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ON THE CONVERGENCE OF MULTICLASS QUEUEING
NETWORKS IN HEAVY TRAFFIC

By J. G. Dar! AnD VifiN NGUYEN

Georgia Institute of Technology and M.1.T.

The subject of this paper is the heavy traffic behavior of a general
class of queueing networks with first-in—first-out (FIFO) service discipline.
For special cases that require various assumptions on the network struc-
ture, several authors have proved heavy traffic limit theorems to justify
the approximation of queueing networks by reflecting Brownian motions.
Based on these theorems, some have conjectured that the Brownian
approximation may in fact be valid for a more general class of queueing
networks.

In this paper, we prove that the Brownian approximation does not
hold for such a general class of networks. Our findings suggest that it may
be fruitful to consider a more general class of approximating processes.

1. Introduction. The past few years have witnessed a surge of research
activities in the area of Brownian approximations of queueing networks. The
thrust of these activities is to establish a theoretical framework from which
one can approximate queueing networks by reflecting Brownian motions
(RBM’s). These approximations are justified by so-called heavy traffic limit
theorems and such limit theorems have been proved for a number of special
cases that require (often restrictive) assumptions on the network structure.
Nevertheless, some authors have proposed that one may apply Brownian
approximations to a more general class of networks that operate under the
first-in—first-out service discipline [13, 14].

In this paper, we prove that Brownian approximations are not valid for
the general class of networks described by Harrison and Nguyen [13, 14]. We
do so by first proving a “pseudo” heavy traffic limit theorem, which states
that if the processes associated with the queueing network converge to a
-continuous limit, then that limit must be the Brownian system specified in
[13] and [14]. We then present a queueing network example developed by Dai
and Wang [9] for which the specified Brownian approximation is not well
defined. Our findings suggest that it may be fruitful to consider a more
general class of approximating processes. In addition, other service disci-
plines may yield more tractable structures.
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We consider a network composed of d single server stations, which we
index by j = 1,..., d. The network is populated by c classes of customers, and
each class &k has its own exogenous renewal arrival process E, = {E,(2),
t > 0} (possibly null), where E,(¢) is the number of class k2 customers who
have arrived at the network by time ¢. For each customerclass 2 = 1,...,¢c, it
is assumed that E,(0) = 0 and customer interarrival times have mean 1/,
with squared coefficient of variation cik. (The squared coefficient of varia-
tion, henceforth SCV, of a random variable is defined as its variance divided
by the square of its mean.) We denote by E the c-dimensional process with
components E,..., E,. (All vectors are envisioned as column vectors.) We
assume that arrival processes E,,..., E, are independent and «, > 0 for at
least one k. For each %, «, is interpreted as the long-run average arrival rate
for class & customers. These customers require service at station s(k), and
their service times are independent and identically distributed (ii.d.) with
mean m, and SCV ¢? ,. The service time sequences for the various customer
classes are independent of one another and are also independent of the
arrival processes. Upon completion of service at station s(k), a class k&
customer becomes a customer of class / with probability P,, and exits the
network with probability 1 — ¥, P,,, independent of all previous history. The
transition matrix P = (P,;) is taken to be transient, which simply means
that all customers eventually leave the network. Hence the networks we are
considering are open queueing networks. We assume that the waiting buffer
at each station has infinite capacity, and that customers are served at each
station on a first-in—first-out (FIFO) basis. Hereafter, we will refer to such a
network as a multiclass open queuing network.

Such a description of a multiclass network is now quite standard, as in
Harrison and Nguyen [13], [14]. (The class of queueing networks described
here is, in fact, an important special case of the setup in [13 and 14].) Figure
1 shows an example of such a network, which Dai and Wang [9] have studied.
Customers arrive at station 1 according to a Poisson process with rate a; = 1.
Each customer follows a deterministic route whose sequence of station visita-
tions is 1,1,2,2,1, after which the customer departs from the network.
Hence, each customer makes five stops before exiting the network, and we
designate those customers in their kth stop as class & customers.

