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AN EXTREMAL REARRANGEMENT PROPERTY
OF STATISTICAL SOLUTIONS OF
BURGERS’ EQUATION!?

By Yiming Hu AND W. A. WOYCZYNSKI

Case Western Reserve University

We prove that a certain (centered unimodal) rearrangement of coef-
ficients in the moving average initial input process maximizes the vari-
ance (energy density) of the limit distribution of the spatiotemporal
random field solution of a nonlinear partial differential equation called
Burgers’ equation. Our proof is in the spirit of domination principles
developed in the book by Kwapien and Woyczynski.

1. Introduction. Burgers’ equation
(1.1) u, +uu,=vu,,,

where u = u(t, x) and constant » > 0, which, essentially is a simplified
version of the Navier—Stokes equation with the pressure term omitted, is an
example of a nonlinear partial differential equation that has been suggested
as a simple model of the velocity field for turbulence, for shock waves when
v |0, as well as for the distribution of self-gravitating sticky dust in large
scale models of the universe [see, e.g., Burgers (1974), Gurbatov, Malahov
and Saichev (1990), Shandarin and Zeldovich (1989) and Woyczynski (1993)].
The equation often arises also in the following generic situation. Consider a
flow u(¢, x) (say, describing the density per unit length of a certain quantity)
on the real line with the flux of this quantity through section at x described
by another function ¢(¢, x). Assume that the flow is subject to a conservation
law

d rx;
EL u(t,x) dx + ¢(t’x1) - ¢(t’x0) =0

when x, < x,. If we assume that the flux ¢(¢, x) = ®(u(¢, x)) depends on the
local density only, then as x, — x;, the above conservation law leads to an
equation of Riemann type:

u, + ®'(u)u, =0.

If the flux function is permitted to depend additionally on the gradient of the
density u according to the question ¢(t, x) = ®(u(¢, x)) — vu (¢, x), then the
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above conservation law leads to the equation

u, + ®'(w)u, = vu

xx?

of which Burgers’ equation is a special case.

Let us assume that the initial velocity function w(0, x) = uy(x). Using
the standard Hopf-Cole transformation [see, e.g., Burgers (1974) and
Woyczynski (1993)], we obtain that
Z(t,x)

I(t,x)’

(1.2) u(t,x) =t1!

where

U(y) (x-y)°
2v  dwt )dy’

Z(t, x) =fR(x —y)eXP(
(1.3)

Up(y) (x—y)"
2y 4vt )dy,

I(t,x) = fRexp(
and

Uy(») = - [ Tug(x) dx

is the initial velocity potential.

In view of its interesting, and sometimes tractable, nonlinear effects, the
Burgers equation model, especially with random initial data (in which case
its solutions are also referred to as Burgers turbulence, has been very
popular in the physical and engineering literature. Over 80 research papers
have appeared on this subject just in the last couple of years. Some of that
literature was compiled in Woyczynski (1993).

At the mathematical level, several recent papers [see, e.g., Rosenblatt
(1987), Bulinski and Molchanov (1991), Hu and Woyczynski (1993), Surgailis
and Woyczynski (1993, 1994a, b) and Funaki, Surgailis and Woyczynski
(1993)] discussed the asymptotic behavior of the rescaled random field u(¢, x)
as t — o, assuming that the initial data u,(x) are various stochastic pro-
cesses (or random fields if the three-dimensional analog of the above Burgers
equation is being considered).

In particular, Rosenblatt’s paper assumes that u, is an asymptotically
uncorrelated stationary process and shows that, under some additional tech-
nical conditions, a centered and rescaled velocity potential [u(¢, x) dx con-
verges weakly to the Brownian motion process. The paper by Bulinski and
Molchanov obtains Gaussian scaling limits for initial shot noise and station-
ary fields with regular spectral density data. A series of papers by Surgailis,
Funaki and Woyczynski obtains a classification of (not necessarily Gaussian)
scaling limits for a variety of initial processes and random fields, which
include Gaussian stationary fields with singular spectral densities and shot
noise processes driven by Cox—Gibbs processes, that is, doubly stochastic
Poisson processes with random intensity which take into account a potential
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of interaction between different “bumps.” The limits there are taken in the
sense of weak convergence of finite-dimensional distributions.

A recent analysis, from the viewpoint of fluid mechanics, of the statistics of
decaying Burgers turbulence can be found in Gotoh and Kraichnan (1993).
One of the first rigorous results for the Hausdorff dimension of shocks in the
zero viscosity limit for Burgers’ stochastic flow was obtained by Sinai (1992)
in the case of Brownian initial data.

