y2 dP
< g a(l 4+ €Pxtdx + §5 g/(x)*f(x) dx
=a(l +¢)*logy + O(1),
where we have used condition I in the final step. Similarly,
w(y) = a(l — e)*logy + O(1) as y-—oo.
The lemma follows easily.
LeEmMA 3.3, Let 0 < 0 < banddefineZ, = X, if0 < X, < dand Z, = 0 if
X, =0,i=1,...,n Then,

—2 a 2
o, i=1 Zi —1 5

in probability as n — oo.

PROOF. As in the previous lemma, it follows from Theorem 2 of [3], page
546, that
<—1‘> zb=1 Zi2 - nbn

n

has an asymptotic stable distribution, where b, = E(sin (Z*/n)), n = 1. There-
fore, it will suffice to show that nb, ~ talognasn — co. Tosee thislete > 0
be given, let 0’ < 4 be so small that | fix) — ax| < aex for 0 < x < ¢’, and let
a > 0 be so large that |sin x — x| < ex for 0 < x < a*. Then, as n — o,
nb, = {21 nsin (1/nx*) f(x) dx + O(1)

= §oura(l + e)'xtdx + O(1)

= a(l + ¢)*logn 4 O(1) .
Similarly, nb, = 1a(l — ¢)*logn 4 O(1) as n —oco. The lemma follows.

In our next two lemmas we will use the notation

(3’6) rn(a’ k) = Suplt|§k |a'r»—2Gn"(0 + tan—l) + ll ’

where the supremum is understood to be infinite if either ka,™* = M, — 6 or
—ka, < N, — b —0.
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LemMA 3.4. If b = co, and condition B, is satisfied, then r,(0, k) — 0 in prob-
ability as n — oo for any k > 0.

Proor. Given0 < ¢ < landk > 0, leta > 0besosmall that [X*9"(x) + 1| < e
for 0 < x < 24, and let 9, = ka,™'. If M, > d,/¢, which it is with probability
approaching one, then for |7| < k and §, < a,

an_an"(tan——l) é _(1 - 6)(1'”_2 Zg (X'L - tan~1)—2
+ @, YT supy, o |97(X; — 1))
S (1=l +e)a,?eX,2+ o,(1)
— — (I —&)(1 + ¢)2,
in probability as n — oco. Here we have used condition B, in the final steps.
A similar lower bound may be obtained to complete the proof.

LEMMA 3.5. Ifb < oo, and if both B, and B, are satisfied, then r,(0, k) -0
in probability as n — co for any k > 0.

Proor. Let0 < e < 1and k > 0 be given, let , 8, and & be as in the state-
ment of B,, let 5, = 17, and let a and §, be as in the previous lemma. Then,
as in the proof of the previous lemma, b — N, > 0,/(1 — B)and M, < 9,/e
hold with probability approaching one and imply that for lff< kand 9, <

min (a, 7,),
(3.7) @, "G, (ta,™) = —(1 4 &)(1 — ) + o,(1)

+ an—z Zg-—)yo g’,(Xi - tan—l) )
where 0,(1) is uniform in |¢| < k. By B, ¢”(X; — ta,™) > h(b — X; + ta,™) >
h(b — X; — 9,) = h(B(b — X;)) for b — », < X, < b. Therefore, with proba-
bility approaching one, the last member of (3.7) is at least

an_z Zg-—yo h(AB(b - 1‘/1)) ’

which is 0,(1) by condition B,. Therefore, with probability approaching one,
a,7G,"(ta,™) = —(1 + €)(1 — ¢)™* 4 o,(1), where o,(1) is uniform in |¢| < k.
A similar upper bound may be obtained to complete the proof (cf. (3.3)).

The asymptotic normality of a,(d, — 6) now follows easily. For example,
it follows from Lemma 3.2, Lemma 3.4, and equation (3.5) that a,”'G,/(ta,™)
is asymptotically normal with mean —¢ and variance one, ¢ ¢ R, under the
hypotheses of Theorem 2.1, so that Theorem 2.1 follows from equation (3.4),
as explained above. The asymptotic normality assertion in Theorem 2.2 may
be established similarly, so it remains only to prove the final assertion of
Theorem 2.2.

LemMaA 3.6. If b < oo, and if f"(x) = (b — x)'L(b — x) where 1 > —1 and
L(x) varies slowly as x — 0, then condition B, is satisfied.
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Proor. It follows from Section 8.9 of [3] that f'(x) ~ —(b — x)'*7 X
L — x)/(1 4+ y)and f{x) ~ (b — x**7L(b — x)/(1 + 7)(2 + 7) as x — b. There-
fore, g"”(x) ~ —(2 4+ 7)/(b — x)* as x — b, and in particular, limsup ¢"(x) < 0
as x — b. Moreover, letting h(x) = —c/x*, it follows that ¢"(x) = A(b — x),
b — 7 < x < b, for c sufficiently large and » sufficiently small, and it is easily
verified that

§oy H(B(b — X)) f(x) dx = —cf™ §3_, (b — )7 f(x) dx,
which is finite for all 8 < 1 (cf. Section 8.9 of [3]).

4. Posterior distributions. In this section we take a Bayesian approach by
placing a prior density g over the possible states of nature. That is, we invent
a random variable # with density ¢, and we suppose- that conditionally given
0=0,X=(X,,- -, X,)isarandom sample from f;. Conditional probabilities
given @ = ¢ will now be denoted by P, and unconditional probabilities by
Pr. Thus,

Pr(@ecAd,XeB) = §,P,(XeB)(0)dt,
for Borel sets 4 and B. The conclusions of Theorems 2.1 and 2.2 may now be
written

4.1) lim Py(a,(f, — 0)eJ) = ®J) as n— oo,

for every 6§ € Rand every interval J C R, where @ denotes the standard normal
distribution—that is,
D) = §, e #’/(2r)tdx .