In his pioneering paper on queueing networks, Jackson [20] assumed that
customers visiting or occupying any given station are essentially indistin-
guishable from one another, and that a customer completing service at
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FiG. 1. A two-station network with self-feedback.
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station i will move next to station j with some fixed probability P;;, indepen-
dent of all previous history. Thus in Jackson’s networks, each station serves a
single customer class; hence, these networks have been called single-class
networks. Jackson’s model was extended by Baskett, Chandy, Muntz and
Palacios [1] and Kelly [22] to networks populated by multiple types of
customers, each type following a deterministic route. The routing mechanism
described in this paper subsumes those considered in [1] and [22]. Readers
are referred to [12], [13] and [14] for further discussion.

For each j=1,...,d and each ¢ > 0, let W,(¢) denote the sum of the
impending service times for all customers who are queued at station j at time
t, plus the remaining service time for any customer who may be in service
there at time ¢. If a new customer arrives to station j at time ¢, that customer
must wait Wj(t) time units before gaining access to the server, so one can also
describe W(¢) as the virtual waiting time process for station j. Set W(¢) to be
the d-vector with components Wy(2), ..., W;(¢). Define the process W, = {W;(2),
t >0} and let W be the corresponding d-dimensional work-load process
defined in the natural way.

Intuitively, when the system is heavily loaded, the work load W(¢) at time
¢t will be large for large ¢. Let p; be the traffic intensity at station j (this term
will be defined in Section 2). As an example, because the arrival rate is set to
be 1, the traffic intensities for the network pictured in Figure 1 are given by
py =m,; + my + my and p, = mg + m,. To facilitate our explanation of the
underlying concepts, let us for the moment assume that

(1.1) pi=1, Jj=1,..,d.

Condition (1.1) is a special form of the heavy traffic condition as described in
Section 2. For fixed ¢ > 0, we are interested in how fast W(nt) goes to infinity
as n — . It has been widely believed that

(1.2) Wr() = —l—W(n ) = W*(-) asn -,
Vn

where W* = {W*(¢), ¢t > 0} is a d-dimensional semimartingale reflecting

Brownian motion (SRBM) and the symbol = denotes weak convergence. We

will clarify the notion of weak convergence in Section 2. For the definition of

an SRBM, we refer the reader to Definition 1.1 of [27]. Our main contribution

in this paper is the proof that conjecture (1.2) does not hold in general.

In cases where (1.2) holds, the corresponding theorem is called a heavy
traffic limit theorem. There now exists a variety of heavy traffic limit theo-
rems for networks with certain special structures. The first heavy traffic limit
theorem for networks of queues is due to Iglehart and Whitt [18, 19], who
studied single-class queues in series. For single-class networks with routing
" mechanisms similar to that of Jackson’s networks, but whose interarrival
times and service times may have general distributions, Reiman [24] proved
that under the heavy traffic condition, the normalized queue length process
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converges weakly to a reflecting Brownian motion (RBM) as defined and
constructed in Harrison and Reiman [15]. Reiman’s proof was later simplified
by Johnson [21]. Reiman’s result was extended by Chen and Shanthikumar
[5] to networks in which stations may have multiple servers. Peterson [23]
proved an analogous heavy traffic limit theorem for multiclass feedforward
networks. The term “feedforward” denotes a routing structure in which
stations can be numbered so that customers always travel from lower num-
bered stations to higher numbered ones. Reiman [25] proved a heavy traffic
limit theorem for a multiclass one station feedback queue. Dai and Kurtz [8]
have greatly simplified Reiman’s proof. A heavy traffic limit theorem for
single-class closed networks was proved by Chen and Mandelbaum [3].
Strong approximations for single class networks were discussed in Glynn and
Whitt [11] and Chen and Mandelbaum [4].

Until recently, it was believed that a heavy limit theorem should hold for
multiclass open queueing networks of the type described in this section.
Based on existing heavy traffic limit theorems, Harrison and Nguyen [13, 14]
proposed Brownian models to approximate these networks. Unfortunately,
Dai and Wang [9] have found two- and three-station networks for which
Harrison and Nguyen’s Brownian models fail to exist. (A more explicit
interesting example showing no convergence was given by Whitt [28], who
demonstrated “chaotic” behavior for certain multiclass open queueing net-
works.) Building on Dai and Wang’s example, we prove in this paper the
following general result: There exist multiclass open queueing networks for
which the sequence of normalized work-load processes {(W,, n > 1} is not tight
in the Skorohod topology.