2. Main results. In the present paper, we focus on the following prob-
lem. Suppose that the initial velocity potential is a stationary finite moving
average process

N
(2.1) Up(x) = Z C; flxj—i,

i=1
where ¢,..., €& 4, &, &1, ... are independent, identically distributed random
variables, and | x] is the integer part of x. The general question is: How does
the coefficient vector ¢ = (cy, ¢y, ..., cy) in the above initial condition affects

the distribution of the rescaled solution random field u(¢, xvt) for large
values of t?

Throughout the paper the standing assumption is that Ee®¢ < » for 0 <
a < », Also, without loss of generality, we assume that Var £ = 1 in (2.1) and
v=1/21in (1.1).

To formulate our results, we need to introduce the quantities

N N-1 N-k
2.2) o(e) = exp( Y h(ci,ci)) +2 ) exp( Y h(ci,ch))

i=1 k=1 i=1
~(2N - 1),
where
Eela+b)
(2.3) h(a,b) = logW
and

— X
(24) V=1mtV2 ¥ | [**DV(y — x)exp _mx dy| .
t— oo k=—°° k/‘/tT 2

The quantity V is independent of x. Indeed, if F(u) = [“.(y — x)exp
[—(y —x)?/2]dy, the expression under the limit in (2.4) is equal to
Y, VE[F(k + 1)/ Vt) — F(k/ Vt)]%. The function F has bounded variation
and F(k + 1)/Vt) — F(k/Vt) = F'(k/Vt)/Vt + O(/t). So the limit be-
havior in (2.4) is the same as that of ©, F'(k/ Vt I F(k + 1)/ Vt) — F(k/ Vt)],
which tends to [*.(y — x)? exp[ —(y — x)?] dy = V& /2, which does not de-
pend on x. This argument is due to an anonymous referee.
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Our first result, which will be proved in Section 3, describes the behavior of
the one-dimensional distributions of the rescaled solution random field u at
large times.

THEOREM 2.1. Let u(t,x) be a solution random field (1.2) of Burgers’
equation (1.1). Then, for each fixed x, as t — ®, the distribution of t5/*u(t, xVt)
converges weakly to the normal distribution N(0, Vo (e)/2).

It should be noted that all the limit finite-dimensional limiting distribu-
tions of the random field u can also be identified, even for more general
stationary initial velocity potentials [see, e.g., Corollary 3.1 of Surgailis and
Woyczynski (1993)]. However, in the present paper, the point is to provide a
self-contained proof of an explicit formula for the variance of the limiting field
in terms of the coefficient vector ¢. The formula is used subsequently in the
proof of the extremal rearrangement property described in Theorem 2.3.

Also observe that in fluid flow with mass density p and velocity field
u(¢, x), the kinetic energy

2
Ekin = %fp"u(tax) " dX,

so that the scaled expected energy density for large times is proportional to
the variance (for zero mean flows) of the scaling limit field appearing in the
above theorem. The equivalence of the limit variance and the asymptotic
energy density for Burgers’ turbulence provided an initial physical motiva-
tion for the work presented in this paper.

The next result, a corollary to Theorem 1.1, gives a monotonicity property
of the limiting variance o in terms of componentwise ordering of the initial
coefficient vectors c.

THEOREM 2.2. If ¢ = (cq,...,cy) = 0, then the variance o(c) = ofcy,...,
cy) is increasing as a function of each variable c,, ..., cy.

The result is quite natural and its proof can be found also in Section 3.

The final result formulates what we call an extremal rearrangement prop-
erty of the variance o (¢) of the scaled limit of the random field « with respect
to the permutation transformation on c. It is a rather surprising phenomenon
and we have not found anything like it in the literature, so perhaps a few
words of explanation are in order.

The result asserts that a certain permutation of coefficients in ¢ guaran-
tees maximal variance (energy density) of the limiting field. This is clearly a
nonlinear phenomenon. If one considers a linear flow such as described by the
heat equation

¢t = V¢xx ’
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with the initial condition ¢,, then the solution u is expressed by the usual
convolution with the Gaussian kernel, and

1 = (= —y)'
(¢, xVt) = m[_m%(y)eXp( o )

s e - O

So, first, by the ergodic theorem, as ¢ — =, the right-hand side converges to a
constant deterministic limit for a large class of stationary initial data [see,
e.g., Surgailis and Woyczynski (1993)] and the scaling limit problem is trivial.
Second, if we assume the initial datum to be of the form ¢, = exp(U,(y)/2v),
where Uj is as in (2.1), then by (1.3) and Lemma 3.1,

hm¢(t xvVt) = 11m . tY2I(¢t, xVt) = nEexp(c &),

L =
which is obviously independent of how the components of the coefficient
vector ¢ are permuted. Thus, in the case of a linear diffusion equation
(and other linear flows) the problem of an extremal rearrangement is not
meaningful.

