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NONLINEAR REGRESSION OF STABLE
RANDOM VARIABLES'
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and Boston University

Let (X;, X,) be an a-stable random vector, not necessarily symmetric,
with 0 <« < 2. This article investigates the regression E(X,|X; = x) for
all values of a. We give conditions for the existence of the conditional
moment E(|X,|”|X; = x) when p > a, and we obtain an explicit form of
the regression E(X,|X; = x) as a function of x. Although this regression
is, in general, not linear, it can be linear even when the vector (X v Xy)is
skewed. We give a necessary and sufficient condition for linearity and
characterize the asymptotic behavior of the regression as x —» +o. The
behavior of the regression functions is also illustrated graphically.

1. Introduction. The stable distributions, according to the central limit
theorem, are the only limiting distributions of normalized sums of indepen-
dent, identically distributed random variables; and perforce include the
normal, or Gaussian, distributions as distinguished elements. Gaussian distri-
butions and processes have long been well understood, and their utility as both
stochastic modeling constructs and analytical tools is well accepted. The much
richer class of non-Gaussian stable distributions and processes is the subject of
a great deal of recent research, and holds much promise for use in modeling
and analysis as well.

Stable distributions are defined in Section 2. They are indexed by a parame-
ter 0 < a < 2. The distribution is Gaussian when a = 2 and is non-Gaussian
when 0 < a < 2. A good reference for univariate stable distributions is Feller
[3] and the more recent monograph of Zolotarev [17]. For multivariate distri-
butions, see Cambanis and Miller [2] and Hardin [5].

The central limit argument often used to justify the use of a Gaussian
model in applications may also be applied to support the choice of a non-
Gaussian stable model. That is, if the randomness observed is the result of
summing many small effects, and those effects follow a heavy-tailed distribu-
tion, then a non-Gaussian stable model may be appropriate. An important
distinction between Gaussian and non-Gaussian stable distributions is that the
stable distributions are heavy-tailed, always with infinite variance, and in some
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cases with infinite first moment. Another distinction is that they admit
asymmetry, or skewness, while a Gaussian distribution is necessarily symmet-
ric about its mean. In certain applications, then, where an asymmetric or
heavy-tailed model is called for, a stable model may be a viable candidate. In
any case, the non-Gaussian stable distributions furnish tractable examples of
non-Gaussian behavior and provide points of comparison with the Gaussian
case, highlighting the special nature of Gaussian distributions and processes.
We refer the reader to Cambanis [1], Weron [16] and Zolotarev [17], for surveys
of applications. Mandelbrot and Wallis [11] use the term ‘“Noah effect” to
describe random situations characterized by high variability, where a stable
model may be applicable (the biblical figure Noah lived through an unusually
severe flood).

A fundamental and crucial step toward understanding stable distributions
and eventually employing them in applications is to recognize their behavior
under conditioning. Perhaps the first question to be answered regarding
conditional behavior concerns the conditional expectation, or regression, of one
stable variable given the observation of others.

In the Gaussian case, the bivariate regression is always linear and is
determined solely by the first two moments:

where u; is the mean of X, and

Cov( X,, X,)
~ VarX,

In the stable case, Kanter [8] shows that the same relation holds for symmetric
stable distributions with first moments, where « is defined to be the normal-
ized covariation of X, on X, which is the stable analog of the normalized
covariance. Also, Samorodnitsky and Taqqu [14] show that the first moment
requirement may be relaxed; that is, regressions involving variables without
first moments can be legitimately defined under appropriate conditions and are
linear.

A distinction between Gaussian and stable distributions in the symmetric
case is seen, however, in the case of regression on more than one variate.
Although general multivariate regressions in the Gaussian case are always
linear, the papers of Miller [12], Cambanis and Miller [2] and Hardin [4] show
that multivariate regressions involving symmetric stable variates are not
always linear, and they illustrate some of the complexities involved.

This article gives a complete picture of bivariate regression behavior in the
general (possibly asymmetric) stable case. We show that when skewness is
present, regressions can be either linear or nonlinear. We determine the form
of the regression, when it exists, and give necessary and sufficient conditions
for its linearity. The sometimes exotic behavior of the regression functions in
the nonlinear case is illustrated graphically. Interestingly, these regressions
are always asymptotically linear. We make no moment assumptions on the
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stable variates, assuming only a weaker condition assuring that the regression
is defined.

Since we want to study E(X,|X; = x) for all 0 < a < 2, we must determine
when the conditional expectation is defined. It is always defined for o > 1
because the mean exists in that case. We show in Section 2 that when « < 1,
the condition for existence of the conditional expectation, given in [14] for the
symmetric stable case, is also sufficient here. Therefore the applications to
moving averages, sub-Gaussian, sub-stable and harmonizable processes, dis-
cussed in [14], apply under exactly the same conditions when the vector
(X,, X,) is skewed. The regression, however, will typically be nonlinear.

Explicit formulas for the regression involve the ratio of two integrals [see
(3.9)], neither of which can be computed analytically. (The integral in the
denominator is proportional to the univariate stable density function.) To
make matters worse, these integrals have features which make them una-
menable to the use of standard numerical integration software packages.
In the past, the lack of usable formulas has been an impediment to the
application of stable distributions to the real-life phenomena. In Hardin,
Samorodnitsky and Taqqu [6], we develop efficient algorithms for computing
the regression formulas and we present them in a form useful to practitioners.
These numerical procedures can also be used to evaluate other integrals which
appear in the context of stable distributions. The article by Hardin,
Samorodnitsky and Taqqu [6], moreover, lists the complete source code, writ-
ten in the C language, for computing stable density functions and regression
functions. That code is used in this article to obtain the figures of stable
density functions and regression functions displayed.

This article is structured as follows. Basic definitions and conditions for the
finiteness of the conditional moment E(|X,I|X, = x), p > a, are given in
Section 2. Explicit formulas for E(X,|X, = x) are given in Section 3 and
established in Section 4. Section 5 displays graphs of various regression
functions.

2. Definitions and existence of conditional expectations. A random
variable X is said to have a stable distribution if for any A > 0, B > 0, there
exist a C > 0 and a D € R! such that

AX® 4+ BX® =, CX + D,

where X® and X® are independent copies of X. Necessarily, C = (A* +
B« for some 0 < a < 2. The characteristic function of X, ¢x(¢) =
E exp{itX}, has the form

exp{—c®lt|* + ia o’ +iut}, ifa#1,

2.1 t) = 2
(2.1) bx(2) exp{_g|t| —i—BotInlt| + iut}, if «=1,
o

where o > 0, a = tan(7ra/2), B € [—1,1], u € R and where u¢” = |u|’ sign u
for any reals u and v. Thus, in addition to the index of stability a € [0, 2], the
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distribution of X is characterized by a scale parameter o > 0, a skewness
parameter B € [—1,1] and a shift parameter u € R.

