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ON THE A.S. CONVERGENCE OF THE
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NEIGHBORHOOD FUNCTION
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Some existence and stability results for the equilibrium points of the
one-dimensional Kohonen self-organizing neural network with two neigh-
bors are extended to most nonincreasing neighborhood functions. All the
functions mentioned in the neural literature are included. The assumption
on the stimuli distribution is weakened, too. In the multidimensional
setting, we derive from a general formula various stability and instability
results.

Introduction. The Kohonen algorithm was originally devised and stud-
ied by Kohonen in 1982 (see Kohonen [9, 11]) as a model of self-organization
of the neurotopic maps that lie in various areas of the brain. One may think,
for example, of some retinotopic “projections” from the retina to the optic
tectum. These maps are made up of nervous connections from the ganglion
cells of the retina to the tectum. If we imagine the retina as a square grid, one
important feature of these maps is that the “topology” of the retina grid is
preserved by this set of connections in the following sense: neighbor cells in
the retina are connected to neighbor cells in the tectum. It seems realistic to
assume that the most important contribution to the formation of such maps
comes from a self-organizing process governed by various selection rules of
the spontaneous neural activity of the cells. This led Kohonen to devise a
simple self-organizing algorithm, roughly “mimicking” the behavior of neural
cells.

Although the algorithm turned out not to be very realistic as a biological
model, its striking efficiency as an automatic classifier and quantifier drew
the attention of some statisticians. Indeed, it provides a technique that both
projects a high-dimensional set of points into a lower-dimensional space (say
one, two or three dimensions) and preserves in some way the initial topology
of the set. Then a visualization and a classification can be carried out in this
lower-dimensional space. Various practical applications in data analysis have
been or are being developed (see Varfis and Versino [17], Kohonen [10] and
Cottrell, Letrémy and Roy [5]). From a computational point of view, the
algorithm relies on the local updating of some unit-to-unit connections using
a cooperation /competition rule when stimulated by an input. So, the imple-
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1178 AS. CONVERGENCE OF THE KOHONEN ALGORITHM

mentation on a computer is straightforward and numerically robust. That
partially explains its popularity.

THE INVESTIGATED MODEL. One considers a set of units (or neurons)
represented by a finite subset I of Z¢ equipped with a neighborhood function
o: I-1={—-j i,jeI}-[0,1] satisfying o(k) = o(—k), 0(0) = 1. The
neighborhood function o is the key of the self-organization property: it
measures the strength of the connection between two units in I; o is the
cooperation medium between units, It is a priori defined and describes the
topology of the set I. For instance, if o(i —j) = 1, then i and j are fully
connected, so they strongly influence each other; on the other hand, if
(i —j) =0, i and j are totally disconnected and have no interaction. Some
anisotropic neighborhood function o (i, j) could be considered, too.

Next one considers a sequence (%), , of ii.d. [0, 1]%valued stimuli with
distribution u. The vector w € [0, 1]¢ represents the emitted activity of a cell
lying in a remote area () of the nervous system when excited. So the cells in
) are assumed to get excited at random, independently, with respect to u.
The described phenomenon is that the unit set I intends to “project” onto Q.
The (technical) term project roughly means that the neurons in I “get
connected to some cells in” Q.

At this stage of the modeling, the idea is to identify the state space of the
connections starting from I to the state space of the stimuli emitted by cells
in Q, that is, [0, 1] (see below): the closer a connection is to a stimulus w, the
stronger is the response of the corresponding unit i € I. Then each unit i is
mapped to a [0, 1]%-valued weight vector x; which is simply the connection
mentioned above. The weight vector x; may be understood as the center of
gravi;:y of the actual connections of cell i € I into the area Q identified with
[0, 1]°.

The Kohonen algorithm is an adaptive, unsupervised learning process. It
builds up from the stimulus sequence (w’),,; a family of weight vectors
(x}); < ; that both quantize the stimuli distribution w and preserve (in some
sense) the neighborhood structure provided by o on I; that is:

1. the number of units i whose connections (or weight vectors) x} lie in an
area & of [0,1]? is approximately proportional to u(%) (quantization);

2. two close units ; and j in I—in the sense that o(i — j) = 1—have close
weight vectors, that is, x; = x; (organization).

When d =1, I=({1,...,n} and o(k) = Ly <pp P =1, the algorithm is
known as the 2 p-neighbor algorithm. Theoretically speaking, the most inves-
tigated settings undoubtedly are the zero- and two-neighbor ones (see Cottrell
and Fort [4] and Bouton and Pagés [2, 3]), while long-range functions such as
(k) ==e"*/T are often encountered in simulations. When d = 2, in most
implemented cases, the unit set I is a rectangle. The basic neighborhood
functions o are {0, 1}-valued, for example, the four-neighbor one which
makes up a vertical cross parallel to the axis or the eight-neighbor one which
surrounds each unit by a square. In higher-dimensional settings, one may
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consider a (suitable) subset I of Z¢ and define o as o(k) = Lyy,<, OF
o (k) = e N®/T where N(-) denotes a norm on Z<.

THE ALGORITHM. From now on u will be a strongly diffuse Borel probabil-
ity measure (i.e., u assigns no mass to hyperplanes) with a [0, 1]¢ support.

Let X° = (x?);<; € ([0,119)! be the initial weight vector state and X’ be
the state of the weight vectors at time ¢ € N. At time ¢ + 1, X* is updated as
follows:

(i) Competition phase. Computation of the winning unit i'*! =

i(w'*l, X!) == argmin, . ;l0’*! — X{||. In case of conflict, one takes the lexi-

cographic minimum where || - || denotes the Euclidean norm on R<.
(ii) Cooperation phase.
(1) Viel, X/*'=X!-g,,00"" -))(X] -0,

where (g,),., is a sequence of (0, 1)-valued real numbers. The selected or
winning unit is the one that gives the maximum response to the current
stimulus ’*!: it is the most connected to the cell in Q) that emitted w’*®.
The effect of (1) is to make X/ closer to w’*! proportionally to o(i**! — j), so
that if o(i**! —j) = 1, X} both reinforces its response to w’*' and gets

closer to the weight vector of unit i‘*1.

AN APPLICATION. The automatic coding of a continuous set of grey levels
with light sensors provides a simple example of application. Each sensor i € I
is sensitive to a small range of light signals (grey levels). We approximate
this range by its mean value x!. This value can be modified as time passes.
The sensors are connected along a straight line: except for the edges, each
sensor is connected to two neighbor sensors (see Figure 1). At time ¢ + 1 a
grey level signal w‘*! is sent and the most sensitive sensor is selected. Then
its sensitivity is slightly tuned toward w’'' and the same is done for its
neighbors. At the end of the process the sensitivities (X}'),. ; are ordered in
an increasing or decreasing way and the number of sensors sensitive to a
given range of grey levels is proportional to its frequency in the sequence
(@), , ;- Both self-organization and quantization occurred.

A two-dimensional example is displayed in Figure 2: 7 X 7 = 49 units are
arranged on a square grid, the neighborhood function is set at 1 for the eight
nearest neighbors (when in I) and 0 elsewhere. The stimuli distribution u is
U([0, 1]?) and the step &, slowly goes from 0.1 down to 0.01. One starts from a
random value (x?),. ;.

SOME MATHEMATICAL BACKGROUND AND A FEW RESULTS. Putting the recur-
sive updating of the algorithm (1) in a shorter form yields
(2) VtEN, Xt+1=Xt_8t+1Ha(Xt’ wt+1);

(X%, is a Markov chain. The chain is homogeneous if &, = ¢ > 0 (P, will
then denote its distribution starting from x). Let D; := {x € ([0, 1]%)'|x; # «;,
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Fi1G. 1. Representation of the weights in the stimuli space (d = 1).

if i # j} be the set of ([0, 1]¢)!-valued vectors with pairwise distinct compo-
nents. If x € D,, then, P,-a.s., X’ € D, for every ¢t € N.

Referring to the Kushner and Clark approach (see Kushner and Clark
[13]), the “conditional” a.s.-convergence of X' is related to the stability of its
so-called ordinary differential equation (ODE) which describes the mean
behavior of the stochastic process. To write it down, we need to define the
Voronoi tessellation.

DEFINITION 1. The Voronoi tessellation {C;(x)};; of x € D, is defined by

Viel, C(x)=/{0e[0,1])%lz, - ol <lx, - ollif & * i}.

