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GREEDY LATTICE ANIMALS II: LINEAR GROWTH

BY ALBERTO GANDOLFI! AND HARRY KESTEN

University of California, Berkeley and Cornell University

Let {X,: v € Z% be i.id. positive random variables and define M, =
max Z X, : m a self-avoiding path of length n starting at the origin },
vewT

N, = max Z X, : £ alattice animal of size n containing the orig'in}. Ina
ve

preceding papér it was shown that if E{Xg(log* X,)**% < o for some

a > 0, then there exists some constant C such that w.p.1,0 <M, <N, <

Cn for all large n. In this part we improve this result by showing that, in

fact, there exist constants M, N <  such that w.p.1, M,/n > M and

N,/n - N.

1. Outline. Since the description and the motivation of our model were
already given in part I [Cox, Gandolfi, Griffin and Kesten (1993)], we just
remind the reader of some definitions and jump right in with a statement of
our present results. Definitions are exactly as in Cox, Gandolfi, Griffin and
Kesten (1993). In particular, we consider self-avoiding paths m of length n
and lattice animals ¢ of size n, the former being sequences (v, vy, ..., U,_1)
of n vertices of Z¢ such that v,,, and v, are adjacent, 0 <i <n — 2, and
v; # v; for i # j; the latter being connected subsets ¢ C Z¢ of cardinality n.
For a path 7 or lattice animal ¢ we set

S(my= X X,, S(¢)= XX,

vET ve¢

We indicate by |7| and |£]| the length of a path 7 and the cardinality of a
lattice animal ¢, respectively. With M, and N, defined as in the abstract, the
greedy lattice animals of size n are those lattice animals ¢, of size n and
containing the origin 0 € Z¢, whose weight S(¢) equals N, ; similarly, greedy
lattice paths of length n are paths 7 such that S(w) = M,. Here and in the
following, paths will always be self-avoiding even if that is not stated
explicitly.

Throughout {X,: v € 7% is a family of positive i.i.d. random variables.
(N.B. “X, positive” means X, > 0.”) The common distribution function of
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the X,’s is denoted by F. Finally, the probability measure governing the
family {X,} is denoted by P, while expectation with respect to P is indicated
by E. (In other words, P = I1,. ¢ F.)

The variance of a random variable Y is denoted by o 2(Y), while the
indicator function of an event % is denoted by 1[.«]. Constants whose values
are unimportant are indicated as C;, i € N, and their values may change
from appearance to appearance.

The main result of the present paper establishes the asymptotic linearity
of M, and N,:

THEOREM 1. If, for some a > 0,

(1.1) E(X§(log* X3)"""} <o,
then there exist constants M, N < « such that

M,
(1.2) — ->M w.plandinL
and

N, .
(1.3) — - N w.p.landinL'.

Unfortunately, we have very little information on the dependence of M
and N on the distribution of X,. For d = 1 one easily sees from the strong
law of large numbers that always M = N = E{X,}. Lee (1993) has shown that
in dimension d > 2 one usually has

N>M.

For d > 2 the same proof as for Theorem 7.4 in Smythe and Wierman (1978)
shows that

N > M > E{X,}

whenever F is not concentrated on one point.

Since Theorem 1 is immediate from the strong law of large numbers for
d =1, we take d > 2 for the remainder of this paper.

In Section 6 we discuss the relation between Theorem 1 and p-percolation
as introduced by Menshikov and Zuyev (1992).

One’s first reaction is that (1.2) and (1.3) should be provable by some
version of the subadditive ergodic theorem. This is more or less the case for
N, and certain “directed” examples (see the Remark at the end of Section 3).
However, we have been unable to find obvious subadditivity properties for M,
itself. As a consequence, we first introduce “cylinder” versions of M, (and
N,), which are, for all intents and purposes, superadditive (see Lemma 4 for
the precise statement), and then reduce the general case to the cylinder
versions. To give a more detailed outline, we require some more notation.
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Define v(i) to be the ith coordinate of v € Z¢,

loll = max [v()],
H(x) = {v:v(1) = x|}

(a hyperplane perpendicular to the first coordinate axis and located at the
integer part | x| of x € R). Also, let e; be the ith coordinate vector. For two
real numbers a, b, let a A b = min(a, b), a V b = max(a, b) and a*= max
(a,0). For integers k, m, k|m means % divides m.

A cylinder path of length n is a path 7 = (vy,vy,...,0,_;) such that the
first coordinates of its vertices satisfy vy(1) < v,(1) <v,_(Dforl <i<n -
1. A cylinder path starting at the origin is a cylinder path with v, = 0. For
0 <B<1and n > 1, define:

R, (B) = max{S(w): m a cylinder path of length n

1.4 starting at the origin, with v, (1) =
LBnl,

R, =max{(S(w): m a cylinder path of length n
starting at the origin},

V.(B) = max{S(¢): ¢ a lattice animal of size n contain-
ing the origin, such that 0 < v(1) <| 8nr],
for all v € ¢, and v(1) = | Bn] for at least
one v € ¢},

V, = max{S(£): ¢ a lattice animal of size n contain-
amn ing the origin such that v(1) > 0 for all
v €£)

Notice that R, = maxz; R,(B) and V, = max, V,(B), where, as defined pre-
viously, R,(B) and V,(B) are the maxima over paths and lattice animals,
respectively, which are of size n, lie between the hyperplanes H(0) and
H(| Br]) and have “endpoints” on these hyperplanes.

For fixed B, R,(B) and V,(B) are (almost) superadditive, or more accu-
rately, subconvolutive, and we could use Note 7 of Hammersley (1979) (which
is closely related to the subadditive ergodic theorem) to conclude that

RiB) | gy, VelB)

n n

1.5)

1.6)

(1.8) - N(B) wpl

for suitable M(B) and N(B). It would even be possible to base our entire
proof only on Note 7 of Hammersley (1979). This note, however, does not give
estimates for the speed of convergence in (1.8) and this method of proof
becomes very cumbersome. Instead, we first use a martingale argument (see
Section 2) to estimate the tail of the distribution of R,(B) — ER,(B) and
similar quantities. This estimate is of interest in its own right, because the
proof seems very widely applicable; it is based on the “method of bounded
differences,” which has been used with great success recently in combina-
torics and probabilistic graph theory [see, for instance, McDiarmid (1989) and
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Kesten (1993)]. Once we have (1.8) with an estimate on the speed of conver-
gence, a simple continuity argument shows that, in fact,

R,
— > M:= sup M(B) w.p.l,
n Be(0,1)
(1.9) v
— > N:= sup N(B) w.p.l
n Be(,1)

Basically this is all we need for lattice animals; (1.3) will follow from a
slightly strengthend version of (1.9). In fact, any lattice animal is a transla-
tion of a lattice animal lying in the half space {w: w(1) > 0}, and we apply
(1.9) (or rather, the more explicit estimates of Lemma 5) to the various
translates (see Section 3). However, (1.9) is not sufficient to prove (1.2)
directly, as only cylinder paths would be obtained by translating the paths
used in defining R,. We therefore study the deviations of (1/n)R, from its
limit. Define, for integers n, . and real £ > 0,

B(n,h) =B(n,h, )

= {there exists a cylinder path 7 of length
1.10
( ) l7r| € [h,n],withinitialpointin[—n,n]d,

and such that S(7) > (M + s)|7r|}.