The situation turns out to be more interesting for stochastic Burgers’ flow,
where, as we shall see later on [e.g., (2.2)], the scaling limit of the solution
random field does depend on how components of ¢ are ordered and where, at
least in the Gaussian and Poisson cases, we can identify a permutation of ¢
which maximizes the limiting energy density. A majorization method and
Schur convexity ideas are used in the proof, which is supplied in Section 4.
The result is as follows:

THEOREM 2.3. If ¢ is either a Gaussian or a Poisson random variable

and the coefficient vector ¢ = (cq,...,cy) satisfies the centered unimodality
condition

(2.5) 0<c;<cy<cy<cy_1<cg<cy_g=<c4< -,

then

(2.6) o(ec) = mrellxa(l'[c),

where Ilc is a vector obtained from ¢ by permutation Il of its components.

The case of continuous moving average initial data has been considered
recently by Hu and Woyczynski (1994). It is an open question if Theorem 2.3
remains true for moving average initial data generated by independent
identically distributed random variables ¢ with more general distributions.

3. Limiting behavior. In order to prove our basic result on the limiting
behavior of statistical solutions of (1.1), we will need several lemmas.
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LEMMA 3.1. In probability,

(3.1) lim¢=/21(t, xvt) = \/—_I_[[Eexp(c £).

t—> o

ProOOF. Observe that

1 N
VZ_I(t’ xvt) — ngeXP(Cif)

1= |5 (22 —y)"
- ﬁf_me"p(igci €ly1-i — —T_

(x —u)’
2

dy — V2w H[Eexp(c £)

N
du — V2m [ ] Eexp(c; &)
i=1

o N
ool St
i=1

- R+ 1)/ VE (x _u)z _ v
Y l_[exp(c & _ l)[ exp du ngexp(cig)

k——ool— 2

N2
(neXP(C;"fk—i) - l_[lEeXp(cig))f(kH)/‘/Zexp(_ (x—u) ) .
-t i=1 k/VE 2

Il
T MS

7)1 ( t ) ’
where

n(t) = f.‘, (ﬂexp(c EnNri-i) — l_IllEeXP(Cif))

m= —» i=1

(mN+l+1)/\/t-eXp _ (x - y)’ du
(mN+1)/VE 2

Now, it suffices to show that for each [ = 0,..., N — 1, the random variables
n,(¢) — 0 in probability as ¢ — . Since

N N
E Eexp(ci Enni-i) = 1:[1 Eexp(c; &)

and since the products on the left-hand side are independent random vari-
ables for different m’s (for a fixed 1) this conclusion is obtained by a
straightforward application of Chebyshev’s inequality, because for each [ =
0,...,.N—-1,

9 2
b xX—u
Varn,(t) = Y ( (mN””)/‘/t—exp(—-—( 5 ) )du)
me —o \Z(mN+D/VE

N
XV&rI_IleXP(CimeH—i)’
-
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where the variance on the right-hand side above are independent of m and
because

w 2 2
T | [y _(x—w) Ju
me —w \J(mN+D/VE 2

2
xX—u 21
< V27 max (mN”“)/‘/t_exp(—(—L) du < V - O

—w<m<® (mN+D/VE 2

The next lemma computes the mean and the limit variance of the numera-
tor Z in the solution (1.2). Recall that v = 1/2.

LEMMA 3.2.
(3.2) E(t7/*Z(t,xVt)) =0
and
(3.3) Var(t~1/*Z(¢, xvt)) = Vé(c),

where Vis as in (2.4) and

N 2N

N 2
(84) G(e)= X N[EeXP((Ci +eiug)€) - (zl:ll [Eexp(cif)) )

s=—-N\1=~—

ProoF. Property (3.2) is obvious. For convenience let,

_ 2
a, = a(t) = [/ ‘/";t_”/“" (v - x)exp(— %) dy.

Since

E(¢~Y4Z(¢, xVF))"

(y — =)

N 2

= t‘l/zlE(f:(y - x\/t—)exp(—

o N 2
=t1/2[E( Z ak(t)exp( Zcigk_i)) )

k=-o i=1
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using the fact that

- (y-x)*| X
f_m(y — x)exp| — — dyEEeXP(Cif) =0
we have

2 g > ’
E(t~'/*Z(t, 2Vt )) = tl/zlE( ) ak(eXP( Y ciby l) - [Eexp( Y fk—i)))

k=-o i= =

- N

= t1/2 Z akal([Eepoc & leXPZC &
k—-—°°l-—°°

—Eexp E c;é,_;Eexp Z c; & l).

i=1 i=1
Since, for |k — 1| > N, ¥ ;c;&,_; and TN ; c; §_; are independent, we have
that

E(t/42(¢, 0/F))’
® N N
=t¥2 Y Y, a,a,|Eexp ). c;&_;exp ) ¢

=-w|p-]|<N i=1 i=1

N 2
_(EEeXp(cig)) )