With networks for which corresponding heavy traffic limit theorems pre-
vail, the Brownian approximation models proposed by Harrison and Nguyen
[13, 14] are asymptotically justified. Their approximation scheme, known as
the QNET method, provides a promising new tool for performance analysis of
queueing networks that are not amenable to the exact mathematical analysis.
The first step in a QNET analysis is to replace one’s “exact” queueing model
by an approximating Brownian system; see [13, 14]. The second step involves
steady-state analysis of the approximating Brownian system; see [16], [6] and
[7]. For a queueing network with d stations, this analysis requires that one
determine the stationary distribution of a d-dimensional reflecting Brownian
motion. Finally, summary statistics derived from that stationary distribution
are used to obtain approximate steady-state performance measures for the
original system. Unlike previous approximations, the Brownian approxima-
tions culminate in estimates of complete distributions; readers can find
examples of Brownian estimates for complete sojourn time distributions in
[14].

The remainder of this paper is organized as follows. We introduce some
additional notation and definitions in Section 2. In Section 3, we state the
heavy traffic conjecture and the main theorem of this paper. We prove our
theorem by way of a “pseudo heavy traffic limit theorem,” which we state and
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Justify in Section 4. The proof of our main theorem is in Section 5. Finally, we
discuss some open problems in Section 6.

2. Preliminaries. We now define several processes that will be used in
later sections. Let {¢*(1), $*(2),...} be a sequence of i.i.d. routing vectors for
class k customers. The /th component of the vector ¢*(i) equals 1 if the ith
class k customer next goes to class /, and all other components are zero. Also,
define the c-dimensional cumulative sum processes

(2.1) Dk(r) = ¢*(1) + -+ +p*(r).

Finally, let (/) be the set of all customer classes % that receive service at
station j, that is, #(j) = {k: s(k) = j}. This set is called the constituency of
server j in Harrison [12]. We require that #(j) be nonempty for each
Jj=1,...,d.

Next, set C to be the d X ¢ incidence matrix with components

1, ifke@())
2.2 C,= ’
(22) ik {O, otherwise.

Recall that E,(¢) is the external arrival process for class k. Denote by A,(¢)
the total number of customer visits to class & by time ¢ and by D,(¢) the total
number of customer departures from class % by time ¢. One has as a matter
of definition

(2.3) Ay(t) = E,(2) + 214’ #(Di(2)).

Let {v,(1),v,(2),...} be a sequence of i.i.d. service times associated with class
k customers and let V,(r) be the cumulative sum process defined by

Vi(r) = v, (1) + -+ +u,(r).

We denote by V(A(¢)) the c-dimensional process whose kth component is
given by V,(A,(¢)), and we set

(2.4) L(t) = CV(A(t)).

Note that L = {L(¢), ¢t > 0} is a d-dimensional process; one interprets L (8)
as the amount of work for server j brought by all those customers who have
arrived at station j by time ¢. The process L; was referred to as the
immediate work-load input process for station j by Harrison and Nguyen
[14].

Let Y;(¢) be the amount of cumulative idleness experienced by server j up
-to time ¢ and let Y(¢) = (Yy(2),:..,Y,(¢)) be the corresponding vector pro-
cess. (Prime denotes transpose.) We can express the d-dimensional work-load
process W = {W(z), ¢ > 0} as follows:

(2.5) W(t) = L(t) — te + Y(t),
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where e is the d-dimensional vector of ones. Clearly, the idleness process Y;(-)
may increase only at times ¢ such that Wi(¢) = 0; hence,

2.6 Y = — i : - i=1,...,d.
(2:6) (1) = = inf (L(s) =), = 1,.d

To finish our description of the network model, let us define the fundamen-
tal matrix

(2.7 Q=(I-P) ' '=(I+P+P2+)".