When a = 2, ¢ x(¢) reduces to exp{ — o 2t% + iut}, the characteristic function
of a Gaussian random variable with mean u and standard deviation V2 o. The
random variable X is Cauchy when a = 1. Figures 2 and 3 illustrate the shape
of various density functions of X when 0 < a < 2. These density functions are
not generally known in closed form. Their tails are much fatter than the
Gaussian tails, and

(2.2) P(IX] > A) ~const A™* as A — o,

The lower the a, the slower the decay of the probability tails. Because of (2.2),
no a-stable random variable has finite second moment when « < 2 and even
the first moment does not exist when o < 1.

The regression problem involves a pair of random variables X; and X,. The
definition of the univariate stable distribution generalizes readily to more than
one variable. A random vector X = (X, X,) is said to have a stable distribu-
tion if for any scalars A > 0, B > 0, there exists a C > 0 and a D € R? such
that

AX®D + BX® =, CX + D,
where X and X® are independent copies of X. Again, C = (A% + B*)!/* for
some 0 < a < 2. The vector X is called a-stable. The vector X is called
symmetric a-stable (SaS) if it is a-stable and X =; — X. Every symmetric
a-stable vector X has characteristic function ¢x(¢, r) = E exp i(¢X, + rX,) of
the form

(2.3) exp{—fs lts, + r32|"‘I‘(dS)},

where T is a finite symmetric measure on the Borel subsets of the unit circle
S, in R% Changing I' changes the characteristic function (2.3) of (X;, X,).
When « = 2, the characteristic function reduces to the usual Gaussian one,
since (2.3) equals

exp{—[ 2fs sil(ds) + 2trfs s18.I(ds) + rzfs ng(ds)]},

so that Var X, = 2/ siT'(ds), Var X, = 2[5 s5T(ds) and Cov(X,, X,) =
2/[s,8182I'(ds).

For convenience, unless stated otherwise, we suppose from now on that
0 < & < 2; that is, we exclude the Gaussian case a = 2.

An a-stable random vector X = (X, X,) with 0 < @ < 2 is not necessarily
symmetric. The general form of its characteristic function is

ox(t,r) = exp{—fs lts; + rsy|*(1 — ia sign(ts, + rs,))I'(ds)
2

+i(tpd + r,u%)}
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if @ # 1, and

2
ox(t,r) = exp{—f s, + rszl(l + i— sign(ts; + rsy)Inlts; + rszl)F(ds)
S, T

+i(t,u,? + rug)}

if @ = 1. Here a = tan(a/2), T is as before but not necessarily symmetric,
and p = (u3, u3) is a vector in RZ The measure I' is called the spectral
measure and the pair (I, u°) is called the spectral representation of the
random vector X. The spectral representation is unique when 0 < a < 2 (see
Kuelbs [9], for example, for details).

The components X, and X, of X have a marginal a-stable distribution. In
fact, X, has characteristic function (2.1) with o =0, B =8, and u =y,
where

(2.4) oy = ([Szlsllaf‘(ds))l/a

is the scale parameter of X,
1

(2.5) Br=— [ s{*T(ds) e [-1,1]
01 7S,

is the skewness parameter of X; and

ul, ifa#1,

2.6 = 2
(26) LR Y —[ s, Inls,IT(ds), ifa=1,
™8,

is the shift parameter of X.
Kanter [8] proved that if (X;, X,) is SaS and a > 1, then the regression
E(X,|X, = x) is linear and, for almost every x,

(2.7 E(X,|X; =x) = k«x,

where
1
K = —af s,8{* DI (ds).
01 78,

The constant [ s,5{*"VT(ds) is called the covariation of X, on X, and is
often denoted [ X,, X,],. Samorodnitsky and Taqqu [14] showed that (2.7) may
still hold when (X, X,) is a SaS vector with a < 1.

The purpose of this article is to obtain the regression E(X,|X; = x) when
(X,, X,) is a general, possibly skewed a-stable random vector with 0 < a < 2.
Since we want to study E(X,|X, = x) for all 0 < « < 2, we must determine
when the conditional expectation is defined.
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The following theorem was proved in [14] in the symmetric a-stable case.
We extend it here to an arbitrary a-stable vector X. It provides conditions for
the existence of conditional moments of order greater or equal to «.

TueoreM 2.1. Let X = (X, X,) have representation (T, pn°) and suppose
that
I'(ds)
2.8 —_— < ®
(2.8) f, o
for some v > 0. Then E(|X,[’|X; = x) < » for almost every x if

a+v, ifv<l,
a+1, ifv=1,

when 0 < a <1, and

< a+v, ifv<2-a,
p 2, ifv=2-a,

when 1 < a < 2. In the latter case, if v > 2 — a, then E(X2|X, = x) < « for
a.e. x.

ProoF. Let v and p be as in the theorem and let (Y;, Y,) be an indepen-
dent copy of (X;, X,). Then (Z,, Z,) = (X, X,) — (Y,,Y;) is a symmetric
a-stable vector with spectral measure I, defined by T'(A) = I'(A) + I'(—A) for
every Borel set A of S,. Since fszlsll_"f‘(ds) = 2[g,ls;| ""T(ds) < =, we have

E(E(Z,PIX,, Yy, Yo)IZ,) = E(Z,F1Z,) <~ as.

by [14], and consequently E(|Z,/"|X,,Y;,Y,) <« a.s. by Fubini’s theorem.
Since (Y,,Y,) is independent of (X;, X)),

E(X,PIX,) = E(X, — Y, + Y,PIX,, Y, Y,)
< 27(E(X, - Y,PIX,, Y, Y,) + E(Y,PIX,, Yy, Yy))

is a.s. finite. O

ReMaRkS. “For almost every x”’ means for all x in the support of the
probability density function of X;. (When « < 1 and B; = 1 for example, the
support of the probability density function of X, is the nonnegative real line.)