From the martingale estimates, it follows that w.p.1 %&(n, n®) occurs only
finitely often, for any fixed § > 0. We then prove (1.2), roughly speaking, by
taking ¢ > 0 and breaking up every path 7 into cylinder paths p for which
we know from the above that S(p) < (M + &)l pl. This will show that also
S(7) < (M + &)lw| for long paths 7 starting at the origin 0. Consequently,

Mn
limsup— <M w.p.1,
n
whereas M, > R, and (1.8) show that
M,
liminf— >M w.p.1.
n

The somewhat complicated procedure for breaking up a path 7 into cylinder
paths will be explained further in Section 5.

The more detailed analysis required for showing the existence of the limit
in (1.2) for paths makes use of results from Cox, Gandolfi, Griffin and Kesten
(1993), which we recall here for convenience of the reader.

Let II4(n) be the collection of paths of length n starting at the origin. The
main estimate we use is contained in Proposition 1 of Cox, Gandolfi, Griffin
and Kesten (1993) and is as follows.
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PropOSITION A. If (1.1) holds, then there exists a strictly increasing
function y such that [with a as in (1.1)]

1+a/d
y(x)(log x
(x)log )"/t
(1.11) *
y(x)(log x)***? loglog x
— 00 asx — @,
x
Moreover, '
(1.12) X, <vy(llvll) eventuallyw.p.1.

Moreover, there exist constants c,, ¢, cg,cq; < © such that for all ¢ > ¢ and
n>=2,

P{ max ), (X, A y(n)) = (1 + cco)n}

||§I| n
(1.13) Ve
c
< exp(—-s-(log n)“a/d)
and
1
P{max ) X,1|—logn <X, < y(llvll)
I£1=n 2d
ve¢
0e¢
(1.14)

_w+vwm%m“wn

> cen[(log log n) P

< exp( —¢;(log n)““/d).

Here ¢ stands for a connected set of vertices, or a lattice animal. Since
each path 7 is connected, the probability estimate (1.13) also holds for

max ¥ (X, A y(n)).

mello(m) yer

2. A martingale argument. In this section we basically give an esti-
mate for the tail of the distribution of |[R, — E(R,)| and the related quanti-
ties |Y,(B) — E(Y,(B), 1Z,(B) — E(Z (B))l defined i in (2.7) and (2.8). This is
done by means of the remarkably general “method of bounded differences.”
The present version is taken from Kesten (1993); see McDiarmid (1989) for a
- somewhat more restricted version with many applications.

.In order to get a good bound, it is necessary to truncate the variables X,

first. Take
(2.1) X, =X, Alog(llvll + 1).
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We decorate our various quantities by a caret when X, is replaced by Xv in
their definition; for example,

(2.2) S(m)= Y X,, M,= max {S(m)},....

vemr 7€ g(n)

Before we get to our main estimate, we show that this truncation does not
influence the asymptotic behavior of M,, R,, R,(B), N,, V, or V,(B).

LEmmAa 1. If (1.1) holds, then

1 A
- S -8 -0 w.p.l
n]r%}g?( (£) = 8(¢)) w.p

PrOOF. Let y(-) be as in Proposition A. Clearly

0 < max(S(¢) - 8(¢))
oot

(2.3) < LX,1[X, = y(llvlD]

+ 'rgax{ Y X,1[log(lloll + 1) < X, < 'y(IIUII)]}.
el
0Oes¢

The first term in the right-hand side is finite, and hence o(n), w.p.1 by virtue

“of (1.12). In the second term, note that ||v|| < n whenever v € ¢ for some ¢
with |£| =n and 0 € £. Therefore the second term on the right-hand side of
(2.3) is at most

1
(2.4) Y X, + max{ Y XU]l[——Jlogn <X, < y(n)]}
v: llvll<nl/@d '%'E:E" ve¢ 2
Since {v: llv]l < n¥/2P) < (2rY/2D + 1)¢ < C;n'/? and E(X,) < {E(X{)}/?
< o by (1.1), the strong law of large numbers implies
1
- Y X,-0 w.p.l

n
floll<nl/@d

In addition, it follows from (1.14) and the Borel-Cantelli lemma that, w.p.1,
the second term in (2.4) is at most

l1+a/d
—asd v(n)(log n)

n

cen|(loglog n) =o(n)

for large n. Thus (2.4) is o(n) w.p.1 and the lemma follows. O
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Define
R,(v) = max{S(w): 7= (vy=0,v,...,0,_,) a self-
(2:5) avoiding path of n steps, starting at v
and with v(1) <v;(1) <v,_1) for 0 <i
<n -1}
For fixed 0 < B < 1, choose an integer L = L(8) > 1 such that
(2.6) L-1>LB>3
and define
0 ifn <L,
(2.7) Y, =Y,(B) = R,_1(B), ifn>L,
0 ifn <L,
(2.8) Zy=2,(B) = \v,_,(B), ifn>L.

PROPOSITION 2. For some constants 0 < C3 — C5 < » and for all
(29) 0<y<Csh(log(2n+1))°, h<n and ve[-n,n]%
it holds that

P{|R,(v) — ER,(v)| = y/R)
< C, exp(—Cs(log(2n + 1)) ' y).

The estimate (2.10) remains valid when R R(v) — E(R »(v)) is replaced by
Yh( B) - E(Yh( ﬁ)) or Zh( ﬁ) - E(Zh(B))

(2.10)

PrOOF. We only give the proof for R,(v) — Eﬁh(v) the proofs for the
other cases are the same. We wish to apply the “method of bounded differ-
ences;” we shall represent R,(v) — E(Rh(v)) as a sum of martingale dif-
ferences, and use the martingale estimate in Theorem 3 of Kesten (1993). To
this purpose, note that any path of length h < n and starting in [—n, n]? is
contained in [ —2n,2n]% In particular, R,(v) depends only the the X for
w € [—2n,2n]%, and for these w,

X, <log(2n + 1).

Now order the vertices in [—2n,2n]¢ in some way as w!,w?,...,w?, with
N = (4n + 1)% Define %, to be the o-field generated by X,,..., X, :. Note
that

N
(2.11) R,(v) — E(R4(v)) = py [E(B,(v)|7) - E{RW(v)|5:-1)].

since R,(v) is F-measurable and S, 1is trivial. This is the representation
considered by the “method of bounded differences” as the summands in (2.11)
are the successive differences of the martingale E(R,(v).%,), 0 <k < N.
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We shall now estimate the size of these differences in order to apply
Theorem 3 of Kesten (1993). Observe that

Ru(v) = f(Xp1,..., Xyw)

for some Borel function f. If F is the common distribution of the X, , then it
follows from the independence of the X, that

N
E(R,(v)|7) = ff(le,...,ka,xk+1,...,xN)i=1]11F(dxi)
and

Ay = E(Ry(v)[5%) - E(Ra(v)]53-)
(2.12) = [[A( Xty Xyp, 271, V)

N
—f( X1y, Xypror, xk, a1 x| TTF(dx?).
i=k

Note that the arguments of the f’s in the right-hand side only differ in the
kth place, and that x* does not appear in the first f; thus the integration
over x* has no effect for the first f. Due to a change from X, to x*, the
value of R,(v) cannot change more than

| X+ — x*| A log(2n + 1).