The average function A% of the algorithm is defined by A%(x):=
E(H(x, w')); h° is obviously continuous on D, since u is strongly diffuse.
Then the ODE can be written as

x=—-h?(x), x9 € Dy,

@) R (x) = kZIor(k ~ i)[c (mmou(de),  iel

When o(k) = 1,_g), (X*)en 'is the so-called quantization algorithm (or
Kohonen algorithm with zero neighbor). It provides a “skeleton” for u (see [2],
[11] and [14]). The self-organization problem is then irrelevant. Moreover, A
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F1G. 2. o denotes the weight vectors X}; —shows the connections (i.e., when 1) between units.

is the gradient of

E)(x) = %f min|lx, — ol’s(dw) at every point x € Dj,
[0,1]¢ kel

and (X?), . is then a D;-valued stochastic gradient descent whose attractors

are the local minima (assumed to be isolated) of E, (see [14]). Actually it is

easy to prove that A° is a gradient iff there is some a € [0,1] such that

0(0) =1 and o(k) = a, k # 0. Its potential E, is

E 1= inllx, — wlfu(de) + = ¥ [ llx; — olfu(d
CE(3) = —5— [ minl = oliu(de) 2i=1[[0,ud %, — ol%uw(dw).

The related algorithm is purely quantifying too and has no self-organizing
property.
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Let us turn now to some background on the convergence result for stochas-
tic algorithms. Subsequently, the superscript o will be temporarily dropped,
although (X?*),_ is still supposed to be formally defined by an equation
similar to (2). We now recall the well-known result of Kushner and Clark
about conditional convergence to an (asymptotically) stable equilibrium x* of
the ODE; x* 'is said to be a stable equilibrium if it owns a stable attracting
area I,.. Let x(x° -) denote any solution of the ODE starting from x°
(uniqueness is not required a priori); I« is defined as a neighborhood of x*
satisfying the following:

@ Vxels, VuecR,, x(x°%u) €T
Gi) V x° €T, lim, . x(x° u) = x*;
(iii)) ¥ K c T,«, K compact set, V& > 0, 3 n, > 0 such that

ValeK,|x®—x*ll<m, x= sup ||x(x°,u) —x*|| < &.
uelR,
A sufficient condition for the existence of such a stable attracting area I',« is
that the mean function & is differentiable at x* with a gradient VA(x*)
satisfying:

all the eigenvalues of VA( x*) have positive real part.

This comes from the existence of a local strict Liapounov function V for the
ODE given by
+ o0
V()= [ llem*™(x - x*) | ds.
0
The celebrated Kushner—Clark theorem (see [13]) reads as follows.

THEOREM 1. Assume that ¥,, .6, = +® and ¥, 62 < +«. Let x* be a
zero of h and let K be a compact subset of its stable attracting area T',«. Then
the sequence (X*), . , “conditionally” (a.s.) converges to x*; that is,

X! - x* ast —» +o
on the event A% = {(X*"),,, is bounded and X* € K infinitely often)}.

This leads to the following definition.

DEFINITION 2. If (X?), .y satisfies Theorem 1 and x* is a stable equilib-
rium, (X?), .\ “conditionally” a.s. converges to x*.

A “regular” a.s. convergence general result is available as well. It relies on
some global assumptions on % (see, e.g., Duflo [6]). Some background is
provided in Section 2.

However, in actual simulations, the Kohonen algorithm, as well as many
. stochastic algorithms, is implemented with a (small) nonvanishing step pa-
rameter. Thus it is also interesting to pay attention to the fluctuations of the
constant step algorithm (&, = ¢) around the trajectories of the ODE as & — 0.



J.-C. FORT AND G. PAGES 1183

Assume that for every starting value x° in a domain D, the ODE admits a
unique maximal solution x(x?,-) living in D (or its closure) up to + .

Let (X*%),, o be the algorithm with constant step & > 0 starting from x°.
One defines the stepwise functions X®) by

Xs(s) = X%t jfse [te,(t + 1)8[‘

Then the functions X(®) approximate x(x°,-) in the following sense (see
Jacod and Shiryaev [8] and Kushner [12]):

X© — x(x°,)
Ve

where Uy is for the compact convergence topology and Z denotes a (possibly)
multidimensional Brownian diffusion process defined by

(4) X© -x(x°") »py, 0 and = 9w, Z 88 &0,

dZ,= —Vh(x(x°,s))ds

+ (j:H‘H(x(xo, s), w)u(dw) — h'h(x(x°, s)))l/2 dw,.

One verifies once again that the asymptotic behavior of the algorithm is
driven by VA along the path x(x?,-) of the ODE.

Let us come back to the original Kohonen algorithm. To situate this work
precisely, we finally recall the main previous mathematical results. All of
them are related to the one-dimensional case. Let I ={1,2,...,n} and o(k)
= 1<y (algorithm with two neighbors). Let F, = {x € R", 0 <x; <x, <
- <x,<1} and F,={x€R", 0<x,<x,_, < <x; <1}. In [4], [2]
and [3] the following results are established.

SELF-ORGANIZATION (with constant step &, = ). The sets F,” and F, are
absorbing sets, and the hitting time of F, == F,f U F, is P,-a.s. finite and
admits an exponential moment, uniformly with respect to x € [0, 1]" (the
assumption supp(u) = [0, 1] can be relaxed; see [2]).

CONVERGENCE IN DISTRIBUTION (with a constant step &, = £). There exists
a unique probability measure »* on F* st., for every x € F,*, P,-as.
Xt - 5u* (actually the chain is Doeblin recurrent).

CONVERGENCE (with a “decreasing” step). If L,s, = +®and L,s? < +:

(a) the average function 27 has (at least) one equilibrium point x* in F,";

(b) if u has a strictly log-concave density f > 0 on (0, 1), then any equilib-
‘rium x* is stable. Hence, X* — x* conditionally a.s.;

(c) if u = U(0,1D, ~” has a unique equilibrium x* in F,” and X’ — x*
a.s.
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Therefore, as far as mathematical treatment is concerned, rigorous results
are not numerous. The one-dimensional results rely on nontrivial Markov
material and are rather technical. No completely rigorous higher-dimensional
results were proven so far (see Ritter and Schulten [16] for a physical
approach in a two-dimensional setting with uniform stimuli).

This paper is devoted to the study of the Kohonen algorithm in the
quantization phase for general functions o in both one-dimensional and
multidimensional settings. The quantization phase corresponds to the con-
verging properties of the algorithm, so we assume that the usual decreasing
step assumption holds:

Y &=+, Y &2 < +oo.
t>0 t>0

Our aim is to provide some simple conditions on o and u that imply some
(a.s.) converging properties for the algorithm. All the one-dimensional results
formerly established for some particular functions o are included in ours and
we now reach all the o-functions mentioned in the neural literature (see
Ritter, Martinetz and Schulten [15] and [11]). Furthermore, we relax the
assumption on the stimuli distribution u (compare the existing results above
and those of Section 1.2).

The most general result is Theorem 2, which states that (under suitable
assumptions) all the equilibrium points of the ODE are stable, so that, once
organization occurs, the algorithm conditionally a.s. converges to one of them.
Regular a.s. convergence is established for uniformly distributed stimuli
(Theorem 3).

In the multidimensional case (d > 2) several stability and instability
results are investigated. First, a general formula for VA is established
(Theorem 4) which can be used numerically. Then Theorem 5 provides
various stability and instability results when u is a product of independent
marginals. We check that if a product-grid made up of marginal equilibrium
points is an equilibrium point for the whole algorithm, it is usually not stable
[Theorem 5(a)]. The particular case of the zero-neighbor setting and U([0, 1]2)
ii.d. stimuli is completely solved [Theorem 5(b)]. We finally investigate the
case of a d,-dimensional unit set I stimulated by some i.i.d. [0, 1]%:*%2-valued
r.v. with a small variance along [0, 1]%2 [Theorem 5(c) for the Kohonen string
and Theorem 6]. As a conclusion, some simulations illustrate most of the
theoretical or numerical results.

The paper is basically divided into two parts. The first part, made up of the
first two sections, is devoted to the one-dimensional setting: Section 1 deals
with conditional a.s. convergence and Section 2 shows the a.s. convergence in
the uniformly distributed case. The second part (Sections 3 and 4) deals with
the higher-dimensional results. Section 4 presents the simulations and some
provisional remarks. .

'The canonical inner product in any R? will be denoted (:|-).

1. General results in the one-dimensional setting. Throughout this
section, we study the one-dimensional Kohonen algorithm. As d =1 the
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neighborhood function is simply defined by a function o: N — [0, 1] with
o(0) = 1. We set for notational convenience o(k) = 0, £ > n. The following
proposition, whose proof is obvious, describes the (two) absorbing classes of
the algorithm.

PROPOSITION 1. If o is nonincreasing, the two convex subsets F,| and F,
are left stable by the algorithm.

From now on, as far as convergence is concerned, we will always assume
that the initial value x of the algorithm lies in F;'.

Let x € F+ We define the (n + 1)-tuples % by %, = 0, %, = (x, + x,_,)/2,
2<k<n, %,,, =1 As x € F/, then the functions H” and A are given by

Vie({l,...,n}, Hf (x, 0) = i o(lk —il)(x; — @)1y, 5, (@),
k=1
(5)
Vie{l,...,n}, &%(x) = z a-(lk—zl)f (x; — 0)u(dw).