Relation (2.8) is always satisfied if » = 0 because T is a finite measure. In
this case Theorem 2.1 merely tells us what we already know, that the
(conditional) moment of order p exists for p < . If relation (2.8) is satisfied
for some v > 0, then the conditional moment E(|X,[’|X; = x) may exist with
p > a, even though the unconditional moment E|X,|” is infinite. For an
alternative expression of relation (2.8), see Proposition 3.1 below.

To understand the significance of condition (2.8), consider the following
extreme situation where T' concentrates its mass on the points (0,1) and
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(0, — 1) of the unit circle S,. Then X, is constant, E(|X,I’|X; = x) = E|X,I
a.s. and hence the conditional moment is finite if and only if p < a. Theorem
2.1 states that, up to some limit, the lower the density of I' around the points
(0,1) and (0, — 1), the higher the admissible conditional moments. Refer to
Samorodnitsky and Taqqu [14] for more details.

3. Analytic representations of the nonlinear regression functions.
Let (X,, X,) be a-stable, 0 < a < 2, with spectral representation (T, n%). In
order to study the regression E(X,|X; = x), we must ensure that it is well
defined. Clearly,

a>1=E|X,| <o=E(X,||X,=x) <x fora.e.x.

When « < 1, we make the following assumption:

STANDARD ASSUMPTION. If (X, X,) is a-stable with spectral measure T’
and o < 1, then there is a number v > 1 — a such that

r(d
(3.1) [S —Iill—s) < .

Theorem 2.1 then ensures that E(|X,| |X; = x) < « for a.e. x. Observe that
the choice v > 0 is adequate when o = 1 and the choice v = 1 is adequate for
all @ < 1.

Since we are interested in the regression E(X,|X, =x) as a function
of x, we assume o, > 0, because o, = 0 implies X; degenerate and hence
E(X,|X,) = EX,. Because of (2.4), o; > 0 is equivalent to

(3.2) (S, \ {(0,1) U (0, -1)}) > 0.

We also assume, without loss of generality, p’= (u}, ) = 0; that is,
(X,, X,) has representation (T, 0), because if p° # 0, then setting X, = X, + u}
and X, = X, + u yields

E(X,)X, = x) = E(X,)X, = x — u3) + u3,

with (X,, X,) having representation (T, 0). '
When p° = 0, the density function of X, fx(x) = (1/2m)[*Ze™"*px(¢) dt,
equals

1

fre(x) = 5=

+oo
[ e ' exp{ —oflt|* + iaByoft¢™} dt
(3.3) -

1 ® aza
= —f e 71" cos(tx — aBioft) dt
70
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if @ # 1, and
1

2

+ o0 . : 2
fx(x) f e x exp{—(flltl —iBoy—t Inlt| + i,ult} dt
—o0 o

(34) 1 9
= —f e cos(t(x — pp) + —Biotin t) dt
T Jo T

if @ =1, where u, = —(2/7)/s_s; Inls;|T(ds).
The following theorem providzes an explicit formula for the regression in the
case a # 1.

THEOREM 3.1 (Case a # 1). Let (X, X,) be a-stable, a # 1, with spectral
representation (I',0). If 0 < a < 1, let (X, X,) satisfy the standard assump-
tion.

Then, for almost every x,

a(A — Bk 1 - xH(x

(35)  E(X,lX,=x)=kx+ _(_512_) aByx 1-=Hz) :
1+ a%B7 fol(x)
where
(3.6) H{x) = [ e " sin(tx — apoft®) dt,
0
(3.7) . — [X,, Xi], _ f32323§“_1>r(ds)
. . 0_1‘1 Ula b

(3.8) ) = f3232|31|a—11_‘(ds)

o
g

and where a = tan(wa/2), and o), B, and fx are respectively the scale
parameter (2.4), the skewness parameter (2.5) and the probability density
function (3.3) of the random variable X.

If @« < 1 and B, = 1, relation (3.5) makes sense only forx > 0, and if a < 1
and B; = —1, it makes sense only for x < 0.

REMARKS.

1. To understand the reason for the last statement in the theorem, recall that
when a < 1 and B; = 1, the random variable X is totally skewed to the
right and when a < 1 and B; = —1, X, is totally skewed to the left. The
density function fx(x) vanishes for x < 0 when 8, = 1 and it vanishes for
x > 0 when B; = —1. Therefore conditioning with respect to X; = x makes
no sense when x <0 if B; = 1 or when x > 0 if B; = —1. When either
a <1, B; # £1or a > 1, the support of the density fx(x) is the whole real
line.
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2. As can easily be seen from the proof of the theorem, the following expres-
sion is equivalent to (3.5):

E(X,X, =x) = kx + aofa(A — B1k)

(3.9) [ee~ ottt 1 cos(xt — aBioft™) dt

[ee o1t cos(xt — aBo{t™) dt

Relation (3.9) is particularly useful for evaluating E(X,|X; = x) numeri-
cally.

3. The constants « and A in the theorem are finite when « < 1, because, by
3.1),

I'(ds) I'(ds)
a—1+v
< [S 2|32| Is,| Nk js G <,

since |s;| < 1,ls,l <land « — 1 4+ v > 0.
4. If X is symmetric a-stable, « # 1, we have I' symmetric, B; = 0 and A = 0
and hence '

[ s,ls,1° 7T (ds)
Sz

E(X,|X, =x) =kx fora.e. x.

We thus recover the result of [8] in the case « > 1 and that of [14] in the
case a < 1.
5. If X, is (marginally) symmetric, then 8, = 0 and

E(X,IX, = x) + (t mx))\ . (1 fm ~oft sin ¢ dt)
=X) =KX an — —_— - X e "1 sin ix .
2 2 »n-le(x) 0

We now turn to the case a = 1.

THEOREM 3.2 (Case a =1). Let (X, X,) be a-stable with a =1 and
spectral representation (I',0) satisfying the standard assumption. Then, for
almost every x,

20,
E(X,|X, =x) = _Tko + k(X — py)

(3.10) A=
Bk U(x)
+ B, (x = py) — (TleXl(x)

if B, # 0, and

200 V(x)

20,
(311)  B(XlXy =) = = ko + k(x — ) = —“A—7 s



REGRESSION OF STABLE VARIABLES 591

if B = 0. Here
® 2

(3.12) U(x) = f e it sin(t(x - pq) + ;Blo-lt lnt) dt,
0

(3.13) V(x) = [:e-vxtu + Int)(cos t(x — py)) dt,

1
ko = —f s In|s,|T'(ds),
0178,
X,, X 1 1
(o KXl — [ 5,5{"T(ds) = — [ s, sign s,I'(ds),
o, o, /s, 0178,

1
A= — f s,T(ds)
J1°8,
and

2
(3.14) = ——f s, Inls,|T(ds).
o 32

REMARKS.