However, we can say more. Let 7 = m(h,v) be the (random) path of length A
that starts at v and at which R,(v) is achieved, that is, with

(2.13) S(m) = Ry(v);

the path 7 can be chosen in a unique way by ordering all paths of length 4 in
some way, and then taking the first permissible path in this ordering for
which (2.13) holds. Then

[F(Xytseen, Xpn, x*¥1, 0 2)
—f(le,...,ka-lxk,xk“,...,xN)l

vanishes, unless w* belongs to the optimal path (%, v) in at least one of the
configurations (X1, ..., X &, x*71, ..., V) or (X 1, ..., X, e-1, x5,
ekt aN). Let X =(X,1,X,,...,X,~) and x = (x!, 2% ...,2%Y), and
define

I(X,x) = Hw* € w(h,v) in (X 1,..., X,», *+1, ., 2V)]
and

INX,x) = 1[w* € m(h,v) in (X1, ..., Xe-r, ok, 2%4 0 1V,
The foregoing considerations show that (2.14) is bounded by

log(2n + D{I(X, x) + I} (X, x)}.

(2.14)
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Substituting this into (2.12) we find

N
14,1 < log(2n + 1) [{Z,(X, ) + [} (X, x)} EF(dx")

(2.15) = log(2n + 1)[P{wk IS W(h,v)l'?k}

+P{w* € w(h,v)|7,_4}].

We are now ready to apply Theorem 3 in Kesten (1993). The o-fields .%, are
defined as before, and the random variable U, are defined by

(2.16) U, = 4(log(2n + 1))*1[w* € w(k,v)].

Also, the M,’s of Kesten (1993) (not to be confused with our M,’s) correspond
to our E(R »(VIF,). By taking

(2.17) c = 2log(2n + 1),
we get from (2.15),
(2.18) 1A, < ¢,

which is (1.27) 1n Kesten (1993). Furthermore if we write (X, y*, x) for
(X1, Xyee1, vk, xk”, ., xN) and I,(X, y*, x) for the indicator functlon
of the event that w* € 7(h,v) in this conﬁguratlon then
E(A \F— 1) E([E h(U)ka) (R\h(v)l%e—l)] ‘%—1)

= [F(dyk)[[(f(le,..., X1, yk, 2b L xN)

n 2
~f( X1,y Xpppon, kb, bt V) [1F(dx?)
i=k

(2.19)
< (log(2n + 1))* [F(dy*)

N 2
X[[(Ik(X,yk, x) + I} (X, x)) QF(dxi)]
< (log(2n + 1))2f[Ik(X,yk, x) + I (X, x)]ZF(dyk)liF(dx")
(by Schwarz’ inequality)

< 4(log(2n + 1))2fI,;"(X, x) ﬁF(dxi)

= 4(log(2n + 1))2E(]l[wk € w(h,v)]l%_l)
= E(Up|%,-1).



GREEDY LATTICE ANIMALS II: LINEAR GROWTH 85
This verifies (1.28) in Kesten (1993). Now let
(2.20) xo = 8hc? > e%c?

[so that (1.29) in Kesten (1993) is satisfied] and note that if x > x,, we have,
by (2.17) and (2.20),

% U, = 4(log(2n + 1))? % 1[w* € w(h,v)]
r=1 k=1
(2.21) ,
= 4(log(2n + 1))°|w(h,v)|
= 4(log(2n + 1))’k < 8¢%h = x, < .

Therefore, (1.30) in Kesten (1993) is trivially satisfied (for any choice of
C,,C, > 0). We now follow Theorem 3 there. From (2.9) it follows that

(2.22) x = y/h < Cyh*2(log(2n + 1))° < 23/

provided we take C; < 8%/2, Inequality (1.32) in Kesten (1993) [applied to
R,(v) — ER,(v) and to —R,(v) + ER,(v)] now yields (2.10) for suitable
constants 0 < C,,Cy < . O

3. Convergence of cylinder quantities. Our aim here is to prove the
relations (1.8) and (1.9). This will be done by a subadditivity argument. First
we prove some integrability properties of our variables, though.

LEMMA 3. If (1.1) holds, then there exists a constant C, < ® such that

(3.1) E{(%N)Z} <C, n=2

ProOF. Let ¢, and € be as in Proposition A. Then
+42 *
E{((Nn —2(1 + ¢co)n) ) } = 2n2f yP{N, = 2(1 + ¢co)n + yn}dy.
0
" Now

N,<max ¥ (X, Ay(n)+ XL [X,-v(n)]".

%;? vet vel-n,n]?
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Therefore, by Proposition A, Schwarz’ inequality and (1.1), we have for n > 2,
b =1+ a/d and suitable C,,C; < o,

E{((N, - 2(1 + e)n)" )}

SZnZI:yP( Y [Xv—'y(n)]+2 (1+Eco+g)n) dy

vel[-n,nl?

Y Cc y
+2n2f0yexp{—(-§+ 60 )(logn)b}dy
0

S4E{ r [Xv—v'(n)r}2

vel-n,nl?

(3.2)

16¢, \° ¢
Gogry7) {5
<4(2n + D*(E[X, - y(n)]")’

+4(2n + 1) E[{XZ1[X, > v(n)]} + Cyn?.

+ 2n2{

Now by (1.1) and (1.11),

E[X, — v(n)]" < [v(n)]" “[log y(r)] """ [Mn)  [Fi(log x)*"* dF ()

=o(n'" %),
and, similarly,
E(XZ1[X, > v(n)]} = o([¥(n)]* *[log y(n)] "*"%) = o(n?"?).
Therefore, the right-hand side of (3.2) is at most C3n% O

The variables R,(B) and V,(B) as they stand are not superadditive, but
the slightly modified versions of (2.7) and (2.8) are (more precisely, we show
that these modifications are “subconvolutive”).

LEMMA 4. For all real x and integers m,n > L,
(3.3) P{Y,.n(B) =2} 2 P{Y,(B) + Y,(B) 2},
- (34) P{Z,.n(B) zx} = P{Z,(B) + Z,(B) =},

where Y, (B) and Z,,( B) are random variables with the same distribution as
Y,.(B) and Z,(B), respectively, and independent of the {Y,( B)} and {Z,(B)},
respectively.
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PrOOF. We only prove the relation (3.3) for the Y’s; the proof for the Z’s is
similar. For integers r and s let

F(r,s) = o-field generated by {X,: r < v(1) <s}.

Fix m,n > L. Note that R, _;,(B) is the maximum of S(7) over the finitely
many cylinder paths 7 from 0 to H({(n — L)B) of length n — L. For such
paths, S() is #0,[(n — L)B])-measurable, and so are the R ,_;,(B). Let
m, =(0,...,w,_;_,;) be a cylinder path for which S(,) = R, _1,(B). If the
distribution of X, is not continuous, there may be several possible choices for
m,, due to ties among the S(7)’s. In this case we order all paths in some
arbitrary way and take for 7, the first path in this ordering with S(7,) =
R ,_1,(B). Observe that the endpoint w,_;_, of 7, lies in H (I(r — L)BD.
Next note that

g =((n-L)B| + 1,|(n —L)B| + 1+ |(m ~ L)B])
is independent of #(0,l(n — L)B)), and therefore S(7) is independent of
H0,l(n — L)B) for any 7 = (vy,vyq,...,V,, _1_1) for which

[(rn =L)B] + 1< v;(1) < [(n —L)B] + 1+ [(m ~L)B]
(3.5) for0<i<m-L -1,

Vp-r-1(1) = [(n —L)B] + 1+ [(m - L)B].
For fixed v, € H((n — L)B] + 1), the maximum S(i) over such paths is
therefore a random variable Y, (v,, B) = R{,,_1,(v,, B), independent of Y,(B)
and with the same distribution as Y,,( B). Let
Ty =(Wy_p-1+ €215 2Zn-1-1)
be a cylinder path starting at z, = w,_;_; + e, and satisfying (3.5) with v
replaced by z and such that S(#w,) = Y, (w,_;_; + e;, B). The concatenation
Ty = (0, Wy 1, Wy 1+ €121, 2m-1-1)

of 7, and m, is a cylinder path from 0 to H((n — L)B] + 1 + [(m — L)B) of
length n + m — 2L. Note that m; is self-avoiding by construction. The
distribution of S(7r;) is the same as that of Y,(B) + Y,,(B), so that we can
prove (3.3) by showing that

