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ON A GENERALIZATION OF THE ARC-SINE LAW

By Lajos Takács

Case Western Reserve University

This paper deals with the distribution function of the sojourn time
of Brownian motion with drift. By some recent results of J. Akahori and
A. Dassios this distribution function can be expressed in the form of a
double integral. In this paper it is shown that the distribution function of
the sojourn time can be expressed simply as a single integral. The result
obtained is a generalization of the arc-sine law of Paul Lévy.

1. Introduction. Let {ξ(u),u ≥ 0} be a standard Brownian motion pro-
cess. We have P{ξ(u) ≤ x} = Φ(x/

√
u) for u > 0, where

Φ(x) = 1√
2π

∫ x

−∞
exp

(
−u

2

2

)
du(1)

is the normal distribution function. We shall consider the process {σξ(u) +
mu,u ≥ 0}, where σ > 0 and m is a real number. We use the notation δ(A)
for the indicator variable of an event A; that is, δ(A) = 1 if A occurs and
δ(A) = 0 if A does not occur. Define

τ(α,m,σ, t) = 1
t

∫ t

0
δ(σξ(u)+mu ≤ α)du(2)

for t > 0; that is, tτ(α,m,σ, t) is the sojourn time of the process {σξ(u) +
mu,u ≥ 0} spent in the set (−∞,α] in the time interval (0, t).

We also define

γ(x,m,σ, t) = inf
{
α:

1
t

∫ t

0
δ(σξ(u)+mu ≤ α)du > x

}
(3)

for t > 0; and 0 < x < 1; that is, {γ(x,m,σ, t), 0 < x < 1} is the inverse
process of {τ(α,m,σ, t), −∞ < α <∞}.

Recently Akahori [1] and Dassios [4] determined the distributions of
τ(α,m,σ, t) and γ(x,m,σ, t). The distribution functions of both random
variables can be expressed by their results in the form of a double integral.
In this paper it is shown that by using an elementary random walk approach,
these distribution functions can be expressed in the form of a single integral.
The result obtained can be interpreted as a generalization of the arc-sine law
of Lévy [7, 8].

2. The distribution of t(a, m, s, t). First, we observe that

{γ(x,m,σ, t) > α} ≡ {τ(α,m,σ, t) ≤ x}(4)
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for 0 < x < 1 and −∞ < α <∞. Thus the problem of finding the distribution
of (3) can be reduced to the problem of finding the distribution of (2).

Next, we observe that it is sufficient to consider only the particular case
where α ≥ 0, σ = 1 and t = 1. The general case can be reduced to this
particular case by linear transformations. Since for any t > 0, the two pro-
cesses {ξ(ut),u ≥ 0} and {

√
tξ(u),u ≥ 0} have the same finite dimensional

distributions, we have

τ(α,m,σ, t) ∼ τ(α/σ
√
t,m
√
t/σ, 1, 1)(5)

for t > 0, where the symbol ∼ means that the random variables on both sides
of (5) have the same distribution. Moreover, by symmetry we have

τ(α,m,σ, t) ∼ 1− τ(−α,−m,σ, t)(6)

for t > 0. Accordingly, if we know the distribution of

τ(α,m) = τ(α,m, 1, 1)(7)

for α ≥ 0 and m ∈ (−∞,∞), then the distribution of (2) is determined by (5)
and (6).

In a similar way we obtain that

γ(x,m,σ, t) ∼ γ(x,m
√
t/σ, 1, 1)σ

√
t(8)

for t > 0 and 0 < x < 1. Thus, if we know the distribution of

γ(x,m) = γ(x,m, 1, 1)(9)

for 0 < x < 1, then the distribution of (3) is determined by (8).
By (4) we have

P{γ(x,m) ≤ α} = P{τ(α,m) > x}(10)

for 0 < x < 1, and by (6)

τ(α,m) ∼ 1− τ(−α,−m).(11)

The distribution functions of (2) and (3) are completely determined by the
following theorem.

Theorem 1. If α ≥ 0 and m ∈ (−∞,∞), then

P{τ(α,m) ≤ x} = 2
∫ x

0

[
w(m
√

1− u)√
1− u

+mΦ(m
√

1− u)
]

×
[
w

(
α−mu√

u

)
1√
u
−me2mαΦ

(−α−mu√
u

)]
du

(12)

for 0 ≤ x < 1, where

w(x) = 1√
2π

exp
(
−x

2

2

)
(13)
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is the normal density function and

P{τ(α,m) = 1} = Φ(α−m)− e2mαΦ(−α−m),(14)

where Φ(x) is defined by (1).

See Section 4 for the proof.
We note that if in Theorem 1, m = 0, then we obtain that

P{τ(α, 0) ≤ x} = 1
π

∫ x

0

exp(−α2/2u)√
u(1− u)

du(15)

for 0 ≤ x < 1 and

P{τ(α, 0) = 1} = 2Φ(α)− 1.(16)

If α = 0 and m = 0, then by Theorem 1,

P{τ(0, 0) ≤ x} = 2
π

arcsin
√
x(17)

for 0 ≤ x ≤ 1. This last formula was found by Lévy ([7]; [8], page 303) in
1939 and is called the arc-sine law. See also [10]. The more general result
(15) was also found by Lévy ([8], page 326), but in a form more complicated
than (15). The above form is given by Yor [11]. As we have already men-
tioned, the distributions of (2) and (3) were determined in 1995 by Akahori
([1], Theorem 1.1) and Dassios ([4], Theorem 1).