—

. The shift parameter u, also appears in the expression (3.4) of fx(x).

2. The constants xk and A are defined as in Theorem 3.1. When a = 1, the
constant A is proportional to the skewness parameter of X,,.

3. If B, # 0,

U(x)  Im [fe""¢py(t)dt
Tfx(x)  Re[ge " py(t)dt’

4. If X = (X, X,) is symmetric, then I is symmetricand u, = B, = ko= A =
0. Hence by (3.11)

E(X,X, =x)=«x fora.e.x,
as established in [14].

The following corollary shows that the regression is linear when X, is
totally skewed to the right (8; = 1) or when it is totally skewed to the left
(Bl = - 1).

CoroLLARY 3.1 (Case B; = +1). Suppose that the conditions of Theorems
3.1 or 3.2 hold. If B, = +1, then for almost every x,

KX, ifa #+ 1,

3.15 E(X,|X, =x)={ 2
( ) ( 2| 1 x) __iko—xy,1+l<x, ifa=1.
m

In the case a < 1, this relation makes sense only for x > 0 when B, = 1, and
for x < 0 when B, = —1.
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ProOF. B; = 1implies s; > 0 a.e. I by (2.4) and (2.5), and therefore A = «
by (3.7) and (3.8). Similarly, B; = —1 implies s, <0 a.e. I' and k = —A. In
both cases, A — B,k = 0, and the corollary follows from Theorems 3.1 and 3.2.

O

The next result shows that the regression E(X,|X; = x) is always asymp-
totically linear as x > +. We know from Corollary 3.1 that the regression is
linear when B; = +1. For other values of $,, one has the following corollary.

COROLLARY 3.2 (Asymptotic relations). Let (X;, X,) be a-stable, 0 < a < 2,
with spectral representation (T',0) and suppose that the standard assumption
holds if 0 < a < 1. Then for B, # t1,

K+ A
and
K—A
(3.17) E(X )X, =x) ~ x, x— —oo,
1-p5

The following corollary gives a necessary and sufficient condition for linear-
ity of the regression.

CorOLLARY 3.3 (Linearity). Let (X, X,) be a-stable, 0 < a < 2, with spec-
tral representation (T',0) and suppose that the standard assumption holds if
0 < a < 1. Then the regression E(X,|X, = x) is linear if and only if
(3.18) A = Bik.

If A = Bk, then E(X,|X; = x) is given by (3.15) for a.e. x.

Examples.

ExaMpPLE 1. The regression can be linear even though (X, X,) is not
symmetric. For example, suppose @ > 1 and let X = (X;, X,) have spectral

) o

where 8((x,, x,)) puts a unit mass at the point (x,, x,). The vector X is not
symmetric because I' is not symmetric. However, g; = 0 (X; is SaS) and
A = 0. Since (3.18) is satisfied in this case, the regression is linear. The slope is
«x = 1 because both oy and the covariation [ s,5{*”VT'(ds) equal 2(1/ V2)e.

+6((0, -1)),

ExampLE 2. The regression may be nonlinear even though both compo-
nents X; and X, are SaS. For example, let a > 1 and X = (X, X,) have
spectral measure

\ 1 1
T =5((1,0)) + 5((0,1)) + 2/ 5((——5, —E))
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In this case, X is not symmetric, X; and X, are SaS and the regression is not
linear because B; = 0 but

a+1

a «a /2 1
2

V2

Integral representation. In applications, (X, X,) is often given through its
integral representation

(319) (X1 %) = [0 M), [ o) M) )

where M is an a-stable random measure on the measurable space (E, &) with
control measure m and skewness intensity 8(:): E — [—1, 1]. Moreover, fi:
E > R!, j = 1,2, satisfies

jEf fi(x)| ' m(dx) < o,
and it also satisfies the condition
fE|fj(x)B(x)1n|fj(x)| Im (dx) < o0

if & =1 (see [5] and [13]). The following proposition expresses condition (3.1)
and the constants of the regression in terms of f,, f,, B(-) and m(dx).

ProrosiTiON 3.1.
I'(ds) Ifa(o)*™
3.20 < _
(3.20) s <= L her

where E .= {x € E: fi(x) + fi(x) # 0}. Moreover,

of = [ Ify(x)*m(dx),
E

m(dx) < o,

1
b= /E (%) B(x)m(dx),

2 1 |
MP#J‘“(‘“ ff(laf)(j)ff(x) )B pomid) (e =D

1 If1(x)l ~
k"‘a_lefz(x)(ln f2(x) + (%) )B(x)’"(dx) (case a = 1),
X5, X1, 1 .
o~ ik p : = o7 J, P ()P m(dw),

1 1
r=— [ FIA)I"B(x)m(dx).
o1 'E,
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Any a-stable vector with spectral representation (I',0) has an integral
representation (3.19) with B(-) = 1. In fact, if @ # 1, it has one with (E, &) =
(0,1], &), B(-) =1 and m(dx) = dx (see [5] and [13]). See Section 5 for an
example.

4. Proofs.

Proor or THEOREM 3.1. Since (3.2) holds, the characteristic function
ox(t, r) of X = (X, X,) is absolutely integrable with respect to ¢ and therefore
the conditional characteristic function ¢y, ,(r) of X, given X; = x equals

bryu(r) = e (fx(t,7) — by (1))

T on fx( )/

(See Section 2 of [14].) Hence, for almost any x,
E(X,lX, =x) = —i¢),.(0)

(4.1) B i 0 4+ it
O 2mfy(x) (;f—we #ult,r) dt r=0).
We start with the evaluation of (3/0r)¢x(¢, r)l,—o. For any ¢ # 0,
d ox(t, 1)
(4.2) 5¢x(t’ r) o = ¢x(t,0) llm (¢x(t 0) 1),

‘where ¢x(¢,r)/dx(t,0) = e ““" with
u(t,r) = f [lts1 + rsol*(1 — ia sign(ts, + rs,))
Ss