The (%, I)th element of @ represents the expected number of visits to class &
made by a customer who starts in class /. Let @ = (ay,..., a,)’ and define
A=(A,...,A,) via

(2.8) A=Qa.

One interprets A, as the long-run average number of customer visits to class
k per unit time resulting from external arrivals as well as internal transi-
tions. The total traffic intensity at station j is then defined by

(2.9) pi= L Amy.

Let p be the vector of traffic intensities at stations 1,..., d. One can express
the vector of traffic intensities in matrix form via

(2.10) p=CM2,

where M is the ¢ X ¢ diagonal matrix with diagonal elements m,..., m,.

To state our convergence result rigorously, we need to introduce the path
space D°[0,»), which is the space all functions f: [0,©) — R° that are right
continuous on [0,%) and have finite left limits on (0,»). The path space
D0, ) is endowed with the Skorohod topology; see Billingsley [2]. For a
sequence {X"} of D°[0,x)-valued stochastic processes and X € D°[0,»), we
write X"(-) = X(-) if X" converges to X in distribution.

For a function f:[0,%) - R and ¢ > 0, put

17l = sup If(s)l,

O<s<t

and for a vector of functions f = (fi,..., f3)": [0,0) > R* and ¢ > 0, put
£l = (Flles s 1Al

A sequence {f"} of functions f":[0,%) > R* is said to converge uniformly on
compact sets (u.o.c) to f: [0,0) > R* if for each >0, ||[f* —fl; > 0 as
n — ». For a sequence {X"} of D0,>)-valued stochastic processes and
X € D°[0,) defined on a probability space, we write X"(-) - X(:) u.o.c. if
almost surely, X" converges to X uniformly on compact sets.

. 8. Conjecture and the main theorem. In order to rigorously state a
heavy traffic limit theorem, we need to consider a “sequence of networks”
indexed by n. Our setup here follows closely that of Harrison and Nguyen
[14]. Let a™ and m”™ be vectors of interarrival rates and mean service times,
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respectively, associated with the nth network in the sequence. We may
assume without loss of generality, however, that the routing matrix and the
squared coefficients of variations for interarrival times and service times
remain fixed across the sequence of networks. Let p" be the vector of traffic
intensities for the nth network defined similarly to (2.9). We are interested in
a sequence of networks such that for some vectors a, m and B, as n - «,

(3.1 a - a, m" —>m >0
and

where e, as before, is the d-dimensional vector of ones. Condition (3.2)
requires that p — 1 at an appropriate rate and is known as the heavy traffic
condition. As n — «, we are interested in the limit of the normalized work-
load process W" defined by

(3.3) WWU)=7%W”puL t>0.

Before we state the conjecture, let us define some more normalized pro-
cesses. For each t > 0 and n > 1, set

- 1

En(t) = W(E”(nt) - a”nt),

- 1

Vr(e) = W(V”([nt]) — m"nt),

. 1 .
DLn(t) = ﬁ(dh‘z([nt]) —Pynt), i=1,...,¢c,k=1,...,c,

where [ x] is the integer part of x. (Again, note that the processes ®* do not
change with n.) It follows from the classical Donsker theorem that as n — o,

(3.4) Er = ¢°,
(3.5) Ve = g8,
(3.6) dhr =gl i=1,...,c,

where £9, £° and ¢' (i =1,...,¢) are (¢ + 2) independent c-dimensional
zero-drift Brownian motions with covariance matrices I'?, T'® and I'! (i =
1,...,¢), respectively. It is easily verified that I'® = diag(alcil, e accg,c),
I's = diag(mic?,,..., m2%c? ) and I'" is a matrix defined by

cbs,e
Pu(1-Py), ifk=1,

a=1\_p,p, if &+ 1.

CONJECTURE 1. Under the heavy traffic_conditions (3.1)-(3.2), the se-
quence of normalized work-load processes {W", n > 1} defined in (3.3) con-
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verges in distribution to a continuous process W* = {W*(¢), t > 0} as n — .
That is,

- 1
(3.7 wr() = ﬁwn(n )=>W*(-) asn -,

THEOREM 3.1. There exist multiclass open queueing networks for which
the sequence of normalized work-load processes {W", n > 1} does not converge
in distribution to any continuous limit. In particular, Conjecture 1 is false.