125, £544]

Notice that if u is diffuse, then h” has a continuous extension on the closure
FF of F;} given by (5). From now on, when d = 1, h° will always denote this
extension. After these preliminary results, we are in a position to discuss the
existence and the location of the equilibrium points.

1.1. Existence of an equilibrium point. The existence of an equilibrium
point x* is provided by the following proposition.

PROPOSITION 2. If the probability measure w is diffuse, then there exists at
least one equilibrium point x* in the closure F, of F;, that is, satisfying
h°(x*) =0

ProoF. If w€[0,1], F;} is stable under Id;.— ;H°(,w). As F,| is a
convex set, (Id.—. —h")(F") c F7. Hence F7 is left stable by the continuous
extension of Idz:— 3h® on F,, The Brouwer fixed point theorem completes
the proof. O

We will now prove that, under suitable assumptions, any equilibrium point
x* actually lies in F,.
PROPOSITION 3. Assume that n is diffuse and o is nonincreasing.
(a) If {0,1} c supp(p), then 0 < x¥ <x* < 1.
(b) If supp( w) = [0,1] and if o satisfies assumption (%),
(#A=(n=2ando(l)<1l)or(n=8and c(2) <1)
or (n=5and o(3) <1),
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then x* lies in F, .

ProOF. (a) If x* =0, then AJ(x*)=0 amounts to o(ln —nD/J(0 —
w)u(d w) = 0, which cannot hold since supp( u) # {0}. So, x¥ > 0;if x}_, =0,
then &¥ = x%/2 > 0 and AJ_,(x*) = 0 yields

a(O)jO"m(o — w)u(dw) + 0(1)[;:/2(0 — w)p(dw) = 0.

Both terms are nonnegative; hence [&*/%wu(dw) = 0, which is impossible as
(0, x¥ /2] > 0. A descending induction finally yields x} > 0,1 <i <n. An
analogous proof yields xf < 1,1 <i <n.
(b) We will investigate all the possible values for the length p > 2 of the
largest cluster of packed components. Assume that, for some i, x} = x}f,; =
=x},.1.Thenl1<i<n-p+1land &f,,= - =&}, =« as well.
Equations A7(x*) = 0 and A7, ,_;(x*) = 0 now give
i ~%
Y [Far - w)u(dw)o(Ik — i)
k=1"%
n
= X [Fe-snude)e(k i),
k=i+p-1"%%
i
Y [Tt - w)u(dw)a(lk = (i +p — 1))
E=1"%
= EE 1
= X [eo-=f)wu(dw)o(lk = (i+p - 1))

k=i+p-1 7o

Subtracting these two equalities yields

y [ (2t - 0) w(dw) [0(i = k) —o(i+p—1-h)]

k=1 %%
>0 =0
j (0—xf)p(do)[o(k—i—p+1) —o(k—i)].
kl+p 1°%% %’—’
>0 >0

The terms on the two sides of the equality are of opposite sign, so they are 0:
[o(Ik —il) — o(lk —i—p + 1)] [z} — wlp(dw) =0
£
Veke{l,...,ifu{i+p—1,...,n}.

(@) If p = n, then x2‘=x,1<k<n Then i = 1 and (6) reads

[(x w)u(dw)(a(0) —a(n-1)) =f(w—x)u(dw)(a(0>—«r(n—l))

(6)
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which is impossible for ¢(0) — o(n — 1) > 0 by assumption (*) and supp( u)
# {x).

G) Ifp=n—1,thenn>3andi=1,2. If i = 1, then x*_, < x* and (6)
yields, when k. =n — 1,n,

" (a(0) = a(n - 2))] 2% — ol p(dw) = 0
or
(o(1) — o(n - 1))[3f“|x;< — wlu(dw) = 0.

Due to assumption (#), one of these two integrals is 0. Since supp( ) = [0, 1],
either xy_; =x} or x¥_, =x% =1,s0 xf = -+ = x}_, = x¥, which is impos-
sible by the induction assumption. If i = 2, the proof works the same way
round.

(i) If p =n — 2, then n > 4. Still applying (6) shows that there exist
ky€{i—1,i + p} and k, €{i,i + p + 1} (the one that belongs to {1,..., n})
such that

(a(1) = o(n = 2) [Faf - ol u(dw) =0
and
(o(0) — o(n — 3))jf2“|x;r — ol p(dw) = 0.

If n =4, then assumption (%) implies o(1) # o(n — 2) or o(0) #
o(n — 3); the same argument as above implies that at least one more
component (e.g., x}_; or x7, ) belongs to the cluster.

If n > 5, then 0(0) = o(n — 3) and 0(1) = o(n — 2) is impossible unless
o(0) = 0(3), so we can conclude as with n = 4.

(iv) Assume now that p < n — 3 (which implies n > 5). Then there exist
kiel{i—2,i+p+2}, kye{i—1,i+p}and k; €{i,i + p + 1} such that

lo(2) —o(p + i)lﬁikl+lle - wlp(dw) =0,
%,

o (1) = o (p)f " 1xF - wlp(dw) =0,
&%,

15(0) = o(p - DI laf - 0l u(dw) = 0.
E7

The three integrals cannot be nonzero simultaneously: if so, o satisfies
00 =0c(p-1D<o=0(p)<o(2=0c(p+1) < 0(3), which would
contradict assumption (%) since n > 5. If the second or the third integral
is 0, one concludes as above. If only the first integral is 0, then ¢(0) =
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op—-D<o@=0(p)<o(p—-1 <o), that is, c(0) =0c(p -1 =
o(p). Assumption (%) implies p = 2. Two cases are to be inspected:

Case 1 (k; # 1, n). Then x} _, = x} = x} .. It makes up a three-element
cluster of packed components, which contradicts p = 2.

Case 2 (k, = 1,n). Assume, for example, that %2, = 1; then i =3 and
J&|x¥ — ol w(dw) = 0, which implies that 0 = xf = x}. This is impossible
since x* € (0,1)". O

1.2. Stability of an equilibrium point. From now on, we suppose that the
probability distribution u has a density f, continuous on (0,1). Then (5)
becomes

n

Vie(L..,n}, hf(2)= X o(lk—i) [*(x — 0)f(v)do.

k=1
Without loss of generality on f, we will adopt throughout the text the
following convention:

f(%) =f(0")=0 and f(%,,,) =f(1*) =0

PROPOSITION 4. If the density f is continuous on (0, 1), then h is continu-
ously differentiable on F,} and Vh°(x):=Diagl{;,..., 4] +a;licijcns
where

G = Za(lk—zl)f"””f( )do, l<isn,
k=1
(7 Q;; = AC A Chs 1)2|) mbAUind.) (x; — &) (%))
o(lj—i)—e(lj—-i+1
$ ZHD 2(J - )(xi_’zj+1)f(’3j+1)~

APPLICATION (a first result for the algorithm with constant step). It is
stralghtforward from the above formula that if the dens1ty f is bounded, Vh”
is also bounded on F+ so h? is Lipschitz on F+ which, in turn, implies that
the ODE X = —h"(x) admits a unique maximal solution x(x%,-) starting
from x° € F;} and living in F7. On the other hand, all the applications
Idgr —eh” leave F; stable (cf. Propos1t10n 3), so the stepwise Euler approxi-
mations of x(x?, ) defined for every £ > 0 by

2 =20 and x{® =x()— ah(x(s’ s € |et,e(t + 1),

live in 77 up to +». As ® - 2(x° ), x(x° ) live in F; up to +. Then
,the results of functional weak convergence (4) hold for the algorithm with
constant step (see the Introduction). .

The following theorem—the main result of this section—deals with the
algorithm with decreasing step.
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THEOREM 2. Assume that the density f is continuous on [0,1] and f > 0 on
0,1). Let x* € FF be an equilibrium point. If o is nonincreasing and
satisfies assumptzon (), if L,6,= +% and L,e? < +» and if one of the
following assumptions holds:

(i) log fis concave on [0, 1] and f(0) + f(1) > 0;
(ii) log fis strictly concave on [0, 1];

then x* € F} and X' a.s. conditionally converges to x* (see Definition 2).

The rest of the section is devoted to the proof of this theorem, but before
going into technicalities, let us say that the approach basically consists of
showing that the real parts of the eigenvalues of the VA7 (x*) are positive. To
this end, we will establish a variant of the celebrated Gershgorin lemma on
matrices with dominating diagonal (see Gantmacher [7] for the original one).

LeMMA 5. Let A =[a;;]l,.; ;<. be a real-valued matrix and p € {1,.
n — 1} satisfying:

@D Vi#j,a,;<0andVi, EaUzO
(i) a; ;4 , < O provided that they exist;

Gii) 3 7,,.. i, €{1,...,n} st. iy =k mod p and L;a; ; > 0.