Because c; = 0, for i & {1,..., N} and |k — I| < N, we notice that
N N ©

Yot Labi= X bt Y b

i=1 i=1 i=-—o i=—ow

= Y (it gp)éi= Z (ci +cimh—1y) €r—i-

i=—o i=-N

If we set s = k — [, we get that
E{t~2/4Z(¢, xVF))

oo N 2N
=t¥2 Y Y aza,_,Elexp Y, (c¢;+c¢; )&,

k=—-0os=—-N i=—-N

N 2
_(,'l:ll [Eexp(cif)) )

— /2 i ZZV: akak_s( l_[ Eexp((c; + ¢;—s)€r—i)

i=—® g=—-N i=-N

N 2
—(il:IIIEexp(cié)) )
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Notice that

E(-/42(t, xVE))’

@ N N 2
—t/2 ¥ a2 ¥ ( I—[ Eexp((c; +¢; ;) &_;) — (E[Eexp(c@)))

k=-o s=-N \i=-N

N 2
< max i—s)f)_ (n[Eexp(clf)) t1/2
se{-N,..., i=1
o N © N
Y a Lo ,- Y X 4
k=—ow s=—-N k=—-o0s=—-N

< Ct1/?

N e e D/ s (u—x—s/\/Z)2
Z Z a, k+1)/ ((u—x—%—)eXp,(— 2

s=—-Nk=-ow k/\/t_
2
—(u —x)exp(—ﬁ—u;—x))) du

Jooe- -2

(u—2)
—(u — x)exp(——z-—)

<CCZf

s=-N

du

and that, by the Lebesgue dominated convergence theorem, the last term
converges to 0 when ¢ — . In the last inequality we used the fact that

1 (u - x)? ¢
Iaklﬁﬁmuax Iu—xlexp(—T) W

Finally, it is easy to check that lim, ., t!/2 X" . a2 = V € (0,»), which gives
Lemma 3.2. O

The proof of the next lemma will require the following estimate in the
central limit theorem for dependent random variables, which is due to
Bulinski (1987).

ProposITION 8.1. Let {X(2), j € U(t)} be an m(t)-dependent field on a
finite set U(t) € Z¢ and let, for somes € (2,3l and all t > 0,

s\1/s
sup (E[X,()[')" = C,(¢) <.
jeu)
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Then

sup
xR

P(a‘l(t) Y (X;(t) —EX(t)) gx) — ®(x)

jeu)
< kolU(2) M3 (¢)m@e=D(t) + My(t)m?(t)log®~V/2|U(2)]

+U() [ M () m* (1),
where 8(¢) = (Var X, .y, X;,(1)Y? > 0, ko = ko(d), |U()| is the number of
points in U(t), M (t) = 8 1(¢)C,(¢) and ®(x) is the distribution function of
N(, 1.

The last lemma we need to prove Theorem 2.1 gives an explicit limit
distribution for the numerator Z in the solution (1.2).

LEMMA 3.3. The distribution of t '/*Z(t, xVt) converges weakly to
N(,Va(e) as t — .

ProoOF. Throughout this proof, f < g means that
g(t) . g(t)

0 < liminf—— < limsup ——— < «
e F(8)  tawt F(E)
Let
2 N
— X
bu(2) = £¥4 [F 0 (y — x)exp SO gy Texp(eis ).
R/ 2 ic1

We claim that for each fixed x, as ¢ — oo,

© L-%/8]

Y bu(t) >0 and ) b(t) -0,
k=lt5/8] k= —x

in probability. Indeed,
o 2
© —C
{5 o0 <o - oen|-52)
k=158 e 2

=< tY*exp(—tY¥*) - 0
as ¢t » © and

o N-1 =
Z bk(t) = Z Z b[t5/81+mN+l(t)'
=0 m=0

k=|t5/8)

Hence, for each fixed I,

- » (y —=)’
Var mgob“””“'“’v*’(t))’ = tl/z(ftm(y - x)exp(—-—é— dy

= t1/% exp(—2t¥*) - 0
as t — . Now, an application of Chebyshev’s inequality gives our first claim.
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The second claim is proved exactly in the same fashion. Finally, since
{b,(¢)} are N-dependent,

1/3
sup ([Elbj(t)|3) = ¢4,
J
and since, by Lemma 3.2,
1£5/8] 1/2
8(t) =|Var Y bk(t)) =< Va(e) >0,
k=1-15/8]
we get that
1 3\ 1/3
= . - - 1/4
M,(¢) 0] SI;p(Elbj(t)I ) =<t~ V4,
so that, using Proposition 3.1, we obtain that
1£5/8)
sup |[P[&871(t) ), b,(t) <x| — P(x)
xeR k=[t5/8]

< (¢33t~ + (¢5/8) 2 (/4] ) < /8 5 0
as t — o, which gives the conclusion of Lemma 3.3. O

Now, we are in a position to prove Theorem 2.1.

