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LARGE DEVIATIONS FOR COMBINATORIAL
DISTRIBUTIONS. I: CENTRAL
LIMIT THEOREMS'

By HsiEN-KUEI HWANG

Ecole Polytechnique

We prove a general central limit theorem for probabilities of large
deviations for sequences of random variables satisfying certain analytic
conditions. This theorem has wide applications to combinatorial struc-
tures and to the distribution of additive arithmetical functions. The
method of proof is an extension of Kubilius’ version of Cramér’s classical
method based on analytic moment generating functions. We thus general-
ize Cramér’s and Kubilius’s theorems on large deviations.

1. Introduction. Given a sequence of random variables {Q,},.,; with
means u, and variances o2, if 0, > ©, as n — =, then probabilities of the
forms

Pr{Q, — n, >x,0,} and Pr{Q, —pn, < —x,0,}

when x, - © (n — ») are called probabilities of large deviations of the
random variable (),. Defining the (centered and normalized) random variable

*=(Q, — un,)/0,, we consider its distribution function F,(x). If F (x) has
a Gaussian limit, that is,

(1) F(x) > (%),

where (here and throughout this paper)

<D(x)=L/xe_t2/2dt
Vor J_w ’
then we have

S —_— — o
(2) 1- d(x) Y S W

whenever x = O(1). If (1) holds in the interval 0 < x < X(n), where X(n) — «,
we call, as in [33], Section 8.1, the interval a zone of normal convergence.
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Note that, from relation (1), we merely have
lim lim F,(x) =1,

X—>® n—->x
lim lim F,(x) = 0.
xX— —%© p—o>x
It is well known that the analytic properties of a characteristic function are
connected to the rate of decrease of the tails of the distribution function F(x).
That is, the functions 1 — F(x) and F(—x), as x — %. To be more precise, we
consider two frequent cases. If [*_|x|* dF(x) < =, k being a positive integer
and F being a distribution function, then an argument similar to the proof of
Chebyshev’s inequality leads to

1-F(x)=0(x*) and F(—x)=0(x"%), x- .

In other words, if the £th absolute moment of the random variable X exists,
where X is distributed according to F, then the tail probabilities of X decay
polynomially like x™* as x increases or decreases without bound. On the
other hand, if

(3) /m e’*dF(x) <~ for some s > 0,

then a similar argument leads to (cf. [27], Chapter 7)
1-F(x)=0(e*") and F(-x)=0(e*"), x > %,

the condition (3) being not only sufficient but also necessary (cf. [27], Chapter
7). Thus, in this case, the tails of F(x) decay exponentially as the parameter
x — 4, These two standard facts, well known in integral transforms, depict
the general relationship between the tail probabilities of a random variable
and the analytic properties of its integral transforms (or generating func-
tions).

It should be pointed out that these two crude estimates, often useful in
applications due to their generality, are not very precise. More results of a
similar nature can be found in [33], Section 3.4.

This paper is concerned with Cramér-type large deviations in which the
dependence of the rate that x — 4+ on another large parameter n is
explicitly specified by asymptotic expressions. Our objective is to derive a
general central limit of this sort which applies to both combinatorial and
number-theoretic problems. This versatility is due to the fact that we princi-
pally work at the level of moment generating functions, the source of which is
not specified.

Before going into the details, let us briefly mention some relevant results
in the probability literature. Cramér, in his pioneering paper [7], first estab-
lishes general theorems for probabilities of large deviations in the case of
sums of independent and identically distributed random variables. His pow-
erful analytic method, which is widely used, consists of two major steps: the
technique of associated distribution [10] (whose effect is to “shift” the mean)
and the implicit use of the saddle-point method; see the next section for more



CENTRAL LIMIT THEOREMS 299

details. His results together with his method have since been generalized in
many directions by many authors; for detailed information, applications and
references, consult [33], [35], [3], [37] and [25].