Then all the eigenvalues of A have a positive real part.

PrOOF. Let x # 0 be an eigenvector with Ax = Ax and %k, € argmax|x,|.
Without loss of generality, we may assume that x, = 1. Assume that
Re(A) < 0. Then, using (i),

Y a;,;j(Re(x;) —1) = ZakojRe(xj) - Zako,-s Za,w-Re(xj) =Re(A) <0.
j J J

>0
In turn, (ii) implies that Re(x;) = 1 for j = k, + p (if in {1,..., n}). Iterating
the process y1elds that Re(x; ) =1 for every j =k, mod p. Now let i, =
ko, mod p as in (iii). One has

Re(A) = %:aikoj Re(xj) > Z aileoj = gaihoj > 0.

Jj=komod p

J#*kg

Hence Re(A) > 0. O

REMARK. The classical Gershgorin lemma yields the same conclusion
whenever

Vi#j, @a;<0 and Vi, Zaij>0.
J

+ In fact, Lemma 5 will also be the key of the next section devoted to the

uniformly distributed case where regular a.s. convergence holds (see Theorem

3). The proof relies on the positivity of the symmetrical matrix (VA% +*VA? X x)

on F.
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1.2.1. Proof of Theorem 1 (log-concave setting). Following the hypothesis
of Lemma 5, we mainly need to study the sign of both the components and
the (sum of the) lines

L(x)= %
(=X

o

d i
of VA°(x), x€F.

h
dx;
LEMMA 6. (a) Forallx € F},V i +, dhy/dx(x) < 0.
(®) If f> 0 on (0,1) then, for every x € F.:

(1)
2 and o (1 0 orY d oh7 <0
=
n =2 and o(1) < o(0) axi_l(x) an axiﬂ(x) ;
(ii)
n>3ando(2) <o(l) = - " (%) and (x) <0;
i-2 i+2
oy 7
(i) n>5and 0(3) <o (2) = (x) and (x) <oO.
i—-3 i+3

PROOF. (a) Assume, for example, that j < i — 1. Then the result follows
from (7) and from the obvious inequalities o(|j — (i + 1)) — o (] Jj—ib <o,
i <x;<x;, o(lj-iD-0o(j+1-i)>0 and %, <x,,, <x, Hence
ohy/dx(x) < 0.

(b)) One just checks, still using (7), that

ohy o(1) —o(0)
<

T () s =5 (%~ E)f(&) <0
and
ohy g(0) —o(1 i )
ﬂxi+1(x) < _L)_zo-(_)_(xl _xi+1)f(xi+1) <o,

since x € F'.
Items (ii) and (iii) follow the same way. OI

As we are concerned here only with the gradient matrix at x* , We may use
the equilibrium system A7(x*) = 0:

_jo(lj - i|)/§+lwf(w) dw .
(8) xf = S il)fg“f(w) 2o ls=isn
Thus, plugging (8) into expression (7) for VA (x*) finally yields
’ D;(x*)
10 (i — i [Z f(w) do’

xj

o) . Vi<is<n, Lj(x*):=
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where D,(x*) is given (keeping in mind the conventions %, =07, %,,, = 1%)
by
n

D,(x*) = ( X o (i i) [7f(w) dw)

Jj=1

(10) —ni1(0(|j+ 1—il) —a(lj - i)
j=1

X A(&er) T o =il [77(0 = #1)f(0) do

Now the problem clearly amounts to determining the sign of D,(x*). To this
end, let us introduce on F", , some auxiliary functions ¢, defined for every i
by

n+1 n Uit
ef(w) = pr(w) = T r(ki)f(us) Lo (=i [ (0~ w) f(w) do,

where
T(k,i) = o(lk =il —o(lk =1 =il ),

n

Yok —i) [ f(w) dw) .

k=1 Up

¥ (u) = (

Being log-concave, f has right derivatives so ¢ has right partial derivatives
as well and a little algebra gives

e n+1
a;lioz (w) == M(w)f(u)r(l,i) +| X T(k,i)f(uk)(ul—uk))f(ul)q-(l,i)
l k=1

n

- r(l,i)f;(ul)( Y o(li- il)f:f“(w —u)) f( @) dw),

Jj=1
where the subscript + denotes right derivative. A second (right) differentia-
tion, this time with respect to a variable «,,, m # [, finally yields

el . .
(11) YVIi+m, m(u) =T(l,z)7(m,z)(ul—um)
X(fi(um) F(uy) = Fi(u) f(uy)).
The following lemmas show that the derivatives calculated in (11) are
sufficient to specify the sign of ¢;.

LEmMA 7. (a) Forall a €10,1], ¢/(a,...,a) =0,

9. on
Vae (0,1),Vi1e{l,....,n+1), %’i(a,...,a) - o.
l
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(b) Assumethatf > 0 on (0,1). If log fis concave andu € F,, N (0, 1)"*1,
then the symmetric matrix [92 @' /du; 0w, (W), mcq, .. n+1) has a sign struc-

ture given by

1 i+1 n+1
[ x >0 i
X <0
>0 X
i+ 1] - x e |,
: X >0
<0 X
>0 X

the sign of the diagonal terms being unknown a priori.

ProOF. Part (a) is obvious.
(b) Because log f is concave, [ /f is decreasing and

VueFin (0,0, (up = u)[Filun)f(w) = Fi(w)f(u,)] <0.

Simple considerations on the sign of 7(1,7) and (11) complete the proof. O

LEMMA 8. Assume that f > 0 on (0,1) and log f is concave. Then:

@ VueF |, oMu)=0;
(b) if log f is strictly concave and o(1) < o(0), then

Vu61n+1’ ui<ui+1=>¢in(u) > 0.

PrOOF. (a) Assume first that 1 <m <i and u,, € (0,1);

9, ¢
du,,

(Upseosly,) =0

and, following Lemma 7, forevery 1 <l <m — 1,

dZpr
—— >0 omF,,Nn(0,1)""".
du; du,,

Applying this, starting from [/ =1 up to / = m — 1, we derive by a simple
induction that

O<u <uy< " <u, ;<uy,<l1

( 12) ‘9+ ¢in
=
du,,

(Ugyeeers Uy 15 UpyseeesUy) <O0.
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Assume now that m > i + 1. Then, using the inequalities

arel
——(u) =20 forl>m+1
ﬂul &um
and
Zor
——(u) <0 forl<i,
¢9ul ¢9um
one derives in the same way that, for every u satisfying 0 < u; <uy, < - <
U; S Uy SUpy < S, <1,
o, ¢
(13) (Ugyener Uiy Upsenes UmslmitservsUniy) = 0.
m

Combining now inequality (12) and ¢/(u;,...,u;) = 0 yields, by an induction
onm=1uptom=i,
O<u; <uy< - <u; <1=9¢"uy,...,u;_1,8;,...,u;) 20.
The next step relies on inequality (13) at some special u’s satisfying u,,_; =
© =u;,,=1u;, m=>=i+ 1 Thus, carrying on a descending induction on m,
from m=n+ ldownto m =i + 1 yields this time

VYueF,,, o'(u) = 0.
(b) First notice that if o(1) > ¢(0) and 0 < u; < u;,, <1, then, for every

i €{2,...,n — 1}, using the strict concavity of log f:
92
Ju j: ()
i i+1
= (0(1) = 0(0)"(wir1 — ;) (F(w) Filuinr) = () F(i41)) <O
>0 <0
One can easily see that the above inequality still holds if { = 1 or n. Finally,
9ol

O<uy;<u;,,<1= (Upseees Uiy UjiqyenesUyrq) >0

Uit

and, subsequently, ¢(x) > 0. O

PrOOF OF THEOREM 2. (i) The fact that x* belongs to F," follows from
Proposition 3(b). The rest of the proof amounts to the study of three different
cases.

Case 1[n = 2, (1) < ¢(0)]. Using (10) and the conventions £, = 0~ and
%,,, = 1%, one easily checks that

Dy(x*) = ¢ (&*) +f(0)o (i = 1) z o(lk - z!)f lof(w) do

+f(1)o(n - i)kgauk - il)[;;"“(l - 0)f(w) do.



1194 A.S. CONVERGENCE OF THE KOHONEN ALGORITHM

Then Lemma 8(a) implies that D,(x*) > 0, 1 < i < n, and that either D,(x*)
> 0 [if f(0) > 0] or D,(x*) > 0 [if f(1) > 0]. The same conclusion holds for
the L,(x*)s due to (9). As Jh7/Jx,, , are negative, one derives from Lemma
5 (with p = 1) that all the eigenvalues of VA?(x*) have positive real parts.

Case 2[n = 3, 0(2) < (1) = 0(0)]. The L,(x*)’s are nonnegative and, this
time, both D,(x*), Dy(x*) [resp. D,_,(x*), D,(x*)] are positive if f(0) # 0
[resp. f(1) # 0]. Furthermore, Jh7/dx;,, are negative. So Lemma 5 works
with p = 2.