THEOREM 4.1. Let conditions P, D, 1, and B, be satisfied, and if b < oo, let
condition B, be satisfied also. Suppose that the support of q is an interval and that
q is continuous on its support. Let 0, be any consistent sequence of roots of the
likelihood equation and let Q, denote the conditional distribution of a,(@ — 0.)
given X, - - -, X,, where 2a,> = anlogn,n > 1. Then,as n — oo, lim Q,(J) =
D(J) in probability for every finite interval J.

In the proof of Theorem 4.1, it will be convenient to have the following
lemma (see (3.6)).

LEMMA 4.1. If the hypotheses of Theorem 4.1 are satisfied, then r,(0,, k) — 0
in probability as n — oo for all k > 0.

Proor. It follows immediately from Lemmas 3.4 and 3.5 that r, (0, k) - 0
in P, probability as n — oo for every 6§ € R and k > 0. Therefore, since

Py(ry(0,r k) = &) < Py(ru(0, k + J) Z ¢) + Pyla,lf, — 01 = ),

for every # € R and k, j, ¢ > 0, it follows from Theorems 2.1 and 2.2 that
rn(én, k) — 0 in P, probability for every # € R and k > 0. Finally, since

Pr(r,(0,, k) = ¢) = §=.. Py(r,(0,, k)= ¢)q(6) db ,



TRANSLATION PARAMETER OF A TRUNCATED DISTRIBUTION 121

for k, ¢ > 0, the lemma now follows from the bounded convergence theorem.
To prove Theorem 4.1, let J be any finite interval, let £ > 0 be so large
that J c [—k, k], and define ¢ = ¢(k) by ®(—k, k]) = 1 — e. Further, let
3 = r,(0,, k) and observe that |W,(t) + 3| < 30 for [¢f| < k, where W, () =
G,@, + ta,) — G,(@,), te R, and log 0 = —co. Finally, let
qn+ = Supltlék q(én + tan—l) ’ qn_ = infltlSk 7(91; + tan—l) .

Then, it follows easily from the conditions imposed on ¢ and the consistency
of , that ¢,~/q,* — 1 in probability n — co.

Let g, denote the conditional density of a, (6 — 0) given X,, - - -, X,,. Then,
for f| £ k
(4.2) (1) = ¢,72q(0, + ta, e

= 7't exp(—3(1 — 0)r),
where .
¢, = §%.. 90, + sa, )" ds
g Slik 9.~ exp(—%(l + 5)S2) ds = qn— d’n ’ say .
Now, d, — (1 — ¢)(27) in probability as n — co by Lemma 4.1. Therefore,
as n — oo,
0.(J) =\ q.(t) dt
< (9.%/9.7d,) §, exp(—3(1 — 9)r) dt
SO/ —¢)
in probability. Since k may be made arbitrarily large, it now follows that
lim Pr(Q,(J) = ®(J) + 1) = 0 for every 7 > 0. Now suppose that
lim sup Pr(Q,(/) < ®(J) — 7,) > 0
for some 7, > 0. Then, by what has just been shown, we would have
lim inf E(Q,(J)) < ®(J). The latter conclusion is impossible, however, in view
of equation (4.1) and the bounded convergence theorem. Theorem 4.1 follows.

Asymptotic normality of posterior distributions may also be deduced if the
Fisher Information ¢? is finite. The result follows easily from the work of
LeCam.

THEOREM 4.2. Let f be absolutely continuous with derivative [’ and let the Fisher
Information o* be finite. Suppose also that the support of q is an interval and that
q is continuous on its support. Let 8, be any consistent sequence of MLE’s and let
Q, denote the conditional distribution of nto(6 — 0, given X, ---, X,. Then, as
n — oo, lim Q,(J) = ®(J) in probability for every finite interval J.

Proor. Let V,(t) = G,(0, + t/ont) — G,@,), te R. Then, it follows easily
from the proof of Proposition 6 of [7] that sup,,, .| V() + 4| — 0 in probability
for every k > 0. Using this fact, Theorem 4.2 may be proved by an argument
which is virtually identical to that given in the proof of Theorem 4.1.
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5. Concluding remarks. If b < oo, then the roles of 0 and b may be reversed
in Theorems 2.2 and 4.1. Simplylet Y, =b— X,,i=1,..-,n.

Under the hypotheses of either Theorems2.10r2.2, a,(d, — 6) — a,7'G,'(0) =
o,(1)asn — co (cf. [10], page 285). To see this recall that r.@,, k) — 0 in (Py)
probability for every k > 0, observe that

Gn,(a) = - Sg" Gn"(t) dt ’

and use the fact that 4, — 0 = O,(a,™).

The conditions imposed on ¢ in Theorems 4.1 and 4.2 may be weakened.
It is sufficient that there be an open set U C R for which ¢ is continuous and
positive on U and Pr(@ e U) = 1.

Also, a stronger conclusion is possible in Theorems 4.1 and 4.2 than was
given. For example, in Theorem 4.1, we may conclude that

SUPy <k [9a(7) — €7/(27)} — 0

in probability for any k < 0. To see this from (4.2) and Lemma 4.1, it will
suffice to show that ¢, — (2x)! in probability. If this were not the case, then,
in view of Lemma 4.1, we could not have Q,(J) — ®(J) in probability for any
non-degenerate interval J.
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