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BOUNDARY CROSSING PROBABILITIES FOR
THE KOLMOGOROV-SMIRNOV STATISTICS!

BY RICHARD M. STANLEY

University of Arizona

That the Kolmogorov-Smirnov statistics obey iterated logarithm

laws is well known. For the purpose of developing nonparametric tests

~ with power one it has become of interest to find accurate upper bounds
for the probability that a sequence of Kolmogorov-Smirnov statistics
ever exceeds a given boundary sequence. This paper is concerned with
finding such probability bounds for a wide class of boundary sequences.

1. Introduction. In their development of nonparametric tests with power
one, Darling and Robbins [3] found upper bounds on the probabilities of
boundary crossings by Kolmogorov-Smirnov statistics for a class of boundary
sequences. In this paper bounds are given for wider classes of sequences. In
particular these classes contain sequences which are O[(n~ log log n)}]. For
sequences in which the bounds of [3] apply, the bounds of this paper are
generally smaller.

The class of sequences for which probability bounds are found for the two-
sample statistic contains all upper class sequences satisfying simple mono-
tonicity conditions, and a criterion is given for the upper and lower classes
under these conditions. This corresponds to a result of Chung [1] for the
one-sample statistic. Unfortunately, the boundary sequences for which we
are able to give bounds is not the entire upper class in the one sample case.

2. Statement of results. Let X, X, ---, and Y,,Y,, --. be independent
sequences of independent, identically distributed (i.i.d.) random variables.
Assume, P(X, < t) = P(Y, £ t) = F(¢) for all real t. Define the empirical
distribution functions

1
Fyn(t) = n 2l l(XistV

and define F," similarly. We will be concerned with the processes
U, = nsup, (Fy"(t) — F,*(#)), and
V, = nsup, (Fy*(t) — F(1)) .
Let @, be the collection of positive real sequences ¢ = {¢,:n=1,2, ..}

for which nt¢, is monotone non-decreasing, and let ®, = {¢ ¢ @, : ¢, is mono-
tone non-decreasing and n~t¢, is monotone non-increasing}.
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THEOREM 1. Suppose {§,,, G,i1, - - -} €@, If m=n<n, < --- is any inte-

ger sequence then
p(m, ¢) = P{U, = nt$, for some n = m}
S 2 X exp(—niadnin) -

Taking the subsequence defined by n, = m and n, = min {n: 332} ¢°/j = 4},
some simple calculations yield the following corollary.

COROLLARY. Suppose {§,,, Pnir> - -} € D,. Then
(1) pim, §) < 4exp(l + 24,°/m) 37, n7'¢,” exp(—¢.’) .
Considering the result of Chung [1], it is not unexpected that convergence of

(1) is a criterion for upper class sequences in @,.

THEOREM 2. Suppose {¢,,, §,.,, - - -} € @, for some m and 3 7_, n'¢,’ X
exp(—¢,’) = co. Suppose also that F is continuous. Then P{U, > ni¢, for infi-
nitely many n} = 1.

My best result for the one-sample statistic is:

THEOREM 3. Suppose {$,,, #, 1, - - -} € @, withsup,., n ¢, =b < co. Then
for any integer sequence m = n, < n, < - - -

q(m, ¢) = P{V, = nt¢, for some n = m}

<>, {[1 + Lﬁ’:(l + (27rni+1)5)i| exp[_<—4ni_¢ii>]

i1 o, — 1
3
+ 161,97, exp I:_ 2n, 4, + 1_6 b exp< 8n;'g,, ):’} .
(ri— 1) nig,— 1 3 Ry — 1

The assumption b < oo is not a restrictive one; when b = oo this result may
be applied to ¢, A an' in place of ¢,. However, smaller bounds may be
available from [3] in such cases.

Finally, choosing #n, = m and n, = min {n: Yom, J T8 > 4}, we can
eliminate the subsequence.

COROLLARY. Let ¢ be as in Theorem 3. Then

(2) q(m, ) < c(m, ®) 317, n7'9,  exp(—24,7) ,
where
c(m, ¢) = 4ef{[1 + 4¢,m (1 4+ 2z(m + 1))} exp (3 — 24,2
+ 16 exp[16b exp(8m~t¢,,)/3]} .