Case 3 [n>5 and 0(3) <0(2) = a(1) = 0(0)]. Then D,(x*), Dy(x*),
Dy(x*) [resp. D,_,(x*), D,_(x*), D,(x*)] > 0 if f(0) [resp. f(1)] > 0 and
oh{/dx;, 3 <0. Lemma 6 works with p = 3.

(ii) Again, three subcases are to be discussed in order to fulfill the classical
Gershgorin lemma:

Case 1 [n>2 and o(1) < 0(0)]. Since %} <x¥ ; Lemma 8(b) implies
L,(x*) > 0 for every i.

Case 2 [n =3, 0(2) < o(1) = 0(0)]. Setting (i) = (i + 1), we have
(1) < 7(0). Let " be the ¢! function related to . It follows from equality
(1) -~ o(0) =0,

er(u) = Ef_l(ulsua’u4""’un+l)’

o (u) = Ei_—zl(ul""’ui—l’ui+2""’un+1)’ 2<i<n-1,

Cu(u) = @i (Uys sty g, Uy)-
The inequalities %} , <%¥ ,, 2<i<n -1, &% <&} and &%}_, <%} and
Lemma 8(b) imply the positivity of all L,(x*)s.
Case 3 [n =5, 0(8) < 0(2) = (1) = 6(0)]. Now we set (i) = o(i + 2)
and @] as above. Evaluating ¢!, 3 <i <n — 2, ¢, ¢3, ¢;_1, ¢5_, with the
appropriate g finally gives the expected result: L,(x*) > 0,1 <i <n.

The classical Gershgorin lemma and Lemma 6(a) complete the proof. The
eigenvalues of VA?(x*) have positive real part, so x* is stable. O

2. The uniformly distributed case.

2.1. Almost sure convergence. Assume that assumption (&) holds. As
f= 1,1, has a concave logarithm and f(0) = f(1) = 1, we know from Theo-
rem 2 that every equilibrium point x* is conditionally stable. Actually this
result can be substantially improved in this particular setting.

THEOREM 3. If o satisfies assumption (%), p = U([0,1]) and L,¢&, = +,
T,&2 < +, then the equilibrium point x* is unique and unconditionally
stable. That is,

VxeF} P-as, X' -x* ast—- +o.

This result relies on the classical Robbins—Monro theorem (in the compact
valued setting; see [6]): if X’ lives in a compact set K and 4 admits a unique
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zero x* in K, a.s. convergence to x* holds provided that (A(x)|x — x*) > 0
on K\ {x*}. The following lemma, whose proof is omitted, yields a simple
criterion to fulfill this assumption.

LEMMA 9. Let K be a convex compact set with a nonempty interior K, and
let h: K - R be a continuous function, differentiable on K such that Vh(x) +*
Vh(x) is everywhere positive on K. Then:

@VxeK,Vyek, x#y = (h(x) — h(y)lx —y) > 0;
M) if {h =0} + Jand {h = 0} c K, then {h = 0} is reduced to a singleton
{x*}.

PRrOOF OF THEOREM 3. It follows from Propositions 2 and 3 that (A% = 0}
c F; (keeping in mind that A is continuously extended on F;). So, accord-
ing to Lemma 9, it remains to prove that VA” +’VA is positive on E. To
this end, we will use again Lemma 5. Prior to any further calculation, we
know (see Lemma 6) that

ohy  ohy ..
+ (x) <0 wheneveri #j.
0xj axi
Then
n [0k  OhY
Lsiym(x) = Z + J (x), ].SiSn,
j=1\9%; dx;

has to be calculated in order to determine its sign. If i € {2,...,n — 1}, we
first calculate

ohy  oh? noo(lj-1=i) —a(lj—il)
+ —L = L — X=X+ X
J§i 9x; o%; (x)] j§1 2 (x, 5T x,“)
o(i)—o(i—1) B
- 2 (xi —.xl)

no(lj=il)—o(j+1-1])

+X

(xi - £j+1 - xj + ii)

j=1 2
—a'(n——i)——;’(n+1——i)(xi_£n+l)
o(1l) —o(0 0) -1
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SO

n -
X+ X4

() = £ (o= 1= - ol = D)~ 25, +
j=2

<(a(0) - 0'(1))(51' _5i+1)
+ o) - ;(ll 1 (%41 — 1)
+0'(|n-—i|) —;(|n+1—i|)(£i_xn) +2l;_’3:-

Using an Abel transform along with expression (7) for dh7/dx;, we get

X+ x,
Ly (x)=0c(i—1)|x; + 2

>0
X1t X,
+o(n —1i) (Z—xi—- ”12 )
(14)
>0
o(i)  _ o(n+1-1i) _
+— (B %) (%, — %) 20
2 7 2 2 -t
>0 >0

Vie{(2,..,n—1}.

If i = 1, n, one checks that some nonpositive terms in the regular formula (7)
for oh;/dx; are canceled due to “edge” effect G.e., £, =0~ and £,,, = 17).
So (14) still holds but as an inequality --- > --- provided that one sets
o(n) =0.

Hence LY™(x) > 0. When [n > 2 and o(1) < 0(0)] or [~ > 3 and a(2) <
o(1)], one checks that

oh? oh?_ dh? oh?
o+ —1<0 and Py it

. < 0.
0x;_1 ax; 9x; 1 ax;

So the assumptions of Lemma 5 are fulfilled with p = 1, which completes the

proof in that case.
If n>5 and ¢(0) = c(1) = o(2) > 0(3), (14) implies that LY™(x) and
LY™(x) > 0. The assumptions of Lemma 5 are fulfilled with p = 2 since

oh? oh?_ oh? oh?
L+ —2 <0 and Py 2

0%;_o 9x; Xito 0%;

<0. a

~2.2. Rate of convergence. Let 2 = (Xt —x*)/ ‘/;t' , t € N, be the normal-
ized error of an algorithm defined by (2). We will inspect some various rates
for the step &,, following the general results contained in Bouton [1] (or [12).
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1. Ifg,=a/(b+1t%),ac(3,1),0 <a <b,then 2! is asymptotically Gauss-
*ian. More precisely, if one defines the stepwise process
Z, =2 ifse[T, T, [withT,= Y g,
1<i<t

then the sequence of processes (. — Zius t € N) converges in distribu-
tion under the Ug-topology to a stationary n-dimensional Ornstein-—
Uhlenbeck process

Z, = exp( —th”(x*))(Zo + fsexp(th"(x*))\/Kqu),
0
where A = [} H'H’ X x*, w) dw. Hence,
2" =Zp(0) =5 Zy,  Zy~g #(0;37)

+ o
with 32 :=[ exp(— VA (x*)s) Aexp(—‘Vh(x*)s) ds.
0

APPLICATION TO THE KOHONEN ALGORITHM. A straightforward computation
yields

A ki (&, — &#)o (b - ih o (Ik - )
=1

1<i,j<n
= S Diag[ #,, - #%,1 <k <n]|S,

where S == [o(li —jD],.; ;<, is the “neighborhood matrix.” Note that A, S
and X2 have the same rank since x* € F; and that A is diagonal iff o is the
0-neighbor function. This result stresses the effect of the neighborhood struc-
ture on the asymptotics of the algorithm.

2. If &,=a/(b+1¢), 0<a<b, let Ay, denote the lowest eigenvalue of
Sym(VA(x*)). Then, still following [1], a central limit theorem holds
whenever a > 1/2A,;,. That is,

+o Id,
2t >, /V(O,E,z,) with 32 = ]; exp[(% - Vh"(x*))s]A

Id
Xexp[t(ai- - Vh"(x*))s] ds,

where Id, denotes the identity matrix.

APPLICATION. Unfortunately, only a lower bound is easily available for
Apin: '

min*

M Ain < Tr(VA? (%))

= X o(lk—il)(&,, - &) -

1<i,k<n

(15) a(0) - o(1)
2 b
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which yields
max, Yo (lk —il)
- .

So, any reasonable hope to observe an asymptotically Gaussian behavior
requires that

A

min

n

b > a«>> 9 —
2max, L, ;.0 (Ik — i)
In the 2 p-neighbor setting (p = 0, 1, 2) that leads to b > a > n/(2@2p + 1)).
When p = 0 (0-neighbor setting), the true value of A, is available (see the
proof of Theorem 5, Section 3.3):

1 T w2

— 22
Amin = 78I (%) ~ and

which shows how loose the above general bound (15) is.

3. Some multidimensional results. We are interested in the Kohonen
algorithm with [0, 1]%-valued stimuli space, a d-dimensional unit set I with
|I| = n and a d-dimensional neighborhood structure o defined on I. For the
sake of clarity, we will denote from now on a unit i € I with bold letters. We
will denote by K (I, u, o) the d-dimensional Kohonen algorithm.