The key to the proof of Theorem 3.1 is the “pseudo” heavy traffic result
stated in Theorem 4.1 and proved in the next section together with the
Dai-Wang example [9]. We leave the proof of Theorem 3.1 to Section 5.

COROLLARY 3.1. There exist multiclass open queueing networks for which
the sequence of normalized work-load processes {W", n > 1} is not D-tight.

The definition of tightness is given, for example, in Section 3.2 of Ethier
and Kurtz [10]. The proof of the corollary is given at the end of Section 5.

4. A psuedo heavy trafficlimit theorem. Set
G = CMQP’'AC’,

where M = diag(m,,...,m,), A = diag()) and diag()) is the diagonal matrix
with diagonal elements A,,..., A,. Recall that Y;"(¢) is the cumulative idle-
ness of server j by time ¢ for the nth system and Y "(¢) is the d-dimensional
vector with components Y7',..., Y. Set Y"(¢) = n~'/2Y "(nt). 3

Because Brownian motions are continuous and E”, V" and %" (i =
1,...,¢) are independent, we can and will assume by the Skorohod represen-
tation theorem that the convergence in (3.4)-(3.6) holds u.o.c. Similarly,
henceforth whenever we invoke Conjecture 1, we will also assume by the
Skorohod representation theorem that the convergence in (3.7) holds u.o.c.
With this approach, our exposition becomes considerably cleaner.

THEOREM 4.1. Assume Conjecture 1 is true, namely, that the convergence
in (3.7) holds. Then the sequence of normalized idleness processes {Y", n > 1}
converges to Y™ u.o.c. and the limiting processes (W*,Y *) must satisfy the
following statements:

c

(4.1) T+ @WHe) = Ce*(a) + CMQ(ga(t) + ) ER(A)
+BE + Y0, =

(42) W*@) =0,

(43) Y*0) =0, Y*iscontinuous and nondecreasing,

(4.4)  Y*() increases only at times t such that Wx#)=0, j=1,...,d.
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REMARK. Theorem 4.1 states that if (3.7) is true, then the Brownian model
proposed by Harrison and Nguyen [13, 14] is the correct model. In fact,
Harrison and Nguyen summarily referred to this result (namely, Theorem
4.1) in Section 5 of [14]. We offer a complete proof in this paper and
consequently use this theorem to prove Theorem 3.1 in Section 5.

Turning to the proof of Theorem 4.1, we begin by introducing some
important notation. For j = 1,...,d and ¢ > 0, define 7"(¢) to be the arrival
time at station j of the customer currently being serviced there if W,*(¢) > 0,
and to be ¢ if W;"(¢) = 0. Let 7"(¢) be the d-dimensional vector defined in the
obvious manner. This definition of 7"(¢), which is slightly different from what
was given in Peterson ([23], page 103), enables us to give a concise proof of
Lemma 4.2. With 7'(¢), one can verify that the number of class % customers
who have departed from station j = s(k) by time ¢ is given by

Aj(7/*(t)) — 1,if server j is currently serving
(4.5) Dp(t) = a class & customer,
Aj(7/(t)),  otherwise.

We will use A™(7"(¢)) to denote the c-dimensional process whose 2th compo-
nent is A}(7J;,,(¢)). For each ¢ > 0 and n > 1, define

() = %Tn(nt), Fn(¢) = %(ent — (nt))

and

_ 1 _ 1
A1) = AN (nt),  AN(8) = = (A () = N't),

where A" is defined similarly to (2.8). The following Lemmas 4.1 and 4.2 hold
in general without the assumption of convergence in (3.7).

LemMA 4.1. For almost every sample path o and each t > 0, there exists
k = k(w, t) independent of n such that

NAZ(w, ) < «, k=1,...,c,n>1.
Proor. Let Sp = {S}(¢), ¢t > 0} be the renewal process associated with
class k& service times. That is, for any ¢ > 0,
Sp(t) = max{l > 0: V;*(1) < t}.