1.1. Main result. Let {Q,}, be a sequence of random variables with
distribution functions W,(x). A number of such sequences related to combina-
torial structures and arithmetical functions have moment generating func-
tions satisfying the same algebraic schemes. This fact allows then a system-
atic treatment of their limiting properties and we first state the general
conditions under which we are developing our arguments [20,19]. Let us
assume that the moment generating functions M, (s) of Q, satisfy, as n — o,

(4)  M,(s) =Ee® = [ & dW,(y) = e*™ (1 + 0(x, ")),

uniformly for |s| < p, s € C, p > 0, where:

1. {¢(n)} is a sequence of positive numbers such that ¢(n) - © as n — o;

2. u(s) and v(s) are functions of s independent of n and are analytic for
|s| < p; furthermore, ©"(0) # 0;

3. Kk, = .

Let us introduce the following notation:
u,, =u"(0), m=1,2,3,...,
uip(n), 0.} = uyd(n),

My :

and

Qn_l“’n

o,

F(x) =W,(n, +x0,) = Pr{ < x}, x € R.

The notation [ "] f(z) denotes the coefficient of z” in the Taylor expansion of
f(z), n € N. Then we have the following result.

THEOREM 1 (Central limit theorem for large deviations). For x > 0, x =
o(min{x,, \/qb(n) D, we have

1-F,(x x x .
(3) T{:L((x)) = exp($(n)Q(£))|1+0 Pald e )) i=
and
F,(—x) x x
© o = eR(Hme(-e)[1+0 K_ﬁW))’
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where Q( &) = Q(&; u) depends only on u(s) and is defined by

(&)= X gué"
m=>3
2 3
us us | , 1 10ugu,  15uz| .
= &34 —|u, — — &4+ - +
(7) 6 Tl uz)f 120 (u5 uy 2z ¢
1 10u?  15u;us;  105u2u,  105u}
+ ug — - + — — ——— | £° ,
720 Ug Ug us us;

the series being convergent for small | €| with

-1 wW(w) —u |
(8 qm=7[wm—2]u"(w)(L) , m=3,4,5,....

UW

Obviously, Theorem 1 generalizes Cramér’s classical results [7] on large
deviations for sums of independent, identically distributed random variables;
cf. Section 5.

We shall prove Theorem 1 in the next section. Many immediate conse-
quences of this result will be given in Section 3. We then apply formulas (5)
and (6) to the combinatorial distributions studied by Flajolet and Soria
[15,16] in Section 4. Finally, we shall briefly discuss some examples from
many different applications.

Throughout this paper, all generating functions (ordinary, exponential,
probability, characteristic function, moment, etc.) will denote functions ana-
lytic at 0 with nonnegative coefficients. All limits (including O, o and ~),
whenever unspecified, will be taken as n — .

2. Proof of Theorem 1. In this section we prove Theorem 1. Conceptu-
ally, the proof utilizes Cramér’s method [7] which consists of two main steps
(cf. [10]): the technique of associated distributions and (implicitly) the saddle-
point method. Actually, we shall follow Kubilius’s method [26], Chapter 9,
which is more suitable for our purposes. We thus generalize his statements.

PrOOF OF THEOREM 1. Let us fix for the moment a small number s, s € R,
—p < s < p. Recall that W, is the distribution function of €),. Define the
auxiliary function

M, (w) = M;'(s) [ e dW,(y).

Since —p < s < p, Mn(w) is well defined for any fixed w and it is easily seen
to satisfy the common properties of a distribution function. It follows that

W(3) = M,(s) [ e " b, (w)
and

(9) 1-W,(y) = Mn(s>/:e-3’*’dMn<w)-
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We then consider

W, (@ (s)d(n)) = M,(s) [

—®

(10) - Mn(s)e’”’(s)d’(”)fo exp(—sw\/u” s)¢(n) )dMn
(u(s)p(n) + wyu'(s)d(n) |

DKW —sw M (w)

and

1= W, (w(s)d(n))
(11) = Mn(s)e*s”’(s)"’(”)fowexp(—sw\/u” s)¢(n) ) d]l/:fn(u’(s)¢(n)
+wyu"(s)p(n) )

In writing the two formulas above, we need that u"(s) > 0. To see this, let
L,(s) = log M,(s), where the principal value of the logarithm is taken so that
L,(0) = 0. Now M,(s) > 0 for —p < s < p. Hence

M, (s)M,(s) = M2 (s)

L”n(s) = M2(S)

L V7S M’2(3)+(M;l(s))2M(s)
M,(s) | " M,(s) " M(s)) "

1 m( M(s)
M,(s)

for —p <s < p. As L,(s) ~ u(s)p(n), the assertion follows. In other words,
the function L,(s) is convex.