3.1. Grid equilibrium points of a product Kohonen algorithm. In this
section we introduce a more specific d-dimensional model: the product Koho-
nen algorithm.

DEFINITION 3. Let n:=n,; - n; be a decomposition of n. For every
le{l,...,d}, one sets I, :={1,2,...,n;}, o, a neighborhood function on I,
and u,; a probability measure on [0,1]. Then [ ==1I; X - X I;, u = pu; ® -+ ®
ug and the neighborhood function o = o, ® -+ ® g, is written

Vv (i,)) EIZ,i:(il""’id)’j=(j1""’jd)’ o(i-j) = I1 GRS
i 1<l<d
The related “product” Kohonen algorithm will be denoted ®ld= K, wy, o).

Among all the points in D,, some play a special role in that setting: the
grids.

DEFINITION 4. We say that x € D; is an (n,,...,n,)-grid if there exist
some [0, 1]-valued n,-tuples x/, 1<l <d, such that V ie€l, x,;:=
(xill,..., xfd). The symbol x denotes x = x' ® --- ® x%.

PROPOSITION 10. Let x™* be an equilibrium point of the K,(I,, o, w,)-
Kohonen algorithm, 1 <l <d. Then the grid x* =x* ® --- ® x%* is an
equilibrium point of the ®;i= K1}, 0y, n)-Kohonen algorithm. These are the
only grid equilibrium points provided that supp( ;) =[0,1], 1 <l < d.
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PROOF Let i:=(i,...,i;) €1. Once it is noticed that C;(x*) =
1C (x'*), it is stralghtforward that the component 2{!, 1<l <d,i€,
of the average function A? reads

ll_[l Zlo'z'('jz' - iz")l‘«z'( J,,(xl*))
=\ jr=
(16)
X Z ay(lj; — lzl)f xlF — wl),“fl(d‘”l) =0. d

Ji=1

= h‘?l””(xl*) =0
.23
Some stability results for such equilibrium grids are proved in Section 3.3.

3.2. General computation of Vh(x), x € D;. All the multidimensional
stability results rely on the calculation of the gradient of A” at equilibrium
points. This calculation follows from the following slightly technical lemma.
Some additional notation must be introduced. For every i,j € I, we define

x; — x5

. i . x; +x;
I’_L)g ==m, M;j:z {ueRd/(u— 2 Jlxi—xj)=0},

the median hyperplane, and let A¥(d ) be the Lebesgue measure on M 3.

LEMMA 11. Let ¢ be a continuous R-valued function defined on [0, 1]%. For
every x € Dy, let ®y(x) = ¢ ,yp(®w)dw. Then ®; is continuously differen-
tiable on D; and

V 3 3 1
i+j, - e

! fa(x)né.(x) elo ) IIx -zl
(17) ’

x; + x5 s
X( — — w)})t}'(dw)
2
and
(x)=- X (x).
9% jeljxi O%;

Proor. For the sake of understanding, we set d = 2 throughout the proof.
Only the first statement is to be proved since X; . ;®; = [o, 12 ¢(@) dw. Let us
calculate 9®;/dx;(x). First, we prove that if Cy(x) N Cy(x) = & [i.e., Cy(x)
and C; (x) have no vertex in common], then 9®;/dx (x) = 0. Indeed if
Xy = xk + 8338, 8 > 0, then Cy(x) = Cy(«') for small enough S.

We assume now that C;(x) N C;(x) # I (i.e., they have a common vertex).
Let 74 := A 71U, As a first step, we w1ll calculate the partial derivatives in the
d1rect10ns % and 7Y and show that they are continuous. Then, as x —
(7Y, 7V) is continuously differentiable, ®; will be, in turn, continuously

x? "x
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differentiable in the direction x;. Finally, ®; will be & !, Figures 3a and 3b

display the geometrical situation.
Let & == (8, )y < ; With 8; == 873 and 8, = 0 for k # j. Then we have (see

Figure 1a)

w)dw — w)dw = — (w)dw+o(6
'/;Ji(x+8)¢( ) '/;Zi(x)¢( ) '/;f(x)nl'j(x) ) ( )

Thus ®; has a continuous derivative in the direction ¥ given by
w)do.
ar‘i‘“ (= fc(x)nvj(x) )

The calculation of the derivative in the direction 7 jg slightly different (see
Figure 1b). Let &= (8, ), ; with 8; = 675 and Sk == 0 if k # j. Then we
have

®y(x + 8) — Dy(x)
= 6(x)06j(x)¢(w)(m(§) — wl78) tan(a(8))A¥(dw) + o(8),

where m(8) is the mlddle of x; and x; + 8?“ and a(6) denotes the angle
between MY and M3, ;. The contmmty of m(8) and a(8) as functions of &

yields

1 (xi+x

-5 o o)) + o(s
fﬁiu)ncj(x)(o( )lei—lel 2 (dw) +o(3).

CI(V

i
(mC®)-0 T tanBMo(s) ordo
Cl(x) -
N !
Cj(x) I i}
X
C.x 4
i 5 E——
|2 shy - st
3 roper 5 “m( )
2 Cx *(8) .
)
ult * il %y
2
Ck(x) Céx)

@ ®

Fic. 8. Calculation of the gradient of ®; at x: (a) in the direction x;%; ; (b) in the direction of
the median hyperplane M;;.
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It follows that ®; has a continuous derivative in the direction 78 which
completes the proof. O

Now, using (1_7) in Lemma 11 makes straightforward the calculation of
Vh? at any point x € D;.

THEOREM 4. If w(dw) = f(0) dw, f continuous, then h° € CY(D;) and we
have

he!
a&x. (x) = ¥ o(i —k)p(Cy(x))8e"
J kel
+ Y (c(i-k)—o(i—J)
(18) k+#j

1 . 1 X. +x
X (2} — )| S 7% + ( LI w)
Cr(x)NCy(x) 2 ”xk - xj” 2
X f(0)\9(dw), vi,jel,

where k7!, 1 = 1,...,d, denotes the Ith component of h{, (€%,...,&%) is the
canonical basis of R? and 8y; is the Kronecker symbol.

REMARK. Note that (18) is valid for any Kohonen algorithm regardless of
the structure of u or o (product or not).

APPLICATION TO THE GRIDS OF A PRODUCT KOHONEN ALGORITHM.
ProposiTION 12. Let K(I;, py, 0p) ® K{(I,, s, 03) be a two-dimensional

(ny, ny)-product Kohonen algorithm. Assume that My and 1y have continuous
densities f, and f,. Then at any (n,, n,)-grid x == x* ® x2, one has

ag p—
VAT (2) = [ Aty Dngtis, G- Dna+is) Guy i), G i< 1?
with

Ay -1y +iy, G- Dng+in

2) 1) 1 2) @ r@) a 2 @) 1
plsz allh + vll.l)l + gll.h {, 6ll,h 8‘2]2 (oll.l)l B‘z}z + Xlz.lz '11)1)
2) pa (2) (1) ,(2) (2) 1 @), (2)
(olz.lz lll)l + Xll nlz.lz) pllllalz.lz + V’ﬂz'y‘l}l + {, all.halzlz

where [ {18;; + aP] = Vh#> 7t [see ()] is the gradient of h*» related to
Kl(Iz, K5 ),

BY = (oy(li —j + 1) — ay(li — ) £ &)
+(oy(li — ) = oy(li = = 1)) fi(&L41),
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@ .

1 !
3| (@l =i + 1) = oy(li —jl))%

Yij =
J %
.. . fi( %]
—(oy(li = jl) — oy(li = j = 1|))l—(‘JL.IT)‘“ ,
Xir1 — X141
7 = (oy(li = j + 1) = oy (li — ) i &) —=
Xj—Xj
X _£}+1
—(‘Tz(|l =Jj)—oli-j- 1|))fz( ,+1)—,—-*——:,—‘,
x5y e
j+1 Jj+1

le) = oy(li —J|)Mz(cj(xl)),

0L = oy(li —Jl)f (%! = o) (dwy),
=i = [ (5t = @)(x) = o')(do),
X = oy(li —Jl)f (2} = ') py(doh).

ProorF. The proof consists of translating Lemma 11 when x is a grid
x=x'® x2, o( —j) = O'l(lil _j1|)0'2(|i2 _jzl) and f(w) = fl(wl)fz(wz)o The
details are relegated to the Appendix. O

3.3. About the (in)stability of equilibrium grids. Due to these rather
lengthy and somewhat tedious calculations, we are now in a position to derive
some stability and instability properties for the grid equilibrium points of the
Kohonen algorithm with multidimensional stimuli.

THEOREM 5. Let K,(I, X I,, u, ® iy, 01 ® 0,) be a two-dimensional pro-
duct Kohonen algorithm, u, and p, having continuous densities f, and f, on
[0, 1].