Proor oF THEOREM 2.1. Since
t~1/4Z(t, xvt)
t12(t, x/t)’
using Lemma 3.1 and Lemma 3.3, we get that

Va(c)
’ 2 (1Y, IEe““f)2 )

t5/%u(t, xvt) =

t5/%u(t, xVt) — N(O

Grouping summands in the expression (3.4), separately for s =0, + 1,
+2,..., + N, we get that
G(c) = Ee21¢ .- Ee?ont
+ 2Fec1éFelcrtea)t ... Folen-1ten)E [ plné
+ 9Fec1éEe2éFelc1tcadé ... Folen-2ten)E Focn-16Fooné 4 ...
+ 9Fec1¢ ... Fen-16Fpleaten)éFocaé ... Focné

N 2
I'l [Eeci‘f) ,
i=1

+ 2(Eeé - Eex¢)” — (2N + 1)
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and taking into account definitions (2.2) and (2.3), we get, by a simple
calculation, that
a(e
o(e) = (©) 5 - i
(Hfil lEexp(cif))

The function % introduced in (2.3) enjoys certain additional properties
which are listed in the following lemma. They will be used later on.

LEMMA 3.4. Ifa,b >0, then h(a,b) > 0 and, additionally, the function
h(a, b) is increasing in each variable.

PrOOF. The condition A(a, b) > 0 is equivalent to the condition Ee(@*®%
> Ee*¢Ee®. Let ) be an independent copy of £. Since (e%¢ — e®7)(e% — eb7) >
0 in view of the monotonicity of the functions e®* and e®*, we get that
E(e®® — e®"Xeb — e%7) > 0, which is equivalent to (a, b) > 0.

~ As far as the monotonicity of % is concerned, notice that

Ee(a+b)§ [Ege(a+b)§ [Efe“f
Ee®fEeb  Fe@*Df  [eof’

% h(a,b) = 1
g (@, b) = ——log

so that it suffices to prove that f(x) = Eé£e*¢/Ee*¢ is increasing in x > 0. The
property follows from the fact that

I(x) _ EgPem Eext - (Egert) 'E(gz( s )) i ('E(f = )) > 0

dx (Ee¥¢)? Ee*¢ Ee*¢

O

PROOF OF THEOREM 2.2. The proof follows directly from Theorem 2.1 and
Lemma 3.4. O

4. Extremal property. In this section, we prove Theorem 2.3—the
main result of this paper. The proof, which is somewhat involved, will be
based on a domination technique in the spirit of domination principles of
Kwapien and Woyczynski (1992) and it relies on the notion of Schur convex-
ity. We begin with some notation and a couple of definitions.

In what follows, we denote by (x(i))f‘i 1 and, respectively, (x[i])f"= 1, the order
statistics and the reverse order statistics of the finite sequence (x,)Y ;, which
thus satisfy, respectively, the conditions x;, <z, < -+ <y, and Xy =
Xy = 0 2 Xy

DEFINITION 4.1. Let x = (xy,...,xy5) >0 and y = (y,...,yy) = 0. We
shall say that x >y (read “x dominates y”) if T} , x,; > LT, y), k=
1,...,N-1, and IV, Xy = ¥, Y- Equivalently, x >y if and only if
Trix <Ef iy, k=1,...,N-1and IV x; = TN, v,
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The following property of the order relation > follows directly from its
definition.

ProPoSITION 4.1.  Let a = (a )X, b =(b)¥,, ¢ =(c)N,and d = (d))N,.
If sequences (b;) and (d;) are either both nonincreasing or both nondecreasing
ini,a<bande<d,thena+c<b+d

Functions of several variables which are monotone with respect to the
above order relation are called Schur-convex. More formally, we have the
following definition.

DEFINITION 4.2. Let I C R be an interval. A function f(x): I" — R is said
to be Schur-convex if x > y implies that f(x) > f(y).

It is clear that any Schur-convex function is a symmetric function of its
variables. The following, easy to establish, result [see also Schur (1923) and
Hardy, Littlewood and Pélya (1929)] shows one of the reasons why the notion
of Schur convexity is so useful.

ProposiTiON 4.2. If I CR is an interval, and ¢: I - R is a convex
function, then ¢(x) = L'_; ¢(x;) is Schur-convex on I".

Thus, in particular, we get the following two examples of Schur-convex
functions which are of direct interest in what follows.

LEMMA 4.1. The functions H(x) = X7, e* and G(x) = X, log(Ee*:¢) are
Schur-convex on [0, ).