—|ts,1%(1 — ia sign ts,)|T'(ds).
Since u(t,r) > 0 as r - 0, we get

li _1_(¢x(ty") _ 1) — 1 exp{—u(t,r)} -1 lim u(t’r)

r—0 1\ ¢x(t,0) r—0 u(t,r) r—0 T
u(t r)
= — lim
r—0-

[hmf —(|t81 + rsyl* — lts,|*)T(ds)
S

r—0

1
—ia lim ((ts1 +rs,) — (tsl)<“>)I‘(ds)
r-078, 1

= —[L, — iaL,].
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Clearly,

L, = at<“_1>[S 5,8{*"PI(ds) = aofkt(*~
2

by (3.7). To evaluate L,, we express the corresponding integral as a sum of two
integrals Q(t,r) and Q(¢,r), the first over S, N {s: |ts,| > 2|r|} and the
second over S, N {s: |ts;| < 2|r|}. The mean value theorem gives

(ts; + rsy) ™ — (£s))¢* = asyru®,

where u € (Its;| A |ts; + rs,l, |ts,] V |ts; + rs,), and so, for any s; # 0, the -
integrand of @, converges to s,lts,|* . The integrand is dominated by an
integrable function, because |ts,| > 2|r| implies u € [I¢s,]/2, 2|¢|] and therefore
lul*~" < Its;/2/1°"" + |2¢* . This is certainly integrable with respect to T if
a>1.Ifa <1, on S,,

lul*~! < CItI"_l(Isll"‘_H"Isll_" + 1) < CItI"‘_l(Isll_" + 1),

which, by (3.1), is integrable with respect to I'. Therefore, by the dominated
convergence theorem,

lim Q,(¢,r) = a|t|“‘1j s,ls,1°7'T(ds).
r—0 S,
Now, consider
1
{a) (a)
t,r) = —|(tsy + rs — (ts I'(ds).
Qutr) = [ ooy (81 F 152 (ts) )T (ds)
Suppose first a < 1. When |ts;| < 2|r| and (s, s,) € S,, the integrand is
majorized by
Irl " Clrs,yl* < Clrl*™ sy l"ls,| ™" < C'[rI** =1l ~"1s, 7,
which is integrable with respect to I'. Since a + v > 1, we get
lin}) Qy(t,r) =0.
The case a > 1 is similar. Therefore, by (3.8),

L, = alt]*™? j S5, 7' T(ds) = aofAlt]* 7,

S,

and we conclude by (4.2),

dpx(t,r)
ar

for almost all ¢.
A similar argument applied to (4.1) yields

— i (a) - . -1
= e T eiahoit™ g (kt (™D — jaAt|* ™)
r=0

(4.3)

. o P
(4.4) E(X,|X, =x)= — mf_m e—ttx(;(bx(t, r) r=0) dt.
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Substituting (4.3) in (4.4), we get

E(X2|X1 =x)
taoy ~itxgiaioft Oy —afltl®( pla=1) _ ; a—1
= : 108 oIt (peple =1 — g A ¢ dt
(4.5) 27 fx (%) f ( )
aoy
= ) [k(Iy; + Ip) + aA(Iy + Iy)],
where

I, = f sin tx cos(a B oft*)e Tt~ 1 dt,
0

I, = —/ cos tx sin(a B o{t*)e 7t~ 1 dt,

I, = f cos tx cos(aBoft*)e Tt dt,
0

I, = fo sin tx sin(aB,o0t*)e "t "1 dt.

After integrating by parts,

X oo
I, = - e e " [aB, sin(aB,0ft*) — cos(apo{t*)]cos tx dt,
0
aBl X o —of't” ara : ara :
I, = X + Ef e T [aB, cos(ap,oft*) + sin(aB ot )]sin tx dt,
1
I, = = + —K:f e[ aB, sin(aB,0t*) — cos(apioft®)]sin txdt,
x
I, %) Temott [aB, cos (aB,oft”) + sin(aBoft*)]cos tx dt,
where K = ac(1 + a?B%). Therefore, by (3.3) and (3.6),
1
Iy + 1y = m[—aﬁl +x7 fx(x) + aBxH(x)],
Iy + 1, = [1+aBxmfx(x) — xH(x)].

Substituting these expressions in (4.5) yields
Kk + a’BA a(A — Bik) 1 xH(X)
1+ a’B} ’ 1+ a®g} {’”fxl(x) - fol(x)]
1—-xH(x)
apix + ——ﬂ_le(x) ]

E(X,)X, =x) =

a(A — Bix)

= Kx +
1+ a8}
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Proor oF THEOREM 3.2. We have, as in (4.2),

ad)X(t’r) 1 ¢X(t’r)
RS N £0)lim — [ =227 _
ar -0 ¢x(%,0) oo T dx(2,0) !
(4.6)
2
= —¢x(t,0)| L, + i—Lz],
o
where
1
L, = lim [ —[lts; + rsy| — |ts;|]T(ds),
r—0 Sy r
1
L,= lin:.) -;[(ts1 + rsy)Inlts, + rs,| — ts; Inlts{||T(ds).
r—0-78,
Clearly,
(4.7) L, =signt f s sign s,T'(ds) = o,kt<®.
S,

Asin the case @ # 1, to evaluate L,, we write L, = lim, _, o(Q,(¢, ) + Q,(¢, r)),
where @, involves integration over S, N {s: |ts;| > 2|r|} and @, over S, N
{s: |ts;| < 2|r]}, and we apply the dominated convergence theorem.

We give details only for @,. Let f:[0,%) — [0, «) be defined by f(r) = r|In r|,
f(0) = 0. For |r| small enough (0 < |r| < e™'), f is monotone increasing, and
therefore, when [ts;| < 2|r| and 0 < |r| < (8e)~!, one has

MY F(ltsy + rsyl) + f(ltsy])) < 1Pl 7 (F(3Irl) + £(21r]))
< 2|r1 7 (3lrl) < 6lIn3Ir| | < 6lIn1/(3lts,|)l
< 6(Iin(3ltl) + Is,17"7%),

which is integrable by (3.1). Applying the dominated convergence theorem, we
get lim, _, 5 @4(¢, r) = 0. Therefore,

L, = limQ,(¢t,r) + lim Qy(¢,r)
r—0 r—0

f so(1 + Inlts,)T'(ds)
(4.8) 52

=(1+ lnltl)f s,I'(ds) + f sy In|s{|T'(ds)
S, S,

= o A(1 + Inlt]) + oyk,.
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Substituting (4.7) and (4.8) in (4.6) yields

a¢x(t, 7’)