(36) Yn+m(B) 2S("T3)‘

By definition, Y, , ,(B) is the maximum of S() over cylinder paths of
length n + m — L from 0 to H((n + m — L)B ). Although 73 is not such a
path, we shall show how to find such a path 7, by adding L vertices at the
end of 4. This will prove that Y, ,,,( 8) > S(m,) > S(wr;) and hence that (3.6)
holds. The construction of m, is very easy. As we have seen, the endpoint

+2p_p_1 of mg liesin H((n — L)YB] + 1 + |(m — L)B ). Now set

K=|(n+m—-L)g| —{l(n -L)B| + 1+ |(m —L)B]}

and note that 1 < LB —2<K <LB+ 1< L [see (2.6)]. We may therefore
form m, by adding to w5 K steps in the e, direction from z, _;_,, and then
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L — K steps in the e, direction, so that
774 = (O,wl,...,wn_L_l,wn_L_l + el,...,zm_L___l, Zm_.L_l + el,...,
Zm_L_l + Kel, Zm_L_l + Kel + ez,...,zm_L_l + Kel + (L _K)e2).

Because K > 1, m, is self-avoiding.
This proves (3.6) and (3.3). O

For typographical reasons we shall sometimes write Y(n) or Y(n, 8)
instead of Y, or Y,(B) and we shall adopt a similar convention for Z.

LEMMA 5. Assume that (1.1) holds. For each fixed 0 < B < 1 there exist
constants 0 < M(B) < N(B) < « such that for each & > 0,

(3.7 ind“P{ @—M(B) >a} <o
and "

(3.8) Y"(nB) > M(B) w.p.l.
Similarly,

(3.9) i nd“P{‘gin’—Q - N(B)|= 3} <o
and "

(8.10) Z”(nB) > N(B) w.p.l.

REMARK. The factor n¢*! can be replaced by any power of » in (3.7) and
(3.9), but we only use the lemma in the form given here.

PrROOF. Again, we restrict ourselves to (3.7) and (3.8). Fix g8 € (0,1). We
shall apply Lemma 1 and Proposition 2. By Lemma 1, for n > L,

0<Y(n,B) —¥(n,B) =R,_(B) — R,_(B)
(3.11) < max Y (S(¢)-8(¢))

|él=n—-L
0s¢
=o(n) w.p.l
Thus, it suffices to prove (3.8) with Y replaced by Y, and this will be
immediate from (3.7). As for (3.7), this will follow from Proposition 2 (with
h=nand y = (8/2)Vn), once we prove

1,
(3.12) M(B) = lim-r-l—EY(n, B) exists and is finite.
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However, from (3.11), the bound 0 < Y(n, 8) — Y(n, B) < N, and the inte-
grability condition (3.1), we see that

1 A
(3.13) 1im;[EY(n,B) - EY(n,B)| =0
and that
0 1EY 1EN
< "; (n’ B) < ; n—-L

is bounded. Finally, from (3.3) we have
EY(n+m,B) =EY(n,B) + EY(m,B), n,m>L.

The standard proof for subadditive sequences [see Hille and Phillips (1957),
Theorem 9.6.1] now implies

1
lim—EY(n, B) exists.
n
Now (3.12) follows from this and (3.13). O

We next prove a kind of continuity in B, in order to derive (1.9) from
Lemma 5. By a small modification of a cylinder path 7« whose length is
smaller than n, we will obtain a cylinder path 7’ of a prescribed width such
that its length |7’| is not much more than |7|, and whose weight satisfies
S(m') = S(w). For a path 7 = (v,,..., V), let D(7r) = v,(1) — vy (D).

LEMMA 6. Assume that either

(3.14) 0<B=<i, B=p <1,

or

(8.15) 1<B<1, 0< B <B.

Let = (vy,...,v;) be a cylinder path with

(3.16) 7| < n, D(m) =| Blwl], vo € [—n,n]%.

Then there exists a cylinder path ' = (vgy,..., U4, Ug,.- ., U,,), for suitable m,

that contains m as a subpath and satisfies
D(=") = B'l='l], S(w") = S(=w),

(3.17) . A o ' )
S(7") = S(m), initial point of m' = v, €[ —n,n]
and
0 < o'l - ||
N [T PR PR
B =2|1-p 2|3

Proor. We follow more or less the construction of 7, in Lemma 4. We
form 7' from 7 by adding j; steps in the e, direction and then j, steps in the
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e,-direction to the endpoint of 7. This will give us a cylinder path 7' with
(3.19) |’ = 7| + j; + Jjg, D(w') = D(7) + j;.
In order to make sure that 7’ is self-avoiding, we want j, > 1, and in order to
satisfy (3.17) we want

D(m') =D(m) +jy = | Blwl] +jy = | B'lw’l] = | B'lwrl + B'(Jy + )]
We satisfy these requirements by taking

1 +
(3.20) J1= (1—_[3,—)(3 -B) Irl[+1
and then solve for j, from
(3.21) | Blml] +ji = | B'lwl + B'jy + B'js].
Since

| Bll] +jy = | B'larl + By ]
for the j; of (3.20), (3.21) does indeed have a solution j, > 0.
It follows from (3.20) and (3.21) that

o Y 11

I’ =7l =j; +Jo < B’ |7T|+?J1+?
B-p RN ]
S{ F tea-g PP }'”HB'

) 1 1 1 1 1] 1 3
SIB—B|n{ [BS§]1—3’+ [B>§]?}+?,
so that (3.18) also holds. O

We also need the analog of Lemma 6 for lattice animals, instead of paths.
If ¢ ={v,,...,v,} is a collection of vertices, we call v; € ¢ a leftmost (right-
most) point of ¢ if v/ (1) < v,(1) [respectively, v(D =v,(D] for 0 <i <k. We
now merely have to take v, and v, as the left and rightmost points of a
connected set ¢ and again D(¢) = v,(1) — vy (1), to obtain the following
analog of Lemma 6. The proof needs no change.

LEMMA 7. Assume that (3.14) or (3.15) holds. Let & = {v,,...,v,} be a
connected set of vertices with v, and v, as left and rightmost point, respec-
tively. Assume that (3.16) holds with |w| replaced by |£|. Then there exists a
connected set ¢' = {v,...,v,, U, ..., Uy}, for suitable m, which contains ¢ as
a subset, with v, and u,, as left and rightmost points of ¢', and such that
(3.17) and (3.18) hold with m and 7' replaced by ¢ and &', respectively.

The next proposition proves the convergence of cylinder functions.

. ProposITION 8. If (1.1) holds, then w.p.1,

Rn
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and
V.
(3.23) 7" - N,

with M = sup, . 5, M(B) and N = sup, . 5., N(B).

ProoF. Since, for each B€(0,1),R, >R, (B) and R,(B)/n — M(B)
w.p.1 (by Lemma 5), it follows that

R,
hm1nf—-—> sup M(B) w.p.l
n 0<p<1

Similarly,

hmmf1 > sup N(B) w.p.l
n 0<pB<1
Therefore, we only have to investigate lim sup,(1/n)R, and lim sup,(1/ n)v,
or, by virtue of Lemma 1, lim sup,(1 /n)R and lim supn(l /n)V,. Again we
restrict ourselves to the first of these.
Let £ > 0 be given. Fix an integer q > 8 such that

(3.24) (1—3)(M+8) 2(M+%).