Let T} (¢) be the cumulative time that server s(k) has devoted to class &
customers in the interval [0, ¢]. Then, the number of class £ customers who
have departed from station s(%) by time ¢t is D}(¢) = SHTy(¢)) < S;(#).
Therefore, from (2.3), we have

A0 =E'(1) + T OH(STA0)) S B + T OHSH0).
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(Inequalities between vectors here and in the sequel are inequalities between
corresponding coordinates.) The lemma then follows from the functional
strong law of large numbers for random walks and renewal processes. [

From the definition of 7(¢), it follows that
(4.6) t=10(t) + W(r(2)) — €'(t),

where €/'(¢) is 0 if W;"(¢) = 0, and otherwise is equal to the remaining service
time of the customer currently occupying server j. Define 7/(¢) =t — 7/(¢)
and note that

W (17(2)) = €'(2) = 7"(2) < W (77(2))-
The next three results show that under the heavy traffic scaling, the pro-

cesses 7"(¢) and W"(¢) are close for large n. We begin with the following
lemma, which proves that €/'(¢) is negligible under the heavy traffic scaling.

LEMMA 4.2. Forj = 1 ., d,

1li e(nt 0, .0.c. .
nl_r)r:o‘/_ "(nt) —> u.0.c.asn —> ®
Proor. It follows from the definition of ej"(t) that

0 <¢'(t) < max max v (i),
( ) ke®@()) 1<i<A}() k( )

where {v(1),v(2),...} is the sequence of iid. service times for class &
customers. An application of Lemma 3.3 from Iglehart and Whitt [18] yields

1
—e(n-)

Vn

LEMMA 4.3. Suppose the convergence in (3.7) holds. Then
7"(t) > et u.oc.asn —> ®,

— 0, as.asn — ®, O

t

where e is the d-dimensional vector of ones.
ProOF. Let W,*(¢) = (1/n)W "(nt). Then,
Wwn(= 1 n 1 An Wn(=n
Ww; ('rj"(t)) - —ej (nt) = ;Tj (nt) <W; (‘rj (t))

Because 7"(s) < s for s > 0,

1/\
— . <
—37(n0)|

1
I r r“fﬁ (n)

With the assumption of (3.7) and Lemma 4.2, the lemma is proved. a

LEMMA 4.4. Suppose the convergence in (3.7) holds. Then,
7*(t) > W*(t) wu.oc.asn —> .
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ProoF. Because
W (' (1) = €/(8) = ¢ — 77(2) < W (7}(2)),

we have
. 1 -
W (7 (1) - 7o (nt) =) < W (7(1))-

The lemma follows immediately from assumption (3.7) and Lemmas 4.2 and
43. 0

LEMMA 4.5. Suppose the convergence in (3.7) holds. Then
A™(t) > At u.o.c.and D"(t) > At u.o.c.asn > o,

where D™(t) = (1/n)D™(nt).
Proor. It follows from (2.3) that
AMt) = E"(t) + ¥ ®*"(Dg(t)),
k=1

where E™(t) = (1/n)E™(nt) and ®*"(t) = (1/n)®*(nt]) for k=1,...,c.
Therefore,

A™(t) — At =E™(t) —at+ Y (D*"(Dp(¢)) — P,Dp(¢))
(4.7 E=1
+P'(D"(t) — AC'7"(t)) — P'AC'(te — 7"(1)),
where we have used the fact that
A=a+P'A
and P, denotes the kth row of P. Using (4.5), we have

|AH(7(t)) — D(t)] < %

Therefore, we can replace D"(¢) in the third expression on the right side of
(4.7 by A™(7™(t)) when n is large. Hence, by Lemmas 4.1 and 4.3 and a
functional strong law of large numbers, we have almost surely,
limsupllA™(-) — A-l; < limsup P'||A™(7"(-)) — AC'7 (),
n—o n-—o

< P'limsupllA"(-) — A-l;.

n—-o
Because all entries of (I — P')"! are negative,
limsup||A*(-) —A-ll; <0 a.s.

n-—o

and hence
lim |[A*(-) = A-l; =0 as.
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The second part of this lemma follows from the first part, (4.5) and Lemma
43. O

LEMMA 4.6. Suppose the convergence in (3.7) holds. Define for each t > 0,

c

n(t) = Q[ £°(t) + T (M) - PIACWH(1)).

k=1
Then
A™(t) > n(t) u.o.c.asn — .