To arrive at results (5) and (6), we decompose the derivations into three
main steps:

2
) e’ dW,(y) >0

1. We prove that

(12) Mn(u’(s)q')(n) +w u”(s)q,’)(n)) = d(w) +O(K;1+¢(n)*1/2),

uniformly for any fixed w, by Esseen’s inequality (cf. [9], page 32, and [33],
page 109).

2. We then derive an asymptotic formula for the leading factor
M, (s)exp(—su'(s)¢p(n)) on the right-hand side of (10) and (11), by choosing
s = z as the unique solution of the equation

(18) w(z)d(n) =ud(n) + xyjusdp(n), x#0,x= 0(\/¢>(n) )

3. We evaluate the integrals on the right-hand side of (10) and (11) with
approximations (12) and (13).
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Let us start with t_he proof of (12). The characteristic function of the
distribution function M, (u'(s)¢p(n) + wy/u"(s)p(n) ) satisfies

M) = [ e b, (w () d(n) + w)u () d(n)

e (_ u'(s)d(n) it
Vu'(s)o(n) Vu'(s)$(n)

Now, by assumption, M,(0) = 1 and M, (s) is analytic in a neighborhood of
the origin; we can write log M,(s) = u(s)¢p(n) + v(s) + ¢,(s), for s small
enough. Here ¢,(s) satisfies £,(0) = 0 and &,(z) = O(|z|k, '), z ~ 0. Thus we
have, by (4) and Taylor’s expansion,

it)Mnl(s)Mn(s +

£2 el lel+ e
10g)\n(t)=—5+0 K_+W’ It/ < T,,

where T, = c;\/u"(s)¢(n), c; > 0 being a sufficiently small constant. Conse-
quently, there exist two constants C,, C, > 0 such that

2 Cltl Cy(ltl +1el)
A()] < -— + + , ltl< T,.
[A.(8)] < exp( D) Py \/¢(n) <

We now apply Esseen’s inequality [9, 33] to establish (12). Thus the estimate
of the difference of two distribution functions is reduced to the corresponding
problem for associated characteristic functions. It is sufficient to show that

1, | A,(t) — exp(—t%/2)
J, = LT” ;

dt = O(k, ' + d(n) /%),

Using the inequality |e¥ — 1| < |w|e™!, we obtain
Ciltl Coflel + |t|3)) xp(—i LGl Ca(lel + £1%)
s Vé(n) 2« Vé(n)
el lel+ 1l £
EREE .
for ¢, sufficiently small. Hence

T, | A(t) — exp(—t?/2)
J, = f—T,, .

—¢2
An(t)—exp( 3 ) <

u

-0

-1 (T £ rom 2 (ﬁ)
K, anexp( 4)dt+ W/;Tn(l—l—t )exp 1 dt

O(k;' + ¢(n)’1/2).
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Consider now (13), which can be written as

x u(z) —u

o Vugad(n) Uy

As u"(z) > 0 for z near 0 (z real), the right-hand side increases with z and
thus has a unique positive solution when x > 0, x = o(\/ ¢(n) ), and a unique

negative solution when x < 0, x = o(\/tj)(n) ) When x = 0, the solution z is
obviously 0. By Lagrange’s inversion formula ([39], Section 7.32), we obtain

Uy 1(u, 3ul
Z=§_2_§2__(__ 5 3
Uy 6| u,y us
(14) _i us 10usu, N 15u3 oy
24\ u, us us
= Z §m§m>
m>1

the series being convergent for small | £|, where

u(w) —u,y )m

Ugw

1
(15) G = ;[w””](

From now on, s = z will denote this function of &¢. This choice of s does not
violate any result established until now. Note that s and ¢ have the same

sign.
Now
1

log M, (s) — su/(s)é(n) = u(s)d(n) + v(s) — su'(s)d(n) + O

1
s+ —
K

n

= (u(s) —su/'(s))¢p(n) + 0

b

since v(0) = 0 and v(s) = O(s). Again, by Lagrange’s inversion formula [39],
we expand the function u(s) — su'(s) in powers of &:

2

16 us:—s:u’s=—ﬁ2 mo -~ )
(18) u(s) ~w(e) =~ G T, = -+ Q()

where ¢,, is given by

L) a4

-1
qm = W[W'n_z]u”(w)( o
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It follows that, with this choice of s,

M, (s)exp( —su'(s) d(n) = exp(— 5+ ¢(n)Q(§))
(17)

X1+ O

Jo(m) ))

as n — «,
To estimate the asymptotic behavior of the integral

I(n) = foooexp(—sw\/u” s)¢(n) ) dMn(u’(s)cb(n) + wyu"(s)p(n) ),
we write, by (12),

M, (1 (s)d(n) + wyu'(s)d(n) ) = ®(w) + R, (w),

where R, (w) = O(k,;! + ¢(n)~/?) uniformly with respect to w. The integral
I(n) is then decomposed into two parts: I(n) = I; + I,, where

1 o
I, = E'/;) exp(—sw\/u”(s)q,')(n) - w2/2) dw
and
I, = Lxexp(—sw\/u” s)¢(n) ) dR,(w).

Since the estimate R, (w) = O(k,! + ¢(n)~'/?) is uniformly valid whenever
w is O(1), we can choose a constant K > 0 such that R, (w) satisfies the
above estimate for |w| < K and R, (w) < 1, say, for |w| > K, as n — . The
integral I, then equals, by integration by parts,

I, = —R,(0) +syu"(s)¢(n) j;mexp(—sw\/u/’ s)¢(n) )Rn(w) dw
#(r) )/;)Kexp(—sw\/u” s)¢(n) ) dw

=0(k, '+ o(n) ) + 0
(18)

1+
K

n

+y ¢ (n) /;exp(—sw\/u”(s)cb(n) ) dw

= O(k; '+ o(n) %),
since syu"(s)¢(n) > 0. As a matter of fact, we have

syu'(s)¢(n) = yu,b(n)

us
s+ ——s2+ -
2u,

(19)

= Juy,d(n) (£+0(&€%))=x+0

s )
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Note that the power ¢é2 was canceled. On the other hand,

exp((s?/2)u'(s)p(n)) = . 2
I, = ( = )fo exp(_(w +sy/u"(s)(n) ) /2) dw

= exp((sZ/Z)u”(s)d>(n))(1 - CD(s\/u” s)¢(n) ))

Let
exp(y?/2) =
V(y) = %f exp(—t2/2)dt, y R,
y

so that I, = W(sy/u"(s)¢(n)). Since W' ()| = [y¥(y) — 2m) /?| <y ? for
y > 0 and

1 1 ¥(y) 1 0
— = —3 <¥(y)<—, y>0,
y ¥ y

we obtain, for x > 0 and any ¢ = o(x), £ > 0,

(20) \I’(x+e)=‘1’(x)+%82‘1’(’“)(”0(;))

for some positive constant ¢, < 1. When x = o(y/¢(n)), x*p(n)~! = o(x).
Hence, by (19) and (20), we get
x? )
o(n) )|

Using (18) and (21), I(n) can be written in the form

2

(21) Il=exp(%)(1—<b(x)) 1+0

1(n) =exp(%)(1—<b<x))
(22) 2
=exp(7)(1—<1><x))

2

1+0 o(n)

+0(k, ' + ¢(n)_1/2)

1+0

R + [ — ,

Ko Y(n)

since e *"/2(1 — ®(x)) = O(x~1). Formula (5) follows from (11), (17) and (22).
Formula (6) can be established in an entirely analogous manner. O

REMARK. From (9), it follows that
Pr{Q, >y} = Mn(s)f e dM,(w) < M,(s)e
Y

for y > EQ,, where s is chosen to satisfy (13) or the saddle point of the
right-hand side. This estimate is often referred to as Chernoff’s bound [6]; see
also [34]. We remark that this technique frequently proves useful in different
contexts under different names: for power series, this is known as the
saddle-point estimate; for Dirichlet series, this is known as Rankin’s tech-
nique. All these can be formulated in the form of a Laplace—Stieltjes trans-
form [32].
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3. Some corollaries of Theorem 1. From the results established in the
previous section, namely, (5) and (6), we can deduce some interesting corollar-
ies as in [7], Theorems 2—-4, and [33], pages 228-230. For convenience, we
may suppose that ;! = O(¢(n)~1/2).