: 9 )
o = —¢>x(t,0)01[:<t<o> + z;)\(l + Inj¢]) + ‘;ko]-

The dominated convergence theorem applied to (4.1), with u; as in (3.14),
gives

_ [odx(t, 1)
E(X,X, = = - — I dt
( 2| 1 x) 27Tle(x) f_we ( ar o
l + o
o TL 7 pmitx =g —i2/mBiont Injtl g —ayt]
27Tf X ‘[—oo
(4.9) x(*)
2 2
X | kt¢® +i—A(1 + Inlt]) + i—ky| dt
T T
2 2
= «kU(x) — /\(121 + Iyy) — —komfx(x)],
’ﬂ'fX( ) T
where

0

2
121 = f e %1t cos t(x — :“‘1)(1 + In t)COS(—Bl(Tlt In t) dt,
0 o
o 2
99 = ~f e sint(x —puy)(l+1n t)sin(—ﬁlcrlt In t) dt.
0 o

(i) Case B; # 0: After integrating by parts,

I, = %1- Owe“’l‘ cost(x — #I)Sin(%ﬁlalt In t) dt
2
231 - (x — Ml)f Ygin ¢(x — /.Ll)sin(;ﬁlcrlt In t) dt,
Iy, = —Tr—fme“’lt sin t(x — /.Ll)cos(gﬁlalt In t) dt
2B, ™
- . 2
- B0, (x - 'ul)fo e " cost(x — Ml)COS(;ﬁla'lt In t) dt,
so that

- g (&~ m)The(®) + 55U ().
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Substituting this expression in (4.9) and rearranging the terms, we get

E(XX, = x) = 20'1k A oy N U(x)
(XalXy =x) = —— °+B_1(x M1)—3—1( —Blk)m
_ 20‘1 A= B]_K U(x)
= kot w(x—p) 5, (x—m)—%m-
(i) Case B; = 0: After integrating by parts,
U(x) = ]:oe_"l‘ sint(x — pu,)dt = If%l—(jﬂ(x - ).
1

Since

oo

Iy +Ipy = [ e cost(x — u;)(1 + Int) dt = V(x),
0

relation (4.9) becomes

(51 K""'fxl(x)
wfxl(x) o

20'1k N 201)\ V(x)
—7—7_— 0 K(x l"'l) T Terl(x)'

E(X,X, =x) = (x =) = %’\V(x) - %kowfxl(x)

Proor orF CoroLLaRY 3.2. It is sufficient to focgs on x — o, Indeed,
consider the vector (—X,, X,) whose parameters are 8, = —f;, K = —«, and
A = A. Since E(X,)X, = x) = E(X,| — X, = —x), one can obtain the asymp-
totic behavior of E(X,|X; =x) as x » —« from that of E(X,|X, =x) as
x — o by replacing B, by —B;, k by —«, and x by —x = |x|. Suppose
B, # +1.

We study first the cases with a + 1 and then those with o = 1.

(a) Case @ # 1, x — o: To obtain the asymptotic behavior of E(X,|X, = x),
we use its expression in terms of I, i, j = 1,2, as given in (4.5). By [15],
Theorem 126, as x — o,

Ta
I, ~ F(a)(sin ?)x'“, Iy, =0(x7%),
(4.10)
Ta
Iy, ~T'(a) (COS 7)9‘3_“, Iy, =0(x79),

when 0 < a <1 and also when 1 <a < 2. (If 1 < a < 2, use integration by
parts to transform the terms ¢*~' in I;;, i, j = 1,2, into #*~2.) Moreover,

1 T
fXI(x) ~ ;(1 + B1) (sin —2—)0-1“F(a + 1)x~*!
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(see [7], Theorem 2.4.2). Substituting in (4.5) and using a = tan(7a/2), we get

iy . ao'la Trxoz+1
[ XX, = x] ~ 7 (14 By)(sin(ma/2))oyT(1 + a)

X (KF(a)(sin %)x“" + a/\F(a)(cos 17.2—a)x‘°‘)

K+ A
1+31x'

(b) Case @ = 1, B; # 0, x — o: Since x — u; ~ x as x — %, we may assume
wy = 0. Then

® 2
U(x) = f e 7t sin(tx + —pioytIn t) dt = Uy(x) + Uy(x),
0 T
where

8 2
U(x) = f e it sin(—Blo-lt In t)cos txdt,
0 ™

® 2
Uy(x) = f e cos( —pB1oit In t)sin txdt.
0 T
After integrating by parts,

1 = (2
U(x) = —;foe 7 —oy s1n(;o-1[31tlnt)

2 2
+—0,84(1+1n t)cos(—o-lﬁlt In t)]sin tx dt,
™ ™

1 1

2
Uy(x) = z + —fo e"’lt[—a1 cos(;alﬁlt In t)

K

2 2
+—0oyB4(1 +1In t)sin(—(rlBlt In t)]cos tx dt.
o s

Since the factors of sin tx and cos tx are integrable, we get U,(x) = o(x~!) and
Uyx) ~x~! as x > » by the Riemann-Lebesgue lemma ([15], Theorem 1).
Therefore

(4.11) U(x) ~ %

Since, as is well known,

oy(1+By) x2

™

(4.12) fx(x) ~

’
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we get
U(x) 1
fol(x) o(1+ By) *

which, substituted in (3.10), gives

A — Bik
B1
This is the same result as in the case a # 1.

(c) Case a=1, B;=0, x >0 If Y is SaS with @ =1 and scaling
parameter o,, then by the inversion formula ([10], Theorem 3.2.1),

K+ A
B 1+31x'

X
YT 118

E(XyX, =x) ~kx +

1 .
P(0<Y=<x)=—[ e ¢t sintcdr.
™70

On the other hand, because of the symmetry, lim, _, P(0 <Y <x)= 1.
Therefore

© r
lim f e "t lgintxdt = —

x—wJ0 2’
and hence
V(x) = [e=(1+ Int)cos txdt
0
o1 @ . 1 e .
(4.13) =— | e (1 + Int)sin ixdt — —f e~ 't~ !gin tx dt
x 7o ]
T 1
2 x’

since the first integral is o(1) by the Riemann-Lebesgue lemma. Substituting
(4.13) and (4.12) in (3.11) yields E(X,|X; = x) ~ (k + A)x, that is, (3.16) with
B, =0.0

Proor orF CoroLLARY 3.3. If A = Bk, then E(X,|X, = x) = kx for ae. x
by Theorem 3.1 when a # 1, and E(X,|X; = x) = —(20,/m)ky + x(x — u,)
for a.e. x by Theorem 3.2 when a = 1.