Proor. Let A" = diag(A"). First, note that
Ar(t) =E"(¢t) + ¥ d»(Dp(t)) + P A(7"(2))
k=1

— P'A"C'7"(t) + P'Yn (D"(t) — A*(7"(t)))

and
[+

n(t) = £%(t) + X *(Mt) + Pm(t) — PPAC'W*(t).
k=1

Thus,
An(t) — m(2) =En(t) — £2(t) + ¥ (94 (Dp(t)) — £4(A0))

+ P'(A"(F"(8)) — n(7"(1))) + P'(n(7"(£)) — n(¢))
— P'(A*C'7"(t) — AC'W*(¢)) + P'Vn (D"(t) — A*(7"(¢))).

Hence
LA(-) = n()le < IE™() — €2C)le + XL 1DF(DR(-)) — £*(A )l
k=1
(4.8) + PIAM7 () — n(F ()l + P'In(7" (1)) = n()le

1
+ P'||A*C'7 () — AC'W*()|l; + P'e—,
IA*C'7"(-) (e e
where é is the c-dimensional vector of ones. Because ?j"(s) <sforall s>0
and j =1,...,d, we have
IA™(7"(-)) = n(F (Dle < NA) = 0.
Therefore, it follows from (4.8) that
(I-PHIA ) = n()lle :
<|IE"() - &)+ X ||<i>k’"(1_7£,‘(')) — eF (M)l
(4.9) k=1

1
+ P'lln(7"(+)) — ()l + P'IAPC'7 (-) — AC'W*()ll, + P’é—‘/—;—

= {7 (t).
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Again, note that @. Premultiplying both sides of (4.9) by @, we have

1A(-) = 2l < QL™(¢).

By (3.4) and (3.6), Lemmas 4.4 and 4.5, the continuity of processes £* and 7,
£™(t) » 0 a.s. as n — . Hence we have proved Lemma 4.6. O

PrOOF OF THEOREM 4.1. To prove Theorem 4.1, observe that from (2.4)
and (2.5),
Wn(t) = CV*(A"(t)) + CM"A"(t) + Vn (p" —e)t + Y"(¢).
By Lemmas 4.5 and 4.6 and assumptions (3.5) and (3.2), we have
CV"(A™(t)) + CM"A"(t) + Vn (p" — e)t

- CE5(At) + CMQ| €°(¢) + Zc: ER(M ) — P'AC'W*(t) | + Bt
k=1

u.o.c. as n — «, Because the mapping defined in (2.6) is continuous, Theorem
4.1 follows immediately from the continuous mapping theorem. O

REMARK. Because a Brownian motion is almost surely not a process with
bounded variation, the matrix I + G must be nonsingular in order for a
solution of the system (4.1)-(4.4) to exist. (See the argument given in the next
section.) Multiplying both sides of (4.1) by R = (I + G)™1, one has

(4

W*(t) = RCES(At) + RCMQ(g“(t) + ) §k(Akt)) + RBt + RY*(t).

k=1

For each ¢ > 0, set
X*(t) = RCES(At) + RCMQ(g“(t) + i‘, fk(Akt)) + Rpt.
k=1

Then X* is a Brownian motion with drift vector § = RB and covariance
matrix
c
I'* = RC[T*A + MQ(I"’ + Y /\kI'k)Q’M’]C’R’.
k=1

If one can show that {X*(¢) — 6¢, ¢+ > 0} is a martingale with respect to the
filtration generated by (W *,Y *), one recognizes that W* is a semimartingale
reflecting Brownian motion (SRBM) starting from zero, defined by

(4.10) W*(¢) = X*(¢t) + RY*(t), t=>0,

" and (4.2)—(4.4) with covariance matrix I'*, drift vector 8 and reflection matrix
R; see [27] for the definition of an SRBM. Reiman and Williams [26] proved
that if an SRBM exists, the matrix R must be completely-%. In particular,
the diagonal elements of R are positive. Conversely, Taylor and Williams [27]
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proved that if R is a completely~-¥ matrix, then the corresponding SRBM
exists and is unique in law.