COROLLARY 1. For x > 0 and x = O(¢(n)Y®), we have

1-F(x) uzx® X o
(23) 1-®(x) - X 6uy/?\/d(n) ) +O(\/¢>(n) ) " ’
and
(24) M = exp(_u?’—x3 0( X )

O(—x) 6us’?/¢(n) Vo(n) |

Hence, when x = c;(n)"6, c; > 0, the two ratios on the left-hand side of
(23) and (24) tend to a finite limit as n — . When x = o(¢(n)/®), the two
limits are both 1 which means that the zone of normal convergence contains
at least the range 0 < x < X(n), where X(n) = o($(n)'/®). In the case u; =
u, = - =u, =0, the zone of normal convergence of (), is even larger, as
the following result states.

COROLLARY 2. If ug=u,= - =u, =0, k=3,4,..., then, for x > 0,
x = o(p(n)k/CrT2D) the asymptotic equivalents
1-F(x)~1-®(x) and F,(—x)~P(—x)
hold.

Now, using the inequality

exp(—x2/2)

1-®(x)=P(-x) < Gy ,

x>0,

we can write Corollary 1 as follows.

COROLLARY 3. For x > 0 and x = O(¢p(n)¥%), we have

ugx? exp(—x%/2
1 —Fn(x) = (1 - @(x))exp(m) + 0(%)

and

F,(—x) = ®(—x)exp

uzx? ) +O(exp(—x?*/z))
6uy/* y$(n) vo(n) |

More generally, we have the following result.
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COROLLARY 4. For x > 0 and x = O(¢p(n)*/C*+20) b =3 4 ...,

2B o a(m@ )1+ 0 = ))

1-®(x) ¢(n)
and

F,(—x) — ex ) ORI — X ))

i " ORHMEN )1+ 0| | |

where QUFI(&) =Xk _.q, ™, k =38,4,5,....

It is worthwhile noting that the preceding corollaries show that the
asymptotic equivalence of 1 — F (x) and 1 — ®(x) holds only when x =
o(p(n)t/@*R+2)) where k is the smallest integer such that u,,, # 0, since,
for x outside this range and an o(\/ ¢(n) ) error term, the right-hand sides of
(5) and (6) can tend to any limit between 1 and .

With some simple computations, we obtain the following result.

COROLLARY 5. Ifx — © and x = o(\/d)(n) ), then

F(x+c/x)—F,(x) . D(x+c/x) — D(x)
1m = lim =
n— o 1—Fn(x) n—w 1—<I>(x)

—C

for ¢ > 0.

Define the real function A of y, y > —1, by

2 -1 k
A(y) = (1 +y)log(1+y) -y — y? = k23 %yk,

the latter equality being true only for —1 < y < 1. The following theorem is
very useful for many applications.

THEOREM 2. Let u(s) =e® — 1 in Theorem 1 and «,'= O(p(n) 1/2).

Then, for x > 0, x = o(y/$(n) ), we have

1+0

o) =e"p(_‘i’(’"‘“(¢¢>(n) )
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and
F,(-x)

s ol sl ol |

ProOOF. From Theorem 1, it suffices to evaluate the coefficients g, of

A(E) = Q(¢):

B 21w et — 1\
0= =W e

! )" d 0<5<2

= ww (e — <8<
2k77if|w|=5e w(e ) w, T,
-1 log(1 + z)

= —d 0<éd6 <1 =e¥ -1
ka'fm:s/ 2" o ETe T
(_l)k—l

= — k=23,4,....
k(k—l)’ b b

This completes the proof. O

REmMARK. Let X, X,,...,X,,... be a sequence of independent random
variables with a common Poisson(r) distribution, 7 > 0. Then the moment
generating function of the sum X, +X, + - +X, is Eexp(s(X; + X,
+ -+ +X))) = exp(r(e® — Dn). Theorem 2 applies.