Comparing this with Theorem 2 of [1], we see that there exist sequences
¢ € @, for which g(m, ¢) < 1 but for which the series (2) does not converge.
For example, if ¢, = (log,n + alog,n)t then g(m, ¢) < 1 for m large if
a > 1, but the series in (2) converges only if a > 3.
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3. Proof of Theorem 1. Let £ > 0 be an integer. We will use a bound due
to Darling and Robbins [3]:

(3) P(U, = k} < exp[—K/(n + 1)].
Let d,(f) = n(Fy"(t) — F,"(t)) and
r, = inf{t:d,(t) = U,} v (min{Y,, --., Y,} — 1).
For any N > n, conditional on X;, ---, X,, Y;, ---, Y,, dy(z,) — d,(z,) is
symmetrically distributed. Hence, since U, = d(r,) and d,(z,) = U,,
4) PUyz2 U, Xy, -, X, Yoy oo, Vb 2 3

From (4) we can use a reflection principle to obtain
3) P{U,=x forsome n<m}<2P{U,=x} (m=1,2,..--,x>0).
Equations (3), (4), and (5) now give us
pim, §) < X2, P{U, = nig,, forsome n <n< n)
<25 PlU, 2 i} < 2 BRiexp{—ndy [nia)

completing the proof.
Given the choice of {n;} outlined, the corollary follows from this if we
observe

gm, §) < 2 T2, Dra 2n7, exp(— @0 + 6,0 — mh In)
and
2
2 B2 . S 2 1 _ n,b- >
¢n nz¢ni/nz+l = ¢"£+1< <ni+1 >

<20 (M — m)[mpy, <2 Z:Z{l o n < 1+ 28, m.

t+1

4. A lower bound. We give here a lower bound corresponding to (3).
Following Chung’s example, I have omitted the proof of Theorem 2, but it
will now follow by applying the methods of Feller [5].

LEMMA. Suppose F is continuous. Then forany0 < x<n—1, P{U, = x} =
exp[—(x + 1)%/(n — x — )]
Proor. In the derivation of (3) Darling and Robbins [3] show for any
integer k =0, 1, -- -, n,
— log P(U, = k} = §7 2 exp[—(n + %)t]%&%%dt.
Using y < sinh y < ye, valid for y = 0, we find
k2

_ > 2 (o exp[—(n — prjdt = ————-
log P{U, = k} < K* {7 exp[—(n — k + $)t] dt n—k+ 12

The lemma now follows from x < [x + 1] < x+ 1 < n.
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5. Proof of Theorem 3. Just as in the proof of Theorem 1, let d,/(f) =
n(Fy"(t) — F(t)) and ¢,/ = inf{¢:d,’(t) = V,}. Then E(V, | X, ---, X,) =
Ed!,\(z,))|z,)) = d(z,)) = V, and the V, process is a submartingale. For
t > 0, exp(tV,) is a convex increasing function of a submartingale and there-
fore is itself a submartingale (Doob [4], page 295). Applying Kolmogorov’s
inequality for submartingales ([4], page 314) we may write
(6) q(m, ) < D2 PV, = ni§¢ni for some n;, < n < n;,,}

é ~?°=l E(exp ti VnH,l—-l) exp[_ tinié¢ni] ’
for arbitrary positive numbers #,. Caski [2] has given the following bound:
™ E(exptV,) < 1 + tE(V,) + (1 + e ")[o(D]",

where

et — 1 t
1) = — 1> .
90 t P <e‘ —1
Darling and Robbins [3] showed that, for integer £ > 0,

PV, =k} <242 exp[—K/(n+ 1)],
SO
E(WV,) = \; PV, = y}dy

(8) S 1+ §¢27/ 2 exp[—(y — 1)/(n + 1)]dy
=14 Qr(rn+ 1)t.
For ¢(f), note that ¢+ > 0 implies t < e — 1 so

s = =1+ (G ) H (G- 1)

1 tk 2 t2 t3
<1 el o 7 Sl e e 2t’
= +2t2<2k_2k!> =ltg Tt

SO
9 n < nt' | nt o\
© 9o < exp (% + 12 %)

Combining (6) through (9),

gm, ) = T {1 + 601+ Qen)) + (e — Des

X exp l:(ni+l —8_ 1)t + (it 1_2 DL 82“}} exp(—tnid,) .

The theorem now follows with the choice
t; = 4nté, [(n. — 1).
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