For later purposes it is useful not to restrict ourselves here to paths starting
at the origin, so for the remainder of the proof we merely assume that

o = (vy,...,0,_) is a cylinder path with

(325) |7T|=n’ Vg € [_n’n]d,
and

(3.26) S(7) = (M + &)lml.

We can define 8 by
v,-1(1) —vo(1) _ D(m)

|7r| |7

B =

Then 7 satisfies (8.16) with this 8. We take 8’ =j/q fora j€({1,...,q — 1}
such that (3.14) or (3.15) holds and

1

B — Bl < —.

q
The idea of the proof is to show that 7' constructed as in Lemma 6 for this 8’
must satisfy :
(3.27) S(m") = (M + &/2)|m'| = (M(B') + &/2)I7'l.

It will then be shown, by an application of (3.7), that (3.27) does not happen
when |7’| is large. This in turn implies that for large n, there are no cylinder
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paths 7 that satisfy (3.25) and (3.26). This essentially proves
R,
limsup— <M + ¢ w.p.l.
n
The details of the argument are fairly straightforward. For the sake of the

argument let 8 < 3; the case 8 > 1 will be left to the reader. Since 8 < 3 we
may take B’ > B, so that we will have

1 , 1 1 , 1 3
(328) ;I‘SB S§+E’ 0<B=<pB SB+ES2.
Now, if 7' satisfies (8.17) and (3.18) and n is large enough that
3qg 4 £ 3q 1
(329) (1——n——3)(M+8)Z(M+ E) and —;S‘z‘

[which is possible by (3.24)], then
S(#") = S(=) [by(3.17)]
> (M + &)lw| [by (3.26)]

, 3 B -B
2(M+£)(|7r|—?— T

n) [by (8.18)]

>(M+e¢)

|w'| — 8q — Sn) [by (3.28)]

3¢ 4 :
>(M+¢e)ln'l|1 — — — =] (sinceln’| > |m|=n)
n q

> (M + g)w [by (3.29)].

Thus (3.27) holds.
Recall that the path 7' has the same initial point v, € [—n,n]? as =.
Moreover,

4
n=lrl<lw'|<lwl+ 3¢+ —n [by(3.18)]
q

<l|ml+n [byq = 8and (3.29)]
=2n.
Consequently, for n satisfying (3.29), the event
(3.30) #(n, e) = {there exists a cylinder path
o satisfying (3.25) and (3.26)}
is contained in
q-1

U Us(n 500,49,

vo€l—-n,nl? j=1
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where

&'(n, £;v,, j,q) = {there exists a cylinder path 7' from the point
v, to the hyperplane H(vy(1) + | j/qlm'l]) with
n<|m'| < 2n and satisfying (3.27) with B’ =

J/q}

Consequently,

P(#(n,e)) <(2n + l)dqi1 Yy P(?m+L(1) > (M

J=1ln<m<2n q

It follows that for some constants C;, C, < o,

Y -1 = :
P(H(n,e)) <C;+Cy Y, X md”P(Y’erL(i) > (M
n=1 j=1m=1 q
< o,
where C, takes care of the small n’s and the finiteness of the last double sum
follows from (3.7). Thus #(n, &) occurs w.p.1 for only finitely many n. By the
definition (1.5) this means that w.p.1 R, < (M + &)n eventually. In other

words,

A

. Rn
limsup— <M + ¢ w.p.l
n n
Since this holds for all & > 0, (3.22) now follows by means of Lemma 1.
The proof of (3.23) is a straightforward adaptation of the preceding proof of

(3.22). A slightly stronger statement is proved in the following proof of (1.3).
O

We can now also complete the following proof.

PrROOF OF (1.3). This really is contained in the proof of Proposition 8, since
there we did not restrict to paths starting at the origin. Since N, > V,,, we
only have to consider lim sup,(1/n)N, when proving the convergence w.p.1 in
(1.3) [compare (3.23)]. Now observe that any lattice animal ¢ that contains
the origin and satisfies |¢| = n has a leftmost point somewhere in [—n, nle.
We, therefore, have exactly as after (3.30), with N as in (1.9),

g-1 2n
Ny2(N+e)lc U U UF(n e500,4,m:q)
UOE[—n,n]d j=1m=n ]

where ‘

B'(n, ;v,,J, m,q) = {there exists a connected set ¢’ with [£'| =m which
has v, as its leftmost point and has its rightmost
point in H(vy(1) + |(j/q)m]) and S(¢) = (N(j/q)
+ &/2)m}.
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Consequently, by (3.9),
ZP(Nn > (N +¢&)n)
g-1 o . J
<C,+C, Y ¥ md+lp{zm+L(—) > (N

j=1m=1 q

J &

)+ = < o,

q) 2"

Again by an appeal to Lemma 1, this implies the convergence w.p.1 in (1.3).
The L' convergence follows from this, together with (3.1). Even though we
decided to ignore the case when d = 1, we note that we cannot use (3.1) if X
does not have a second moment. However, if d = 1 and the X; are i.i.d. with
finite mean, then

% T E(XIL[1X] = A]} - E|XI[1X,| > A])

can be made as small as desired by taking A large. We may therefore
truncate our X,’s at a large A. This is enough to obtain the L' convergence
when d = 1. O

REMARK. In some of the examples of Cox, Gandolfi, Griffin and Kesten
(1993), Section 1, one of the coordinates plays a special role (e.g., the role
of time). One may then want to restrict to paths along which this component
is increasing. If one takes the special component to be the first one, this
means that one only wants to consider the cylinder paths already introduced.
In this situation Proposition 8 completes the proof of the basic convergence
result; see, for instance, Glynn and Whitt (1991).

4. Nonoccurrence of large bad cylinder paths. Define B(n,h, ) as
in (1.10), but with S replaced by S. In this section we prove Lemma 9, which
shows that cylinder paths 7 in [—n,n]? with S(7) > (M + &)l7r| cannot be
too long.

LEMMA 9. Assume (1.1), and let £ > 0 and & > 0. Then w.p.1,

(4.1) Q‘f( n,n®, &) occurs for only finitely many n’s.

Proor. Fix &,6> 0. If #(n, n?, &) occurs, then I?h(v) > (M + &)h [see
(2.5) for notation] for some n® < A < n and v € [ —n, n] Therefore,

(4.2) #(n,n%e)c U U  {Ru(v) = (M + &)R}.

n®<h<nvel[-n,nl?
Next, observe that for all v,

E(R,(v)) <E(R))
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and that, from Proposition 8, A"'R, - M w.p.1. In view of Lemma 3, this
implies, uniformly in v,

h—x

(4.3) limsupE{ R"}(lv) } < lim E{%} =M.

h—> o
Consequently, for large n,
n R R £
(44) #B(n,n%e)c U U {Rh(v) —E(Ry(v)) = —h}.
né<h<nvel-n,n]? 2
We now use Proposition 2 in which we take y = (¢/2WVh. For n large
enough and all n° < h < n,

y = vk < Cyh(log(2n + 1)’

We thus obtain that, for n large enough,

P{@(n,n‘s, &)= X Y C,exp _ngm

né<h<nvel-n,n)?
<(2n+ l)dnC4 exp(—Csf——nzz—)
2 log(2n +1) |’
so that

i P{B(n,n &)} < .