ProoF. For H(x) it is obvious. As far as G(x) is concerned, d log(Ee*¢)/
dt = E¢e*é/Ee?t, and we already know by Lemma 3.4 that Eée’*/Ee?t is
nondecreasing. Now, we get Lemma 4.1 using Proposition 4.2. O

REMARK 4.1. Although the following observation is not directly used in
what follows, it gives a good insight into properties of the function % entering
in the formula determining o (c), which are related to our domination princi-
ple. So, let A(a, b) be the function defined in (2.3). If u = (u;4,...,%,) > 0 and
v =(vy,...,v,) = 0, then

"—21 h(u;,v,) < ‘_:,l h(uy, v[i]).
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Indeed, since
n n

;h(ul,vl) gloglEexp((u +0,)€)

- Z log Ee%i¢ — Z log Eev:¢,
i=1 i=1

Z h(u[i]’v[i]) Z h(u;,v;) = Z loglEexp((u[l] + U[z])f)
i=1

i=1

> log Eexp((u; + v;)¢)
i=1
and (upy + Vpgpeeos Upy + 0p) > Uy +vq,...,u, +v,), we get the result
using Proposition 4.1 and Lemma 4.1.

Now, the strategy of the proof of Theorem 2.3 in the Gaussian case is as
follows. Initially, we will take a closer look at the sequence
k
(4.1) ry(e) == Y cicion_r = Ry_i(€), k=1,...,N—-1,
i=1
where R,(c) is the covariance function of the initial moving average process
U, [see (2.1)]:
N-k
(42)  Ru(c) = E(Uy(k)Uy(0)) — EUy(k)EU,(0) = .Zl CiCivh>
im
and show that the centered unimodality of ¢ [the fundamental assumption
(2.5) in Theorem 2.3] makes the sequence r(c), ..., ry_,(c) maximal, in terms
of the order relation >, among sequences r,(Il¢),..., ry_,(Ile), where Ilc is
an arbitrary permutation of components of c.

This goal is accomplished in a series of five lemmas (4.2-4.6) which prove
the above domination principle by establishing first similar domination
principles established for simpler sequences.

Once this >-domination property of ry(c),...,ry_,(c) for centered uni-
modal ¢ is obtained, the proof of Theorem 2.3 can be concluded by producing a
Schur-convex function H such that

o(c) = H(r(c)).
The proof of Theorem 2.3 in the Poisson case follows a variation of the above
outline.
The first in the series of five preparatory lemmas demonstrates that for a
centered unimodal ¢, the sequence r(e),..., ry_,(c) is nondecreasing.

LEMMA 4.2. Assume that ¢ = (cy,...,cy) = 0 satisfies the centered uni-
modality condition (2.5). Then ri(c) < -+ < ry_,(c), that is,
N-1

(rk(c))gz_ll = (ra(©)),_, -
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- PrOOF. The lemma is obviously true in the case N = 2. We prove the
general case by induction on N. Suppose that the lemma is true for all
dimensions less than or equal to N — 1 and all v > 0 which satisfy condition
(2.5). The proof that Lemma 4.2 is valid for the dimension equal to N will be
carried out as follows:

First, it is easy to check that, for 2 = 1,..., N — 1,

(4.3) ry(ci,¢9s-.scy) =rp(CysCn_1s---5C1).
Next, let M = min, ¢, and define ¢ = (¢,,..., ¢y) such that
¢, =cy_is1— M.

When c satisfies condition (2.5), then éy =0 and é =(¢;,...,¢y_;) also
satisfies condition (2.5). It can be easily checked that r(¢) = 0 and r, 4(¢) =
r,(8), for k = 1,..., N — 2 (the above property will be used again in the proof
of Lemma 4.6). Using the inductive assumption, we have that

(4.4) ri(€) <ry(é) < - <ry_4(€).

Finally, we notice that
k
ry(e) =kei + ¢y X (6 + Ey-ip) +14(6)
i=1
and that T*_,(¢;, + ¢;, y_;) is increasing in k for £ =1,..., N — 1, so that
ry(c) is also increasingin k& for £ = 1,..., N— 1. O

In Lemma 4.3 we find a >-dominating sequence for sequences r,(c),...,
ry_q(c) in the case where the components of ¢ are either 0 or 1. In what
follows, X p = (xp(1),..., xp(IN)), where yxp is the indicator function of a
finite set D c {1,..., N} and |D| is the cardinality of D.

LEmMA 4.3. IfD c{1,..., N} is a nonempty set, then
(4.5) (ri(Xp)»-->ry-1(Xp)) < (0,...,0,1,2,...,ID| - 1),

where r,’s are defined in (4.1).

ProOF. We proceed by induction on the rows of the array (N, |D). It is
easy to check that Lemma 4.3 is true for N = 2, |[D| =2 and for any N if
|D| = 1. Our inductive assumption is that the lemma is true forall N < K — 1,
|D| such that |D|=1,2,...,N,and for N = K, |D| < — 1 for a certain / < K.
We only need to prove the validity of the lemma for N = K, |D| = [. We will
consider two cases depending on whether x,(1) = 0 or 1.