4. Analytic combinatorial schemes of Flajolet and Soria. It is well
recognized, since the original work of Bender [1], that the statistical proper-
ties (moments, limit distribution, local behavior, etc.) of parameters in a large
class of combinatorial structures are well reflected by the (dominant) singu-
larity type of the associated generating functions; see [4], [5], [15], [16] and
[17]. The classification according to the latter leads to the study of (analytic)
combinatorial schemes on which important progress has recently been made
by Flajolet and Soria [15, 16]. In their papers only results concerning conver-
gence in distribution to the normal laws were discussed. We have refined
their results in [20] and [19] by making explicit the convergence rates and the
asymptotic expansions in both central and local limit theorems.

In this section we shall apply Theorems 1 and 2 to establish central limit
theorems for large deviations for their schemes.

4.1. Exp—log scheme. Recall that a generating function C(z) with only
nonnegative coefficients analytic at 0 is called logarithmic [15] if there exists
a constant a > 0, such that, for z ~ , { > 0 being the radius of convergence
of C,

1
C(2)=alog1_— +H(z), z €A,

z/¢
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where the function H(z) is analytic inside a domain of A:
A:={z:|zl < {+ e and |arg(z — {)| = §}, a>0,0<6<g,
and satisfies there

H(z) =K+ O|log /2

1—z/§)

as z — {, uniformly in z, where K is some constant. For brevity, we shall say
that C(z) is logarithmic with parameters (¢, a, K).
Now consider generating functions of the form

P(w,z) = Y py.wmz"=e"’®Q(w,z),

n,m>0

where C(z) is logarithmic with parameters (£, a, K) and Q(w, z) satisfies the
following two conditions:

1. As a function of z, @(w, z) is analytic for |z| < {; namely, it has a larger
radius of convergence than C.
2. As a function of w, Q(w, ¢) is analytic for |w| < n, where n > 1.

Roughly, these assumptions imply that, for any fixed w, |w| < n, P(w, 2)
satisfies
1+0

P(w,z)=eK“’Q(w,§)(1— %) log™1/2

1—2/{))’
Z~§a2$ [g’oo),

and P(w, z) is analytically continuable to a A-region. We can then apply the
singularity analysis of Flajolet and Odlyzko [12] to deduce the asymptotic
formula
P(w) =[2"]P(w, z)
(25) é«—nnaw—l « _1/9
= Tlaw) © Q(w,g)(1+0((logn) )),

the O-term being uniform with respect to w, |w| < n. For details, see [16].

Since n > 1, P,(1) is well defined. Thus, for the moment generating func-
tions M, (s) of the random variables (1, defined by M, (s):= Ee®* =
P.(e*)/P,(1), we have

=exp((e® — alogn exp(K(e® — 1))I'(a)Q(e*, {)
(26) M, (s) = exp(( 1)alog n) F(ae)0(1,0)
x (1 + O((log n)~'"%)),

uniformly for —logn <%s <logn and |.#s| < w. Note that logn > 0. The
application of Theorem 2 is straightforward.
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THEOREM 3. Let F,(x) = Pr{Q, < alog n + xyalog n}, where the random
variables Q, are defined by (26). Then, for x > 0, x = o(y/log n ), we have

1-F,(x) 3 ) A X 1+ 0 x
(27) 1-d(x) exp(—a g (\/alogn ) " Vlog n ))
and
(28) M=exp(—alogn-/\(L 1+0[——= ))
®(—x) Valogn Viog n

Proor. Take ¢(n) = alog n in Theorem 2. O

For a given sequence {c,}, . , let us denote its ordinary generating function
by C(z):=X,.c,z" and its exponential generating function by C(z) =
Y,-1¢,2"/nl. Then it is easily seen that Theorem 3 applies to the following
four classes of generating functions issuing from standard combinatorial
schemes when C(z) or C(z) is logarithmic with parameter (¢, a, K); cf. [15].

1. Partitional complex construction: P(w, z) = exp(wC(2)).
2. Partitional complex construction in which no two components are order-

isomorphic:
wzh
1+ —1 .

P(w,z)= 11 2

k>1

3. Multiset construction: (i) total number of components,

k

Y TC(zk)), <1

P(w,z) = exp(
k>1

(ii) number of distinct components,
wz*

1—2z*

1+

P(w,z)= 1]

k>1

| <

4. Set construction:

(—1) k-1
P(w,z) =exp| Y, ————w*C(z")], < 1.
k>1
k

In the last two cases, the radius of convergence { of C is supposed to
satisfy ¢ < 1.