n=1
Thus, (4.1) follows from the Borel-Cantelli lemma. O
REMARK. It is tempting to apply the same argument to estimate
P{IMn — Mn| > an}.
There is certainly no difficulty to obtain a good estimate for
P(|M, - E{M,}| > &n}

in the same way as in Proposition 2. The only stumbling block to a quick
proof of (1.2) from this is that we do not have a direct way to prove that

1 N
—E{M,} > M.
n
This forces us to follow the rather circuitous route ‘of the next section.

5. Decomposition into cylinder paths. In this section we complete
‘the proof of (1.2) by decomposing a path 7 more or less into cylinder paths.
These cylinder paths will be pieces of the path between a leftmost and a
rightmost point either of the path itself or of a subpath obtained in an earlier
stage of the decomposition.
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LEMMA 10. Let £> 0 and let m = (v,,0y,...,0,_1) be a path of length
h < n, contained in [ —n, n]? and with S() = (M + &)|n|, where M is as in
Proposition 8. Suppose that #(n,n'/ 9, g/2) does not occur. Then m can be
decomposed into the following pieces:

a path o = (vy,vy,...,0;) with v, a leftmost or a rightmost
point of o and |v,(1) — v;(1)|< nY @D, for 0 <i <;

another path = (v,,...,v,_,) with v,, a leftmost or a
(5.2)  rightmost point of T and |v,,(1) — v;(1)| < n¥@D for m <

i<h-1; ‘

a number of cylinder paths vy, v,, ..., v, with width in the
(5.8)  first coordinate direction at least n'/??, each of which

satisfies

(5.1)

A 8
S(v) < (M+ E)Ivjl;

at most one cylinder path v, , with width in the first

(54) coordinate direction smaller than n'/@®,

Moreover, if any two of these paths have a vertex in common., then this vertex
is an endpoint of both paths. No vertex belongs to more than two of these
paths.

REMARK. The paths o and 7 in (5.1) and (5.2) are in general not cylinder
paths.

PROOF. As a first step in our decomposition of = we take v, and v, as
a leftmost and a rightmost point of 7, respectively. For the sake of the
argument, let /(1) < r(1). Then = is the concatenation of the three paths

Py = (UO’“"UZ(I))’
pg = (vl(l)""’ vr(l))’
ps = (vr(l)""’vh—l)'

Here, and in the following, it is convenient to use a broader (and, perhaps,
improper) use of the word concatenation, under which we allow that the
paths to be concatenated have the last vertex of one path equal to the first
vertex of the other path. By construction, p, is a cylinder path and it cannot
satisfy both

A &
(55)  |v,y(1) —vie)(1)| 2 nVED and S(p,) = (M + §)|Pz|

or. else B(n,n"@d, £/2) would occur. In fact, (5.5) would imply |p,| >
10,0 (1) = v,qy (D] = n'/ED, Note also that
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Therefore, the paths p; and p; have a width less than or equal to |v,,(1) —
v;0)(Dlin the first coordinate direction. Moreover, p; has the endpoint v, as
a leftmost point, and p; has the initial point v,;, as a rightmost point.

The intention is to repeat this kind of decomposition into cylinder paths
plus one path with initial point v, and another with final point v, _;, until
the latter two paths have a width less than n'/¢% in the first coordinate
direction. Note that we never decompose a cylinder path any further, but only
the two paths that start at v, or end at v, _,, respectively, and these two are
decomposed further only as long as their width in the first coordinate
direction is at least n'/?%), For instance, if p, has width less than n'/@® in
the first coordinate axis, then we do not decompose it further, and similarly
for ps. For the sake of the argument assume thus that the width of both p,
and p; in the first coordinate direction is at least n'/@?. We then decompose
both p, and p; as follows. We take v, 5, as a rightmost point of p;, and
vys,2) as a leftmost point of p;. We get four new paths at this second stage;
see Figure 1. The path p, breaks up into

P12 = (UO""’vr(1,2)) and py, = (Ur(l,Z)""’Ul(l))’
and p; breaks up into
p32==(vr(1),...,vl(3 2)) and P42‘=(Uz<3 2)""’Uh—1)'

Here, p, , and p, , are again cylinder paths. Again, the analog of (5.5) cannot
occur for either p, , or p, ,, or else Z(n, n'/¢9, £/2) would occur.

We can now continue decomposing those paths among p, , and p, ,, which
have a width in the first coordinate direction at least n'/@%. This process
stops when we have achieved a decomposition of 7 into one path satisfying
(5.1), one satisfying (5.2) and some other paths satisfying either the condition
in (5.3) or the one in (5.4). To see that at the end of the process there is at
most one path satisfying the condition in (5.4), note that at each stage, the

path that starts at v, (vy, v,,...,0,) say, has its endpoint as a leftmost or a
Vo
Vr(1,2)
Vidy e
Y
r(1)
Vi1

FIG. 1. The second stage of the decomposition of w. The dashed piece is p,. The boldly drawn
Dpieces near vy and v, _y are pg 9y and py ), respectively.
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rightmost point. If we decompose it into a piece (vy,...,v,) and a cylinder
path (v,, ..., v,), then the width of (v, ..., v,) in the first coordinate direction
is no more than that of (v,,...,v,) [compare with (5.6)]. Since we only
decompose (vg, vy, ..., v,) further if its width in the first coordinate direction
is at least n'/@?®, the resulting cylinder path (v,,...,v,) also has width at
least n'/@%, This can only fail at the first step, namely p; may have width
< n'/@d_ The same argument applies to the piece that ends at v,_;. There-
fore the only path satisfying (5.4) can be ¢;.

The last property of the intersections of the subpaths is clear from the way
the paths were obtained; the only vertices that can belong to two subpaths
are the successive leftmost and rightmost points encountered at the various
stages of the decomposition of 7. This proves the lemma. O

It is now convenient to introduce the following notation:
L,=1L (e
= max{S(m): 7 is a cylinder path in [—n, n]¢
of width in the first coordinate direction

6D less than nY@9 || <n, but S(7) >
(M + £/2) |ml};
HAn, &) ={L, = n"?),
y=2"%8 + 8¢c,)" !,
@(n, ¢) = (there exists a path 7= in [—n, n]¢ whose
.8 width in the first coordinate direction is less

than n¥C?, but S(w) > (M + &/2)|7| and
yen!=/@d < 7| < n},

P(n, &) = (there exists a path 7 in [—n,n]? such that
7 < yenl~ V@D put () > (¢/8)n'~1/6D),

with ¢ as in Proposition A and & > 0 arbitrary.

LEMMA 11. Let & > 0. There exists an n,(&) < ® such that if n > n,, the
following holds. If there exists a path  in [ —n, n]? with S(z) > (M + &)|x|
and with length n'~ /8D < |7| < n, and if F(n, n/ @D, £/2) does not occur,
then
(5.9) An,e) UZé(n,e) UD(n, &)
must occur.