If x,(1) = 0, then by the definition of r,(x p), the case is reducible to the
case N = K — 1, |D| = 1, which holds true by the inductive assumption.

If xp,(1) = 1, then we introduce a new vector

(4'6) d=(d1""’dN) = (O’XD(Z)""’XD(N))a
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so that [{i: d; = 1}| = I — 1. Using the inductive assumption, we have that
(4.7) (ry(d),...,ry_4(d)) < (0,...,0,1,...,71 — 2).
Since xp(1) =1,

k
m(Xp) = L xo(D)xp(i + N —k) =dy,y_; + r(d)

i=1
and
(4'8) (dN""’dZ) <(ON—l’ll—l)’
where 0; is the vector with i components all equal to 0, and 1, is defined in a
similar fashion. Therefore, by Proposition 4.1 and from (4.7) and (4.8), we get
that
(4.9) (ri(xp)s--->ry-1(xp)) < (0,...,0,1,2,...,1 - 1),

which completes the proof of the lemma. O

REMARK 4.2. Notice that when x , satisfies condition (2.5), then
(rl(xD),...,rN_l(XD)) = (0,...,0,1,2,...,|D| - 1).

In the next two lemmas we will explore the >-domination by centered
unimodal sequences ¢, starting with 0, 1-sequences, for auxiliary functions
w,,, which are defined as follows: For ¢ = (cy,...,cy), d = (dy,...,dy) and
k=1,...,.N—-1,

k
(4.10) wy(e,d) = Y (¢;+ ¢ion_1)didin_s-
i=1
It is easy to see that
(4.11) wk(cl + C2,d) = wk(cl,d) + wk(02,d)
and
(4.12) w,(ace,d) = aw,(c,d).

LEMMA 4.4. Let D, c D c({1,2,...,N} and let 11 be a permutation on the
set {1,..., N} such that both

Ixp, = (xp(TI(1)),..., xp(II(N)))
and

Oxp= (XD(H(I))»---a XD(H(N)))
satisfy the centered unimodality condition (2.5). Then

N-1 : N-1
(4.13) (wk(XD,aXD))k=1 < (wk(HXDl’HXD))k=1'
ProoOF. The proof will be carried out in three steps.

STEP 1. Let e/ =(ef,...,e{) =(0,...,0,1,0,...,0), j=1,...,N. Then
Xp, = Ef’:l xp(Jj)e’ and, using property (4.11) and (4.12), we have, for each
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N

(4.14) wk(XDl’XD) = gleD,(j)wk(ej,XD)'

By a simple calculation, we obtain that, for each £ =1,..., N — 1 and each
j=1,...,N,
‘ k
w,(e’, = el + el n_1)xp(i i+N-k
(4.15) k( XD) igl( +N k) p(2) xp( )
= xp()(xp(Jj + N —k) + xp(j — N + k)).
Putting (4.15) into (4.14), we get
(wl(xD17XD),---’wN—l(XDl,XD))

(4.16) = .ZDXDl(i)XD(i)((O’-'-,O, xp(1); xp(2), .- » xp(i-1))

+(0,...,0, xo(N), xp(N-1),..., xp(i+1))).
STEP 2. Define a sequence of vectors

a,= (0,151 ,,6) * (0, 15y 40) ERYL
Since
(0, oo ,O, XD(1)7 ceey XD(" - 1)) < (0, 1):;;11 XD(S))
and

(O,...,O, XD(N)""7XD(i + 1)) < (0, 12?’=;’+1Xn(3))’

using Proposition 4.1, (4.16) and the monotonicity of a;’s, we get that
N

(4.17) {wk(Xpl,XD)}:;ll < .ZD a; = ‘_ZIXDl(i)XD(i)ai'

STEP 3. From the definition of a;, we can see that, for i € D, xp(i)a; # 0
and yp(i)1-a; =|D| — 1. Also, if i # j, {,j € D, then

xp(1)(0,15i-1 o0) # Xp(J)(0, 1xit )
and
xXo()(0, 153 o) # xp(A) (0,15 (o))
On the other hand, for i ¢ D, we have that xp(i)a; = 0. Therefore

Dl
(4.18) Z;S a; < .Zl (0,15 yp-pyys2i+i-1) + (05 Ligpi-10,p/21-:)
ieD, i=

and we can easily check that the right-hand side of (4.18) is equal to
(w,(ITx p , TIx p)A=7". This completes the proof of Lemma 4.4. O
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LEMMA 4.5. Let D c({l,...,N} and let ¢>0 be such that D, = {i:
c; #0YcD. If Il is a permutation of {1,...,N} such that both TIxp =
(xp(MGMYL, and e = (e,)N., satisfy condition (2.5), then