Suppose now E(X,|X; =x) = Ax + B for a.e. x and also, ad absurdum,
A # Bik. In view of Corollary 3.1 this contradicts either (3.5) or (3.10) if
B, = t1.If B, # +1, then by linearity,

. E(X2|X1 = x) . E(X2|X1 = x)
im ———= lim ————~.

x— X x> — X
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In view of (3.16) and (3.17), this implies
K+ A K—A
1+ 31 1- B1 ’

and hence A = B,«, a contradiction. O

PrOOF OF PrOPOSITION 3.1. Suppose first a # 1 and set |f| = /f7 + f7.
The characteristic function of (X, X,) is

Eexp{if 0j[ ij(dx)}
j=1 °E

2 2 (a)
= exp f - X 6,f;| +ial X 6,f;| B(x)|m(dx)
El ]j=1 j=1
a {a)
=exp{[ [— 220.& +ia faﬁ) }mlflam(dx)
E, j=1 JI I j=1 JI | 2
2 R, (2, C
+fE+[‘ L0 | Tl 20 ) ]
x 1_—3(x)|f|°‘m(dx)}
2
2 @ 2 (e
= exp f -1y os; Y. 0:s. r'(ds),
s, = JSJ el %)

by making the change of variables

T:E,—»8S,, T:x~(s,85)= (fl(x) fz(x))

I£(x) " 1)l
and setting I'(ds) = T, (ds) + I'_(—ds) with

I,(ds) = _B( )If( ©)*m(dx), x=T7(s).

Hence, in order to transform an integral involving s;, s, and I' into one
involving f;, fo and m, one expresses it as a sum of two terms: The first is
obtained by replacing each s; by f; (x)/ If(x), j=1,2, and I'(ds) by
11+ B(x))lf(x)l“m(dx) and the second is obtamed by replacmg each s; by
~fi(x)/If(x)l, j = 1,2, and I'(ds) by 3(1 — B(x)If(x)|*m(dx). (The same ‘rule
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applies when a = 1.) For example, when a = 1,

ko= fszsllnlszll"(ds)

fi1 If2l \ 1+ B(x)
-/, ﬁ(lnﬁ)—z \flm (dax)

—f1 fol \ 1 - B(x)
+[ lfl( T ) 5 Ifim(dx)

-/ fl(lnl’;z| )3(x)m(dx)-

Similarly,

F(ds) £\ (1+B(x)  1-B(2)),.
Lag = bl (757 e

|f2|¢x+u f2|a+u
S [/E+ R m(dx),c(f m(dx) +/ AR ———m(dx)

5. Graphical representations. In this section we present graphical
representations of the regression functions given analytically in Theorems 3.1
and 3.2. In the case a # 1, the five parameters «a, B, k, A, and o, are required
to describe the regression function completely. In the case a = 1, these five
parameters, with the addition of %, and u,, are required to describe the
regression function completely. Thus, there are a myriad of possible choices for
these parameters which are consistent with their definitions, giving rise to an
unmanageably large family of regression functions. In producing the figures
that follow, we have chosen to restrict the parameter space considerably, but
in a way which we hope will give the reader some feeling for the general
character of these functions. Clearly though, the following examples do not
illustrate all possible behavior.

It is convenient to use the stochastic integral representation (3.19) for
(X,, X,). Here, the random measure M is taken to be totally right-skewed
[i.e., B(+) = 1], with domain E = [0, 1], and Lebesgue control measure, m. The
functions f}, illustrated in Figure 1, are restricted to those of the form

f;(t) = l[o,cj)(t) - l[cj,l](t)’

where 1, is the indicator function of the set A. With these restrictions, the
three parameters a, c; and ¢, determine the regression function.

This choice forces all scale parameters to be unity, and ensures that the
standard assumption is always satisfied. Since E(a,X,la,X; = x) =
a,E(X,|X, = x/a,) for nonzero a;, other related regressions may be inferred
from those strictly in this class. Regressions for (X;, X,) in this class may be
interpreted as regressions involving three independent stable variables as
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2

t

F1c. 1. The function f;(¢).

follows. Define c,;, = min(cy,c,) and c,,,, = max(c;, cy), and let Z,, Z, and
Z, be independent identically distributed totally right-skewed (8 = 1) a-stable
random variables with unity scale parameter. Then (X, X,) is distributed as
(Y, Y,), where

Y, = cleZy £ (= 1) (Crax — Cmin) 25 — (1 = Couax) 723

and the upper sign prevails if ¢, ,, = ¢;, and the lower sign prevails otherwise.
For example, if ¢, = 0.5 and ¢, = 1, then the regression of X, on X, is the
regression of k(Z, + Z,) on k(Z, — Z,) for the appropriate constant k.

From Proposition 3.1, the parameters defining the regressions in Theorem
3.2 are

oy =1,

Bi=2c¢, — 1,
2
My = ;ln(‘/i)ﬁl’

k=1-2lc; — ¢yl
and
A=2cy— 1.

We shall refer to the skewness parameter for X, as 3,. For the present class of
distributions, B, is equal to A.
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0.5

04 |

fx(x)
02 |

o

Fi1c. 2. Symmetric stable density functions, g = 0.

The asymptotic results of Corollary 3.2 are illustrated in the graphs, and
translated to the present parameterization as follows:

l‘ E(X2|X1 = x) 1, if 02 > cl’
i x ~\2(cy/ey) — 1, ife; >,
and
Co —C .
E(X,|X; =x) 1-2——, ifcy>ec,
o x 1, if ¢; > c,.
0.5 BN — - T

0.4 | -

03 L —

fX(x) la =1 ]
0.2
0.1 r

Fic. 3. Skewed stable density functions, 8 = 1.
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The limits here do not depend on the value of a. Moreover, by Corollary 3.3,
the regression is linear when ¢; = ¢, (this corresponds here to X; = X,).

The regression functions are computed according to Theorems 3.1 and 3.2.
Unfortunately, the functions H(x), U(x) and V(x) and the density function
fx{x) do not in general have representations in terms of elementary functions,
and thus their values are computed via numerical integrations. See Hardin,
Samorodnitsky and Taqqu [6] for a detailed discussion of the numerical
procedures. For reference, a few density functions for selected values of « are
plotted in Figures 2 and 3.