ProoF. Let 7 be a path with the stated properties and assume B(n,
nl/@d ¢ /2) does not occur. Then decompose 7 according to Lemma 9. From
" (5.3) we have r paths v, with width larger than n'/@%), and a fortiori length
larger than n'/G®), Since each vertex belongs to at most two of the paths v,
in (56.3) (in fact only an endpoint of a v. can coincide with an endpoint of

J
exactly one other v;), we find
(5.10) rn'/@d) < 2n or r<2n!7/ED,
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If v, is the endpoint of o, as in (5.1), and v,, is the initial point of 7, as in
(5.2), then

(5.11) lel=1+1, |rl=lw|—-m,
and also, from (5.3) and (5.4),
r+1
lv)<(m—-1+1)+r+1
(5.12) El = )

<(m—1+1)+2(n*"1/CD 1+ 1),

once more because only the endpoints of the »; can be counted twice in the
left-hand side. Combined with the fact that

r+1 P r+1
(5.13) ZS(J)<(M+ )2|y|+L
Jj=1

these relations show

r+1
S(m) <8(o) +8(r) + 21§( v;)
f

<S(a)+S(~r)+(M+ )(m—l+1)
(5.14) + 2(M + f)(nl-l/@’d) 1)+ 1L,
— (o) +8(r) + (M+ )(w ol — Il

+ 2(M + )(n1 Ved 1 9y + L.

Now assume that S('7T) > (M + &)lml = (M + &)n~ /6D but that A(n, &)
does not occur (i.e., L, < n'/2). Then, for sufficiently large n this, together
with (5.14), implies

$(o) +8(r) = gl + (M + 2] (lol+1e)
- 2(M + )(n1 1/@d) 1 2y — nl/
> glwl + (M+ )(Ia’l + 1) — 2pt- V@D,

Consequently, one of the events

§(a) > (M+ £)|U| + (ilﬂ'l _ nl—l/(4d))

> (M4 5 i+ gmioved
8"
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or

$(r) = (M + )|T| + gt 1/eD

occurs. For the sake of the argument assume that the first one occurs. Then
either

|0'l > ’ysnl_l/(Sd)
occurs, in which case &( n, &) oceurs, or

lo| < y;,5,’711—1/(&1)
occurs, in which case 9(n, &) occurs. O

We already know, from Lemma 9, that w.p.1 % (n, n'/@%, £/2) occurs only

finitely often. Thus one of the hypotheses of the last two lemmas is, w.p.1,

valid for all large n. Our next lemma shows that also #(n, £) and 9(n, a)
occur w.p.1 only finitely often.

LEMMA 12. For each > 0,

P{f(n, g) UQA(n, ) occurs for infinitely many n} =0.

ProoF. First consider 9(n, £). By decomposing with respect to the loca-
tion of the starting point of the path # and with respect to its length, we have

P(9(n,e))<(2n+1)? ¥ P{ max ), (X, A 2logn)

1< ysnl=1/6d) me€lly) yer
(5.15) - fnl—l/(Sd) '
8
Since
5.16 X, AN2logn) <2llogn
v

VET

for any 7 € I1,(l), the sum over [/ can be restricted to [ > C4enl™ /@

(log n)~ L. Therefore, by Proposition A,

P{I(n,e)}<(@n+1)? ¥  ex p{——l—(inl 1/@d) 1)(logl)b}

l<yenl~1/@d) 8!

< exp{~C;(log n)’},
where, as before, b = 1 + a/d. Thus,

Y P(9(n,e))<e
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Next, assume #(n, &) occurs. Then, there exists a cylinder path » in
[—n, n]?, of width in the first coordinate direction less than n'/@%, but with

$(v) > ((M + g)lvl) v Rz,

If [v| > n'/4, then %(n, n'/%, £/2) would occur, so that (by virtue of Lemma
9) only the possibility that |v| < nl/* remains. However, this situation cannot
arise because, as in (5.16), for any such v c [ —n, n]¢,

S(v) = ¥ X, <Ivl2log n < n'/*2log n < n'/2.

vey

Lemmas 9-12 show that, apart from a set of measure zero,

A

Mn
{limsupT >M + a}

c {for infinitely many n’s there exists a path = in[ —n, n]d ,
with |7| = n and $(7) > (M + &)|xl}

c {‘2 (n, £) occurs for infinitely many n’s}.

Therefore, in order to show that

A

Mn
(5.17) lim sup T <M,

n—o
it suffices to show that for each ¢ > 0,
(5.18) P{?( n, £) occurs infinitely often} = 0.

This will be proved in Lemma 13. This will finish the proof of convergence
w.p.1 in (1.2). In fact, if (5.17) holds, by Lemma 1, also

. Mn
lim sup — <M w.p.l.

n-—w

Also, M,, > R, and (1.9) imply that

M,
liminf—>M w.p.1.
n

n— o

It only remains to verify (5.18).
LemMmA 13. If (1.1) holds, then (5.18) holds for every & > 0.

Proor. Define, foreach 1 <j <d,

@(n, e, j) = {there exists a path = in [—n,n]¢ whose
width in each of the first j coordinate direc-
tions is less than n'/®?, but S(m) > (M +
27¢)\w| and yle/nt =@ < || < n}.
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Then, #(n, &) = €(n, ,1). We claim for every &> 0, apart from a set of
probability zero,

@ n, &, j) occurs infinitely often
(5.19) (&(ne.0) y often]
c {%(n, £,J + 1) occurs infinitely often}.

This will prove (5.18) because €(n, &, d) is empty for large n. Indeed, there
cannot be a self-avoiding path of length at least y%n!~ /@D but of width
less than n'/@? in each coordinate direction, since a hypercube of edge
size less than n'/@% contains at most n'/? vertices. Therefore, (5.19) implies
that

P{‘?(n, &, j) occurs infinitely often} = 0

for all j=1,...,d, and (5.18) is just this statement for j = 1.

The proof of (5.19) is basically the same decomposition of paths as given in
Lemma 10, but with the role of the first coordinate direction being taken over
by the (j + Dth coordinate direction. We now start with a path 7 that has
width less than n'/@% in each of the first j coordinate directions. Thus 7 is
contained in a set

(5.20)  [ay,a; + n/@D] x - X [aj,aj + nl/(2d)] x[-n,n]*"

for some integers a; € [—n, n], 1 <i < j. We now look for vertices v’ and v”
on 7 with minimal and maximal (j + 1)th coordinates. The piece between v’
and v” is a cylinder path in the (j + 1)th direction, and the other two pieces
may be decomposed further. However, all pieces obtained in the decomposi-
tion lie in the hypercube (5.20). The decomposition is stopped because either
the analog of #(n, n'/@®,277~1¢), with the role of the first coordinate taken
over by the (j + 1)th coordinate, occurs, or because we end up with a
collection of paths as in (5.1)—-(5.4) of Lemma 10, but now with ¢ and 7
having width less than nY/@® in all the first (j + 1) coordinate directions.
From here to the proof of (5.19) is practically identical to the proofs of
Lemmas 11 and 12. O

Lemma 13 completes the proof of the convergence w.p.1 in (1.2). The L'
convergence follows from this and Lemma 3, as in (1.3).

6. Equivalence with p-percolation. In Cox, Gandolfi, Griffin and
Kesten (1993), the model of p-percolation introduced by Menshikov and
Zuyev (1992) was discussed. In this model, vertices of Z? are independently
occupied with probability p, and vacant with probability 1 — p. For0 < p <1,
., p-percolation occurs if with strictly positive probability there exists an infi-
nite self-avoiding path 7 = (v = 0,v4, v,,...) such that

1
(6.1) lim 'mf;[# of occupied vertices among v,,v;,...,0,_1] = p.
n—o
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Cox, Gandolfi, Griffin and Kesten (1993) announced that the occurrence of
p-percolation is equivalent to the fact that M > p, with M as defined in (1.2).
Here we give a proof of this statement. To unify the notation, define random
variables {X,, v € Z%} such that X, = 1 if v is occupied and X, = 0 if v is
vacant. The number of occupied vertices among vg,v,,...,v,_; becomes
simply X7 X, . We write M for lim(1/n)M,, for these random variables.