3. A sojourn time problem for random walk. Let us suppose that
{ξr, r ≥ 1} is a sequence of independent and identically distributed random
variables for which

P{ξr = 1} = p and P{ξr = −1} = q,(18)

where p > 0, q > 0 and p+ q = 1. Define ζr = ξ1 + ξ2 + · · · + ξr for r ≥ 1 and
ζ0 = 0. Then the sequence {ζr, r ≥ 0} describes a random walk on the real
line. Let us define ∆n(k) as the number of subscripts r = 1, 2, . . . ,n for which
ζr > k and write ∆n(0) = ∆n; that is, ∆n is the number of positive elements
in the sequence ζ1,ζ2, . . . ,ζn. We set ∆0 = 0. Furthermore, let us define ρ(k)
as the first passage time through k; that is,

ρ(k) = inf{r: ζr = k and r ≥ 0}(19)

for k = 0,±1,±2, . . . .
Our aim is to determine the distribution of the random variable ∆n(k) for

n = 1, 2, . . . and k = 0,±1,±2, . . . . It is sufficient to consider only the case
where k = 0, 1, 2, . . . , because ∆n(k) has the same distribution as n−∆∗n(−k−
1), where {∆∗n(k)} is defined in the same way as {∆n(k)} except that the roles
of p and q are interchanged. We need the following two results.
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1. If 1 ≤ k ≤ n, then

P{ρ(k) ≤ n} = P{ζn ≥ k}+
(
p

q

)k
P{ζn < −k}.(20)

This can be proved simply by applying the reflection principle to the random
walk {ζr, r ≥ 0}. It follows by symmetry that

P{ρ(−k) = j} =
(
q

p

)k
P{ρ(k) = j}(21)

for j ≥ 0. See [9].
2. If 0 ≤ j ≤ n, then

P{∆n = j} = P{∆j = j}P{∆n−j = 0}.(22)

This is a particular case of a general result of Andersen ([2], page 128; [3],
page 197). Evidently,

P{∆n = n} = pP{ρ(−1) ≥ n} = p− qP{ρ(1) < n}(23)

and

P{∆n = 0} = P{ρ(1) > n}.(24)

Theorem 2. If n ≥ 1, then

P{∆n(k) = 0} = P{ρ(k+ 1) > n}(25)

for 0 ≤ k ≤ n and

P{∆n(k) = j} = P{∆j = j}[P{ρ(k+ 1) > n− j}−P{ρ(k) > n− j}](26)

for 1 ≤ j ≤ n− k.

Proof. Formula (25) is trivially true. If 1 ≤ j ≤ n− k, then

P{∆n(k) = j} =
n−j∑

i=k
P{ρ(k) = i}P{∆n−i = j}.(27)

To obtain (27) we take into consideration that ∆n(k) = j can occur in several
mutually exclusive ways: the smallest r = 1, 2, . . . ,n for which ζr = k is
i = k, . . . ,n − j and ζr − ζi > 0 for j subscripts i < r ≤ n. By (22) we obtain
that

P{∆n(k) = j} = P{∆j = j}
n−j∑

i=k
P{ρ(k) = i}P{∆n−i−j = 0}

= P{∆j = j}[P{ρ(k+ 1) > n− j}−P{ρ(k) > n− j}],
(28)

and by (23) we get (26), which was to be proved. 2
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In Theorem 2 the probability (26) depends only on the distributions of ζj−1

and ζn−j. In (26) we can write that

P{ρ(1) ≥ j} = P{ζj−1 = 0}+P{ζj−1 = −1}+
(

1− p
q

)
P{ζj−1 < −1}(29)

and

P{ρ(k+ 1) > n− j}−P{ρ(k) > n− j}

= P{ζn−j = k}+P{ζn−j = k+ 1}−
(

1− q

p

)
P{ζn−j = k+ 1}

+
(

1− p
q

)(
p

q

)k
P{ζn−j < −k− 1}.

(30)

The distribution of ζn is determined by

P{ζn = 2j− n} =
(
n

j

)
pjqn−j(31)

for 0 ≤ j ≤ n.
If, in particular, p = q = 1/2, then by (26) we obtain that

P{∆n(k) = j} =
(

j− 1
[(j− 1)/2]

)(
n− j

[(n− j− k)/2]

)
1
2n

(32)

for 1 ≤ j ≤ n− k.

4. Proof of Theorem 1. If we suppose that

p = pn =
1
2
+ m

2
√
n

and q = qn =
1
2
− m

2
√
n

(33)

for n > m2, then the process {ζ[nu]/
√
n, 0 ≤ u ≤ 1} converges weakly to the

process {ξ(u)+mu, 0 ≤ u ≤ 1} as n→∞. Since the sojourn time τ(α,m) is a
continuous functional on the process {ξ(u)+mu, 0 ≤ u ≤ 1}, we can conclude
that if k = [α

√
n], where α > 0, and j = [nx], where 0 < x < 1, then

lim
n→∞

P{∆n(k) ≥ n− j} = P{τ(α,m) ≤ x}(34)

for α > 0 and 0 < x < 1. (See [5], page 456.) In (26)

lim
n→∞

(
pn

qn

)k
= e2mα;(35)

if we use (29) and (30) and if we apply the central limit theorem and the local
limit theorem to ζn = ξ1+ξ2+· · ·+ξn, then we obtain (12). (See [6], pages 191
and 233.) By (20) and (25) we obtain that

lim
n→∞

P{∆n(k) = 0} = P{τ(α,m) = 1}.(36)

This proves (14). 2
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of Papers Dedicated to Eugene Lukács (J. Gani and V. K. Rohatgi, eds.) 49–63. Academic
Press, New York.

[11] Yor, M. (1995). The distribution of Brownian quantiles. J. Appl. Probab. 32 405–416.

2410 Newbury Drive
Cleveland Heights, Ohio 44118
E-mail: lft@po.cwru.edu