Figure 2 illustrates the symmetric densities for the values « = 0.5, 0.9, 1.0,
1.1, 1.5 and 1.9. There is a natural ordering in that for smaller «, the value of
the density at the mode is higher, the tails are larger, and the width of the
modal peak is narrower.

Figure 3 shows totally right-skewed densities for the same values of a.
Here, the “ordering’’ is not continuous across the value a = 1. For a > 1, the
mode is negative, while the tail is heavier on the positive axis, resulting in a
zero mean density. As a approaches 1 from above, the mode becomes more
negative, and the right tail becomes heavier. For a < 1, the densities are
nonzero only on the positive axis, with increasing mode as a approaches 1
from below. For a = 1, the mode is negative, although the modal peak has
more mass to the right of 0 than to the left. In no discernible way, however, do
the skewed densities approach the skewed a = 1 density as a approaches 1, as
is true in the symmetric case. This is due to the choice of parameters in the
(marginal) characteristic function. There is a different choice which makes the
characteristic function continuous as a — 1 (see Zolotarev [17]).

In the graphs that follow, two of the parameters «, c¢; and c, are held
constant while the third varies. Although not all possible variations are

Fic. 4. Regression functions for B; = 0, B, = 1, @ varying.
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10 . . . ¢ =05
c =06
1
—_ 3> F J¢=07
% 10
i _c]-O‘B I
— _c1=0‘9
< 0 C1=l,0
N
>
~—
R -5 i
_'O 1 1 1
-10 -5 0 5 10
X

Fic. 5. Regression functions for a = 1.9, B; = 2¢; — 1and By = 0.

illustrated, much of the behavior for parameter choices not illustrated can be
correctly inferred from the graphs.

Figure 4 corresponds to ¢; = 0.5 and ¢, =1 and hence to B, =0 and
By = A = 1. It shows the regression of a totally right-skewed variable X, upon
a symmetric variable X; for selected «, or equivalently, the regression of
k(Z, + Z,) on k(Z, — Z,) as mentioned above. When a # 1, the value of these
regression functions at the origin has the same sign as a¢ = tan(mra/2) and
_hence is positive for o < 1 and negative for a > 1.

Figure 5 corresponds to ¢, = 0.5 and various values of c;. It represents a
regression of a symmetric variable upon X, upon variables X; with skewness

-CZ=|O
~~ 5 _C=O -
=
I =08
Moo L[ i
N
\N/ 62=O,7
mo_g [ ]
%=O6
c,=0.5
’"'O 2 1 | " L
-10 -5 0 ) 10

F1G. 6. Regression functions for a = 1.5, B; = 0 and By = 2¢, — 1.
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10 r . r =05
L i
-c]=0.6
—_ 2 _-C|=O‘7
X 1¢=08
1 ] 1'09
— L 4 C =
= 0 c:=10
] ]
> |
N’ i
R g [ ]
_.]o 1 1 L
-10 -5 0 5 10
X

Fi6. 7. Regression functions for a = 1.5, B; = 2¢; — land By = 0.

B, varying from 0 to 1, for the case & = 1.9. The value ¢, = 0.5 corresponds to
X, symmetric, in which case X; = X, and the regression is linear. When
¢, = 1, X, is totally right-skewed and the regression is linear at 0.

In Figure 6, X, of varying skewness is regressed on a symmetric X, for the
value @ = 1.5. Here ¢; = 0.5. When ¢, = 0.5, the regression is linear since
X, = X,. The curious nonzero intersection of the regression lines occurs for all
fixed values of @ > 1 at an x value depending on a, but does not occur for
values of a < 1 (see Figure 12). Figure 7 also corresponds to a = 1.5, but this
time it is X, that is symmetric (B, = 0).

10 . r ; ¢ =05
] =06
B ¢, =07
g c,=08
. c]=09

_c]=IO

Fic. 8. Regression functions for o = 1.1, B; = 2¢; — 1l and By = 0.
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F16.9. Regression functions for a = 1.1, B, = 2¢; — 1 and B, = 1.

In Figures 8 and 9, a equals 1.1. Figure 8 should be compared to Figure 7
because they both illustrate the regression of a symmetric random variable X,
on random variables X, of varying skewness. Figure 9 shows the regression of
a totally right-skewed X, upon X, of varying skewness. Here ¢, = 1 and
hence B, = A = 1. As the skewness of X; approaches that of X, the regres-
sion function approaches the identity, yet the left asymptote always has
slope —1.

In Figure 10, @ = 1. The parameter c, is chosen to be 0.9, so that X, has
skewness 0.8. The skewness of X, varies from —0.8 to 1. (For X, of skewness

]O T T T T C2=0'9
i c.=10 i
2 _%=08
—~ 5 L ;%=07
= 1c =
I :%-06
><"' o L _c2=0.5
« —%=04
>< 4
N— 3¢,=03
) L 172
S 1c,=0.2
_%=01
_]o 1 1 . I " N
-10 -5 0 5 10
X

Fic. 10. Regression functions for « = 1.0, B; = 0.8 and By = 2¢, — 1.
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-10 -5 0 5 10
Fic. 11. Regression functions for a = 0.9, B; = 0 and By = 2¢5 — 1.

—1, the regression is the negative of that for X, of skewness 1.) The value
¢, = 0.9 corresponds to X, = X, in which case the regression is linear. This
figure shows that a small change in skewness can result in a large change in
the global shape of the regression function.

Figure 11 represents the regressions of variables of varying skewness upon
a symmetric variable for the value @ = 0.9. The value ¢, = 0.5 corresponds to
X, = X;, in which case the regression is linear. This plot should be compared
with the case o = 1.5 illustrated in Figure 6.

Figures 12 and 13 both correspond to @ = 0.5, but B; = 0 in Figure 12
whereas B, = 0 in Figure 13. Observe that Figures 6 and 12, where g8, = 0,

]o T T T
c2=09 c2=IO
5 _
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% c,=08
]
M o [ ]
><N 62=0.7
~—
mo_g [ i
62=O‘6
_]o Cz=05| 1 1
-10 -5 0 5 10
X

Fic. 12. Regression functions for a = 0.5, B; = 0 and By = 2¢5 — 1.
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Fic. 13.  Regression functions for « = 0.5, B; = 2¢; — 1 and B, = 0.

have roughly the same shape. So do Figures 7, 8 and 13, where 8, = 0. In
Figure 13 the regression for g; = 1 (¢, = 1) is defined only for x > 0, because
the density of X, has support only on [0, ]. It is linear with slope k = 0.
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