5. Proof of Theorem 3.1. Now we present the example of Dai and Wang
[9] to show the limiting process W * in Theorem 4.1 does not exist for certain
networks.

Consider the two-station network pictured in Figure 1. Customers arrive
at station 1 according to a Poisson process with rate af. (The index n
indicates the nth system.) Each customer makes five stops before departing
from the network, and the stations visited are in the following order:
1,1,2,2,1. As explained in Section 1, we designate those customers in their
kth stop as class & customers. The service times for class %2 customers are
assumed to be exponentially distributed with mean m, (k¢ = 1,...,5), inde-

pendent of n.
Choose m = (1/10, 1/10, 22/27,5/27, 8/10)" and

. 1
al = 1 - W o
Then af = 1, p" <e, for each n and
lim Vn (p" —e) = (-1,-1)".
n-o

For the foregoing specific data, one can check that det(I + G) = 0; thus I + G
is singular. Therefore, there exists a vector u # 0 such that u'( + G) = 0.

Now, assume that conjecture (3.7) is true. By Theorem 4.1, the normalized
work-load process and idleness process (W",Y") converge to the limiting
processes (W*,Y*) u.o.c., where

(5.1) (I+GYW*(t) =&(¢) + Bt +Y*(2)

and
£(t) = Ce'(x0) + Q[ e°(1) + £ e4(n)
is a Brownian motion with zero drift and covariance matrix
I'=CT*AC' + CMQ(I‘" + i /\ka)Q’MC'.
k=1
Multiplying both sides of (5.1) by u’, we get
(5.2) wé(t) = —u'Bt — u'Y(t) forall ¢ > 0.

It is easy to check that T is a positive definite matrix and hence u'¢ is a zero
drift Brownian motion with variance u'T'u > 0. Note that the right side of
(5.2) is a process of bounded variation, while a Brownian motion is almost
surely not a process of bounded variation. Therefore, the conjecture cannot
possibly hold, and Theorem 3.1 is proved. O
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REMARK. If one takes
m = (1/10,1/10,23,/27,4,/27,8,/10)’,
the reflection matrix R = (I + G)~! becomes

R - —-310/27 16

20 -27)
Because the diagonal elements of R are negative, R is not a completely-¥
matrix. Hence by [26], there is no SRBM W * associated with the correspond-
ing reflection matrix R. Therefore, W" cannot converge to an SRBM in this
case. O

PRrOOF OF COROLLARY 3.1. For x € Dga[0, ), define
I(x) = [e[J(x,u) A 1] du,
0

where

d
J(x,u) = sup Y lx;(t) —x,(t =)l

O<t<u =1

It follows from Lemma 4.2 that
J(W*) -0,

almost surely as n — . Therefore, by Theorem 3.10.2 of [10], any limit
W* = {W*(¢), t > 0} of a convergent subsequence of {W"(:), n > 1} (under the
Skorohod topology) is continuous. From the proof of Theorem 3.1, we know
that such a process W* does not exist. Therefore, {W"(:), n > 1} cannot be
D-tight. O

6. Concluding remarks and open problems. In this paper, we have
proved that conventional heavy traffic limit theorems do not hold for general
multiclass open queueing networks. To identify a maximal subset of multi-
class networks such that the corresponding heavy traffic limit theorems
prevail seems to be a formidable task for the moment. We conjecture that
when there is a single service time distribution associated with each server,
the convergence in (3.7) holds.

In his example, Whitt [28] demonstrated that the nonconvergence of the
normalized work-load process may be caused by large fluctuations of the work
load. In [28], these large fluctuations occur because batches of customers with
short service times build up in the queues. One way to avoid such fluctuation
is to employ some kind of processor sharing discipline (like head-of-the-line
processor sharing) among the customer classes at each station. It is worth-
while to investigate the heavy traffic behavior for multiclass queueing net-
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works under non-FIFO queueing disciplines. Research in this direction is just
beginning; see the Appendix of [17].
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