THEOREM 2. If{X,: v € Z% arei.i.d. random variables such that P(X, =
D)=p=1-P(X, =0) for some p €[0,1], then the following three state-
ments are equivalent:

(1) p-percolation occurs;
(i1) w.p.1 there exists an infinite path m = (vy,v,,...) such that

1n-1
(6.2) Z(m)=lim — } X, >p
noe o
[the existence of the limit here is part of the statement in (6.2)],
(iii) The following inequality holds w.p.1:

1
(6.3) M® = lim =M, > p,

n—oo N

where M, is as defined in the abstract.

Proor. By the definitions of p-percolation and M, (i) implies (iii). Obvi-
ously, (ii) implies (i), so that we just need to verify that (iii) implies (i).

Suppose that M P’ > p. For any finite path 7 = (v,, v4,...) we have, by the
definition of M,

n—1

Y X, <M,
i=0
so that
1n=1 1
(6.4) limsup— } X, < lim —M, = M.

n-owo N ;_g n-ew n

Therefore, all we have to prove is that, w.p.1, there exists an infinite path
@ = (v, vy,...) such that

n—1

(6.5) liminf — }° X, > M®

noe Noj_g

and (6.2) will be satisfied with Z(7) = M(®> > p. The following lemma gives
.the main step for finding .

LEMMA 14. For all £ > 0, there exist a B(e) € (0,1) and v(e), n(e) <
such that for all w there exists with probability at least 1 — & an infinite path
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7= (w, = w,w;,W,,...) with the properties
(6.6) Whye(1) = wo(1) + k(| B(e)v(e)] +1), k=0,1,...,
wo(1) + k(L B(e)v(e)| +1)
(6.7) <w;(1) <wo(1) + (k + (L B(e)v(e)] + 1)
forkv(e) <i<(k+1)wv(e), k=0,

h-1 3e
(6.8) zo:XwiZh(M(p)_.T) forh > n(e).

PrROOF. Since M = sup,.,z., M(B) [see (1.9)], we can choose B =
B(e) €(0,1) such that
&
1
alrlld then, by virtue of (3.8), or equivalently (1.8), we can find » = v(¢) such
that

(6.9) ER,(B) > V(Mm - g)

To construct 7 we shall take w = 0 without loss of generality. We succes-
sively choose cylinder paths #® of length » in the following way: 7@ =
0,w;,...,w,_;) is an optimal cylinder path with endpoint in H(| Bv]),
that is,

0<wi(l)<|Br], O<i<v—1 and w, (1) =]|pv],
and S(#©®) is maximal among all such paths, that is,
S(7®) =R,(B).

After that we take w, = w,_; + e;, where e, is the first coordinate vector.
Assume that the vertices w,,...,w,, have been chosen in such a way that
(6.6) holds for 2 <! and (6.7) holds for %2 <I. Then choose #® =
(w;,,...,w;,,,_1) as an optimal cylinder path satisfying

I(|Bv] +1) =w, (1) <w;(1) <w,(1) +[Bv], Ww<i<(+1v-1,
Wae1y-1(1) = (0 + D(lBr]+1) -1

and such that S(#®) is maximal among all such paths. After that we take
W41y, = Wys1y-1 + €. Then (6.6) also holds for £ =17+ 1 and (6.7) also
holds when % equals . Let 7 be the infinite path obtained by concatenating
the paths 7 (1) for all /. This path 7 satisfies (6.6) and (6.7).

., We have to show that we can choose n(e) such that (6.8) holds for all

h > n(¢) with a probability at least 1 — . Clearly this will follow from
1A-1 £

(6.10) liminf— ) X, >M®» — — wp.l
h—>® h 0 ! 2
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In turn, it suffices to show that the random variables

(k+1rv-1
(6.11) Y X,

kv

are i.i.d., each with the distribution of R,(B) and hence with expectation at
least (M — £/2) [see (6.9)]. To prove this we observe that the choice of
7@ ..., 7% D, or of the vertices 0 = w,,...,w;,_;), depends only on the
values X,, with w(1) < k( Bv|+ 1) [cf. (6.7)]. After that w,, is chosen as
Wy,_1 + €1, without examining X, . On the other hand, #® = (w,,,...,
W +1),-1) depends only on the location of w,, and on X, with k( Br|
+1) < w(1) < (& + 1) Br] + 1). This implies that (6.11) is indeed inde-
pendent of {X,, : 0 < i < kv}. The sum in (6.11) has the same distribution as
R,(B) by construction of #*. This was shown explicitly for £ = 0 and the
argument does not depend on k. O

We return to the proof of (6.5) for a suitable 7. We choose &, = 1/(I + 1)
and take [with v(-) and n(-) as in Lemma 14]

B, =B(s), v,=v(g), m;amultipleof v,
with m, increasing so fast that m; > n(¢;) and

38l

1
(6.12) ml(M(P)—T) > {ZO‘,mi+n(a,+1)}(M(”)—al).

The construction of 7 is now very similar to that of 7 in the last lemma. The
path 7@ will be chosen as the vertices (v, = 0,vy,...,0,,) according to the
construction in the proof of Lemma 14 for w =0, & = g,. Since m, is a
multiple of »,, choice of these vertices depends only on the X, with

w(l) < ":—:([BOVOJ +1) = v, (1)

and

Uy = Umgy-1 +ey.

We now continue from v,, with the first m, vertices of a path constructed as
in Lemma 14 with v,, and &, for w and &, respectively. (Note that we used
an infinite path in Lemma 14 merely to simplify the formulation of this
lemma. Here we only construct the first m, vertices of such a path and never
look at the later vertices. Note also that in this construction v,, appears both
as the last point of 7@ and as the first point of 7. This duplication is for
convenience of description only; 7 contains v,, only once.) After [ steps we
will have picked vertices vy = 0,0y,...,Vp 4m,+...+M;—1 in such a way that
they depend only on the X,, with
-1 m,
w(1) < & (| Bvi] + 1)
12

0

= vm0+- . -+ml_1( 1) °
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We next add a path 70 of m, steps by the method of Lemma 14 with
W=V sotm,_ €= &

To complete the proof we show that the resulting infinite path 7 satisfies
(6.5). We define w, = X} ! m, and the events

3
=1 L Xu,Z(h_Ml)(M(p)_Zé‘z) for p; + n(e) <h < pyyq.

w<i<h
By our choice of 7 and by virtue of Lemma 14,
P&, fails} < P{n" does not have the property (6.8) for £ = ¢,} < ¢,.

Since L¢&; < «, the Borel-Cantelli lemma shows that w.p.1 & occurs for all
but finitely many /. This quickly implies (6.5), for if &, occurs for [ > [, then
forl>1y, h=p,q,

h-1 Mpp1—1 38l
ZXlu2 )» Xiz(.l'Ll‘Fl_l‘Ll)(M(p)_T)
i=0

i=py
3e
= ml(M‘P) - Tl) 2y (MP — &) [see (6.12)].

In particular, for p;, ; <h < p;, 1 + nlg 1),
(M(p) — 81)
=T _ 3
(MP %)
[again by (6.12)].

My

h(M® — ¢
M1+ n(E41) ( l)

h-1
T X,z h(M® — &)
i=

Also for p; , + nle, ) <h < py,,,
h-1 M1 h-1
XX, = L X,+ LX,
i=0 0 Myt

> My 1(M(p) - 81) +(h - #1+1)(M(p) - %8l+1)
> h(M(") — gl)

(since &, , also occurs). Now is (6.5) obvious. O
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