(4.19) (we(e, Xp))po1 < (wy (e, Txp))p ;-

PrOOF. Define recursively pairs (8(k), D), so that
D, ={i:c;#0} and &(1) = min{c(i):i € D},

Dy, = {i:c(i) - )l: 5(m) #O,ieD,}

m=1
and
l
8(l+1) = min{c(i) - Y 8(m):i eDl+1}.
m=1

If D, = &, then 8(k) = 0. Now, we can rewrite ¢ as

N
(4.20) c= Y 8(i)xp,
i=1
In view of (4.11) and (4.12), we have that
N
(4.21) wi(e, Xp) = X 8()wy(Xp,s Xp)-
i=1

Notice that, by Lemma 4.4, for each fixed i, we have that

(wk(XDi, XD));:;_: < (wk(HXDi’ HXD));:L_]I‘

Also, from Lemma 4.2, we know that for any fixed i, w,(Ilx ,x p) is
increasing in k. By Proposition 4.1,
N-1

N
(wi (e, >(D))2,=_11 < (.213(i)wk(ﬂxpi, HXD)
i= E=1

and we can easily check that

N N-1
(4.22) (wk(Hc,HXD))::ll = ( )» a(i)wk(HXDi’HXD) )

i=1 k=1
which completes the proof of Lemma 4.5. O

The last lemma contains the central domination idea.

LEMMA 4.6. If c satisfies the centered unimodality condition (2.5), and the
" sequencery(c), k =1,..., N — 1, is as defined in (4.1), then, for any permuta-
tion on the components of ¢,

(4.23) (r(le))iy" < (ri(e))isy .
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ProoF. Let D ={i:¢; # 0}, D° =({1,..., N} — D.For a fixed N and |D| =
1, Lemma 4.6 is trivially satisfied. Thus, we proceed by induction on |D|.

Suppose that the lemma is true for |D| < A — 1. Introduce M = min{c;:
¢; # 0} and ¢ = (¢;) such that

. _[ei—M, ifieD,
0, if i € D°.
Let D, = {i: ¢; # 0}. Then, clearly, D, € D and

¢;

k
ciCin_t = L CiCisn-r Xo(§) xp(i + N — k)

i=1

ri(e) =

M= 1=

™

iCian_n T ¥5(6,xp) +¥8(X D),

~
I
-

where, for e =1,...,N — 1,

k
Yi(€,xp) =M Y (& + & n-1)xp(i) xp(i + N — k)
i=1

and

k
¥y2(xp) =M% Y xp()xp(i + N — k).
i=1

Since [(i: ¢; + 0} <k — 1, by the inductive assumption and the property
mentioned in the proof of Lemma 4.2, we have that

(ri(HE))?’;ll < (ri(é))?i_ll‘
On the other hand, by Lemma 4.5 and again, by the property used in the
proof of Lemma 4.2, we get that

(vi(me, mx2)) < (928 X))

which, in view of Lemma 4.3 and, once more by the property used in the proof
of Lemma 4.2, gives that

(y2(Mxp))isy < (Y2 (Xp))icy -

Therefore, Lemma 4.2 and Proposition 4.1 imply (4.23), which completes the
proof of Lemma 4.6. O

Now we are in a position to prove our main theorem.

PrOOF OF THEOREM 2.3. The Gaussian case. Recall that, by (2.2),

N-1 k N
o(e) =2 ) [exp X h(ci’ci+N—k)) + exp( )» h(ci’ci)) - (2N - 1),

k=1 i=1 i=1
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and observe that exp(EY ; A(c;, ¢;)) — (2N — 1) is invariant under a permuta-
tion IT of components c. Also, since ¢ ~ N(0,1), we have that h(a, b) = ab
and

N-1 k N-1
> exp( Zh(ci’ci+N—k)) = X exp(r4(c)),

k=1 i=1 k=1

where r,(c) is given by (4.1). Thus, if ¢ satisfies the centered unimodality
condition (2.5), then by Lemma 4.6,

(ri(€),...,ry_1(€)) > (ri(de),..., ry_1(Ilc)).

Since H(v) = XN !e% is Schur-convex, Proposition 4.2 yields that o(c) >
o(Ilc).

The Poisson case. Observe that the only property of A required by the
above Gaussian case argument is that it is of the form A(a, b) = v(a)v(d),
where v(x), x € [0,%), is increasing and v(0) = 0. Indeed, this follows from
the fact that condition (2.5) depends only on the order of {c,};\, and the v(c,)’s
preserve the order of the c;’s.

For a Poisson random variable £, we have A(a, b) = v(a)v(b) with v(x) =

* — 1, which is increasing and satisfies v(0) = 0. The previous remark
applies, and the proof of Theorem 2.3 is complete. O
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