(a) A general case of instability. Assume that f; >0 and set a;:=
miny, ,,f; > 0. If there is some nondecreasing function y: N - RY, ¢(k)1 +
satisfying

k A
(19) _Zoaz(j) =o(y(k)), =12,
j=
ind
(i) 0i(1) <1 and ny,:= 0( 'lf(n; )) asn; - +©
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or

(if) oy(1) <1 and n, = o( 22

¥(ng)
then for large erough n, [if ()] or n, [if (ii)], every (ny, ny)-grid equilibrium

is unstable.
(0) If o (k) = 1;,_, (0-neighbor algorithm) and w; = p, = U(0, 1)), then

x* = 1 , 2
2n, 2n, Gy, ig)el

is the unique (n,, ny)-grid equilibrium and
(200 «* is stableiff (ny,m5) € {(1,1),(1,2), (2, 1), (2,2)}.

Furthermore, the (3, 3)-grid has nonnegative eigenvalues, one being 0.

(c) A stability case. If n, = 1, Ky,(I, u, o) is a Kohonen string. Assume
that x'* is a stable equilibrium for K,(I,, u;, 0y). Let x** = [lou,(dw) €
[0, 1]. Then there is some 1 > O such that var( u,) < 7 implies x* = x* ® x2*
is a stable equilibrium of K,(I, u, o).

) asng > +o,

APPLICATIONS AND REMARKS. The assumption [see (19)] in statement (a)
is fulfilled by the usual “long-range” neighborhood functions proposed in
the neural literature ((15) as o (k) == exp(—%/T) or o(k) = exp(—k2/2T),
T>o0.

A more accurate bound than (19), for example, for numerical purposes, is
available if considering directly condition (21) in the proof below.

If 04(1) = 0,(1) = 1, the whole proof of case (a) falls apart. So no result can
be derived on the stability of grids for the standard algorithm with eight, or a
fortiori 37 — 1, p > 1, neighbors (i.e., p square “layers” of neighbors) by this
method.

Proor or THEOREM 5. (a) To prove this instability property, we will first
calculate Tr(VA?(x*)) (Tr for trace). When it is negative, the gradient has an
eigenvalue with a negative real part. Set I' :==2if [ =1,0I'=1if [ = 2:

2
Tr(VA?(x*)) = Z Z (Pi(,l,i),, ai(,li), + Vi(,li),')’i(,l,i),, + gi%z{ifrli,)/)

I=11i,iy
2
= ¥ (Tr( p©) Tr(a®) +Tr(»®) Te(y®) +Tr(£ D) Tr(L D).
-1

The expressions for these traces are
ng

Tr( P(l)) = .gl o'l—(O).u'l(Ci(xl*)) =1,

n;
2
Tr(v®) = L a0 f (s - o) m(do),

i=1 (x



1204 AS. CONVERGENCE OF THE KOHONEN ALGORITHM

1 m
Ti(a®) = 5 L (1) = ox(0) (st = £)fi(=F)
+(Ul(0) - 0'1(1))( - iftl) fi(%%1)
—(1- (1)) 2 (=i — &) fi( &)

[recall that £(£4) = fi(us1) = O],
Tr(¢®) = kg:ll’«z(ck(xl*)) A_le o (li — &),
1 ™ "l* ~'il
Tr) = 5 T (1) ~ ) A — (o0~ ()
i=1 X317~ X4
n; ~l*
- (- £ AEL

1

These yield

2 n;
CUSCIE [ CTER PRI

X{ Xl: /*‘l'(Clil(xll*)) Xl: ap(li - k|)}
k=1 i=1

n; l*
(1 - a,(l))(El( ™) Z f’(_ ),*

b 3 () (i —if*))],
i=1

where we set

nz
E(x)= L [ (%~ ') m(de').
i=1°C«(
We will now find a lower bound for
By (")
l _ zl ! .
A—Zfl(x*) *+xf*—56,l*)
Clearly,
| nl El xll*
Az>a; ) ol -z + ll>1<(—~l)>; where a; == 1nf fi(w).
x* — X; €©,1)

i=1 i i
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Now

n; = n
E(x)za X f:m(xi - “’l)2 do' = % )» [(xz - fi)s - (x; — 5i+1)3]
i=1 % i=1

ap B - .2 L \2 - -
= 3 Z(xi+1_xi)((xi_xi) + (% —%11) +(xi_xi)(xi_xi+1))
i=1

a & - - \2 - 2
=y Y (%1 _xi)[(xi — %)+ (% — %;41) ]
i=1
Jal A
~ 6 2n? 12n%’

~

3 vl — & = A — — A n 4 —_ —
since we have 0 <%,,, — %, =%;,,, —%; +x, — %, and X};%,,, — %, =1
Hence

A 1 ap M 1 )
2 al - + 2 ~
2 12nf [T xP - &P
1 ap n 1
=aq;| = +
\2 * 24n} El Zh -z
1 ap(n)\®
>a|lz+ —=|—
Ne " 24\n,) |

using once again that T (%%, — %) =1 and £/, — &* > 0. Finally,
one gets

Te(Vh? (37)) < 2n;alx( % ok - il))

’ i=1
1 ap(n\?
(21) _l=21:,2(1 - Ul(l))al('z‘ + EZ(E) )
5 nil ‘ Z_alal, Z . ) (_n—l)2
= IIE?,}; = O-I(J) 24 l=1,2( Ul( )) ny :

This last inequality straightforwardly yields the expected result.

(b) In this particular setting all the eigenvalues can be calculated. First,
for notational convenience, we introduce the tensor product A ® B of an
n, X n, matrix A by an n, X n, matrix B as an n,n, X nyn, matrix whose
coefficients are defined by (A ® B _1yn,4iy, (jo- Dng+is = BirjyBigjpe SOME
straightforward algebra shows that if A and u are, respectively, eigenvalues
of A and B, then Au is an eigenvalue of A ® B.

" Then notice that y® = 8 = 0, so that VA?(x*) is a block diagonal matrix
with two blocks: VA* 91 ® p@ + pD ® y@ and p® ® VA#2 72 + yD @ v,
Furthermore, p® = Id, /n, and »® = 1d,, /12n}. Thus, if AV and u® are
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eigenvalues of VA% and y®, then (1/n)X®? + (1/12n3)u® is an eigen-
value of VA (x*), I = 1, 2. We want to calculate

2D M(l'
mln min min
1#01<l,l's2 |\ ny 12n3
We have
1 -1 O 0
-1 2 -,
y(l) = —n, 0 . 0
e 2 -1
0 0 -1 1
and
3 -1 0 0
1 -1 2 -, . :
VA Ot = —— o -, -0 ., 0.
n; .
. . . 2 -1
o - 0 -1 3

A little algebra yields the eigenvalues of these matrices:

ka
) = —4n, sin? o |’ O0<k<n -1,

n;
and
1 ka
A¥)=—sin2(—), 1<k<n,.
n, 2n,;
Therefore

)‘(n{lgn l“"gl,i)n 1 2 T 1 T
+ === sin’[ — | — — cos?[ —|.
ny 12n7  n2 2n, 3n, 2n,

So the lowest eigenvalue of VA(x*) is positive iff

sin(7/(2n,)) 1 ny sin(7/(2n,)) 1 ny

(22) cos(m/(2n,)) -y V3 n,; an cos(7/(2n,)) > 75 V3 ny’

Indeed, as sin(x) < x, (22) implies first that

2n,

—-cos(2nl) <3,

o
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which, in turn, implies, using that cos(x) > 1 — x2/2,

n; < 2(‘/5—_‘/§—) =~ 3.116.

Straightforward checking yields the claimed result.
Statement (c) is a straightforward consequence of the computation (see the
proof of Theorem 6)

VA #1291 0

VRt o(x*) =| (O + var( py)y®

(a2nny X 2n,n, matrix)

and the fact that ¢V == Diag({®,..., {) is diagonal and positive. O

A NUMERICAL APPLICATION OF (¢). If u, = U(0,1]D, n, = 30, 04(0) =1,
o1) == 0.6, 04(2) = 0.3 and (k) = 0 otherwise and if u, is any distribu-
tion on [0, 1] with expectation 3, then x* ® 1 is stable whenever std( u,) <
std (uy) = 0.037.

3.4. A general result about dimensional stability. The aim of this section
is to show that a stable equilibrium remains stable when plunged into a
higher-dimensional space, provided that the perpendicular component of the
stimuli distribution has a small enough variance.

THEOREM 6. Assume that x'* is a stable equilibrium point of a d;-
dimensional Kohonen algorithm K (I, p,, o1) and let

x2* = w(dz)/.bz(dw(dz)) € [O’ 1]d27
[0,1]%

where w, and w, have continuous densities. Then there exists 7 > 0, such that
122l < m implies that x* = x'* ® x®* is a stable equilibrium of
Ky vall, 1, zr),‘ where, as usual, p =, ® Uy, 0= 0, ® 0y = 0; and 252
denotes the variance matrix of p,.

PrOOF. Our first task is to calculate, for every i,j € I, the (d; + d,) X
(d, + d;) matrix

ohe
ax

. ohprot\" .
} (x*) = 9z, (=*)
1<!l,l'<sd +dy
in the above setting. The result relies on formula (18) in Theorem 4. Notice

first that I =1, x I, = I, X {1} = I, and that Cy(x™* ® x2*) = C{%)(x™*) X
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C{¥(x?*) = C{@)(x™*) x [0, 1]%. Then, setting w = (0¥, »(4?), one gets

gt
((9 ) (x *) = Z 0.1(|i1 1|)M1(C(d1)(xl*))almslll

ki€l

+ Y (o4(liy = kql) = oy(li4 = J1l)

ki#jy

x| AL, (@) £, 0@
e S (G0 ()

x do@Dfy(de @)((2})' - ')

{0,119
1 ((x".:)" + (xF)" l))
bl ()] .

1 G
X|=(78) +
(z(”x ) T 2

The product form of x* yields that (%)’ = 0 and

(=)' + (2F)’

_ I _ 1 @) — ( 2%)}
3 (=)= [ oha(de®) = (=)

forevery l € {d, + 1,...,d, + d,} since the x}’s live in [0, 1]% X {x2*}.
Then a straightforward apphcatmn of Fub1m s theorem leads to

0hi’:1’01
dhie Ton 0
(x*) = le ’
0 girs, 1, + y{BV3,

where i = (i;,1), j =, 1), ) is defined as in Proposition 4 (so it is
positive) and y{/V is given by

py (%) N T (x1*))

llaci* — x7*||

(Mq) Z (g'l(ll — kl) - 0'1(|l Jl))

k#j

When IIE2 | - 0, the eigenvalues of the limiting matrix of VA* 7(x*)
obviously are { (k) 1 <i < d,, and the eigenvalues of VA*r 71 (x'*). O

REMARKS. Case (c) of Theorem 5 is contained in the above result. The
result still holds when u, is no longer absolutely continuous.

- INTERPRETATION. This result points out the ability of the Kohonen algo-
rithm to detect the significant dimension of some possibly noisy inputs. It
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constitutes a generalization of a result established by physical methods in the
d, = two-dimensional and d, = one-dimensional setting for uniformly dis-
tributed stimuli (see [16]).

4. Some simulation results.

4.1. The results. As a first conclusion to this paper, we display some
simulations related to the multidimensional theoretical results contained in
Theorem 5.

Figure 4 deals with case (a) of Theorem 5. It shows that whenever n, = n.,,
# = U(0,1]*) and o;(k) is “far enough” from 1,,_, (zero-neighbor setting),
the square equilibrium grid made up of the one-dimensional equilibrium is
definitely numerically stable. On the contrary, as claimed in the theorem,
when |n; — n,| becomes large enough the grid becomes more and more
unstable. The simulations were processed with ¢,(0) = 1, ¢;(1) = 0.6, 0,(2) =
0.3, gy(k) == 0, k > 3. The tested grids are (n,; n,) = (20;20), (10; 20), (3; 20)
and the number of trials is N = 5 X 104

Whenever the distribution u, is not symmetric, even the square grids are
no longer stable. For instance, Figure 5 shows a simulation processed with
the product of two independent exponentials with u; = u, = Exp(3), trun-
cated on [0, 1]. We set n, = n, = 10, 0y(1) = 0.75, 0;(2) = 0.3, 7,(3) = 0.066,
0,(4) = 0.01, I = 1,2 and ¢, == 0.05/(1 + t/50,000). The scalar equilibrium
points were numerically computed using a one million trial simulation.
Obviously, the square grid is unstable.

Some simulations related to the numerical application of claim (¢) in
Theorem 5 are displayed in Figure 6. The simulations were processed setting
Mg to a (truncated) Gaussian distribution with standard deviations std :=
0.038, std := 0.037, std := 0.036 on the y axis; n, was set at 30. Three values
for the number of trials N were selected: N = 125 x 10%,3 x 108,5 x 108. It
confirms that the critical value for stability of the straight line is std, = 0.037.

Figure 7 illustrates the results of Theorem 6 when d; =2,d, =1, I, is a
20 X 20 square grid with the same neighborhood function as in Figure 4,
uy = U(0,1]?) and pu, is a truncated Gaussian distribution with successive
std 0.07 and 0.06. The critical value obviously lies between these bounds.

4.2. A few provisional conclusions. In the one-dimensional setting, it
seems that any further progress about the Kohonen algorithm depends on
some new theoretical results on the (unconditional) a.s. convergence of the
stochastic algorithms. One may reasonably imagine that they will require a
deeper study of the ordinary differential equation related to the system.

As far as the neighborhood fiinction o is concerned, assumption (%) may
perhaps be relaxed in some way: some less stringent constraints on the
monotonicity of o could still work.
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std = 0.07 N =4.10°

std = 0.06 N =410
F1G. 7.

In the multidimensional setting, there is no doubt that further results
could be derived from the general formula established for VA?. The most
intuitive—but in no case the easiest—one could be to establish the stability
of the square grids when the stimuli distribution u = U([0, 1]?) and o,(k,) =
14, <1y (two-dimensional Kohonen algorithm with eight neighbors). On a

- more theoretical level, it would be valuable to prove the existence of at least
one stable equilibrium point for the multidimensional generalized Kohonen
algorithm, under some general assumptions on o and pu.
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APPENDIX

PROOF OF PROPOSITION 12. First of all notice that A¥(Cy(x) N Cy(x)) # 0
iff

ke {(J'l’jz‘);(jl - 1,75);(J1 + 1,J2); (J1rJe — 1); (U1, Jo + 1)}’

so that
ahg’l . . 1 2 -1
9. (x) = k% o1(liy — kyl)aa(liy — k2|),U'1(Ck1(x )),Uvz(ckz(x ))‘Sije
J 1, v2

1
+§0'2(|i2 = jol)((liy —Jy + 1) = oy(liy — Jil))
~ 2(x2 _ wz)
% =1 x,z2+1 1 _~1 >1 + J2 =9 2 d 2
fl(xh)fij22 (le xh)(e (lel _x}l_l)e fo(@®) dow
1
+§‘72(|i2 '_j2|)(0'1(|i1 _jl - 1|) - 0'1(|i1' "j1|))f1(95}1+1)
22 x2 — @?
x [l - ’?}IH)((_‘?I) + 2((_112___1)_32),,2(0)2) do®
Xjo

Xj+1 — le)

+ Lonlliy = i) (oallia —da + 1) — o3(lis — o))

2
z! R 2(x; — ! R
X fz(&?z)j;;h“(xill - wl)(ez + (ijzzh——xztll)-el)fl( 0)1) dw!

1 . . -
+§0'1(|i1 _jll)(o'z(liz _j2 - ll) - 0’2(IL2 _JZI))fZ(ngZ+1)

o 2(x} — !
X [Fer (=) - wl)((—é*z) + %L__z)_)é)l)fl( ') do'.

*h Xjp+1 — Xj,

There are two components: the first one is

E oy(liy — k1|)l~‘1(ck1(xl)))( E oy(lig - k2|)if2(ck2(x2)))5ij

k=1 ky=1
e liy —jy + 1) = oy(liy = Ja)) Fa( 81)(xh - £2)
2 (o4(liy — s ).— oy(liy Jl))fl(xh) Xi, T Xj,

—(oy(liy — s + 1)) = oy(liy = ia) AL )(xh = #ha)]
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X oy(liy _j2|)M2(Cj2(x2))
fa( % 2)

_sz 1

1
+§ (0'2(|i2 —Jo + 1) — oy(liy le)) )
Jz

—(oa(liz —Jjo — 1) — oy(li, - le)) (112+;)

X20y(lZy —jll)f;}‘“(x}l - "’1)(35}1 - wl)fl( o) do';
J1

the second one is

o N k7
3 [(oalis = jy + 1) = o(liz i) Fu( £5) =5
Xj ~%j-1
. . . 1
+(oy(liy — g1 — 1) = oy(liy J1|))f1( 1+1) T — hl
Xj+1 — Xj

%2
X205 (lis —j2|)[;2+1(x}2 - 0%)fy( 0?) dw?
J2

+%[(02(|i2 —Ja + 1) = ay(liy = jal)) fa( £2)
_(0-2(|i2 —Ja — 1|) - 0'2(|i2 J2|))f2( J2+1)]
x20,(liy — Jﬂ)[ i (af = o) fi(e!) do'

We recognize the first term to be P¢2 + afl) p® + v@y® and the

iaje i1y TlaJz 11.1171212
second one to be 1} x&) + 6{) B@ . The computation of
dh{*(x)
9x;

follows the same pattern. O
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