A result parallel to Theorem 3 can be derived by replacing a log n with
a loglog n. This will have important applications to some additive arithmeti-
cal functions; cf. [26].



CENTRAL LIMIT THEOREMS 311

4.2. Algebraico—logarithmic scheme. Next, let us consider generating
functions of the form

P(w,2)= ¥ puuw"z"
n,m=0
1 B
—11o R G(0) =0,
(1 -wG(z)) ( gl_WG(Z)) ©
where B€ N, >0 and a + B> 0. Define a random variable ), by its
moment generating function

z"|P(e’, z
(29) M,(s) = ¥ Pr{Q, =m}em = [[z]]P%

m=>0

DEFINITION (1-regular function [16]). A generating function G(z) # z9,
g =0,1,2,..., analytic at z = 0 is called 1-regular if (i) its Taylor expansion
at z = 0 involves only nonnegative coefficients, and (ii) there exists a positive
number p’ < p, p being the radius of convergence of G(z), such that G(p') = 1.

Assume that G(z) is 1-regular and, without loss of generality, that G(z) is
aperiodic, that is, G(2) # z°Y,, . o¢,2"? for some integers e and d > 2.

Let p(w) be the smallest positive real solution of the equation 1 = wG(z)
for w ~ 1 and p = p(1). Then we showed in [20], by singularity analysis, that
the formula

ep(e’)G (p(e))) " ple’) "
pG'( p) p"

(30) M,(s) = (

holds, where

(1+ &, 4(n))

O(n1), if(e«>0and B=0)or(a=0and g =1),

aa,B(n): O((logn)_l), if(a=OandBZ2) 0r(oz>0and,8>0),

uniformly for small |s|. Define two constants
1 1 G’ 1
a, = and a, = + (p) -

PG (p) PG (p)*  pG(p)"  PG(p)’

We state without proof the following simple lemma.

LEMMA 1. For any function a(z) satisfying a(0) = 0, the coefficient
! ) 1 ! k R,2=0,1,2

n S = AP

[2"] 1 —wa(z) 0gl—woz(z) o ’ ey

formally defines a polynomial in w of degree at most n, for n > lk, where [ is
the least integer satisfying a’(0) # 0.
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From this lemma, we infer, by partial summation, that «; = p"'!G'(p)~! <
1 for any generating function G(z) satisfying G(0) = 0. Obviously, G'( p) < 0.
From (30) and Theorem 1, we readily obtain the following result.

THEOREM 4. Let F,(x)=Pr{Q, < a;n + xy/ayn}. Then, for x >0,
xg, g(n) =o(1), we have

1-F,(x

: ——(I)((x)) = e”Q“)(l + O(xaa’ﬁ(n)))
and

Fn(_x) n -

S~ O O(we, (),

where ¢ =x(ayn) 2 and Q(&) =X, .39, ™ whose coefficients q,, are
given by

=1 p(et)e —pef) ¢l (ef)e — p(ef) p’(ef) e’
n = 7[8 ] p*(e’)

—p%(e*)p N (e*)e* + pp'(1) |
s(p*(1) = pp'(1) = pp' (1))
form = 3,4,....

REMARK. The expression above for g,, is written in terms of p(e®) and its
derivatives; we can also express it in terms of p(1) and the derivatives of
G(z). The following recursive formula is useful for this purpose (cf. [33], page
135):

(—1)"m!
p(m)(y) = ’ m+1
G(p(¥)y
m! 1 (1 ks
Y GY(p(y _('_p(j) y )
for m =1,2,..., where the sum extends over all nonnegative integers
(B, kg,..., R, _1) such that
ky+2ky + - +(m -1k, =m, ki+ky+ - +k, ;=1

For example,
3ppi + 3ppy py — 3ppy — PPy — pPs — 297
6p3
—3pG3? + 3pG,G, + p®GT — 3p*G2G, — p*G,G, + 3p>GE + 2G3
6p°G? ’
where we put p = p(1) and p; = p(1) and G, = GY(p) for j = 1,2,3.

g3 =




CENTRAL LIMIT THEOREMS 313
5. Examples. Let us indicate some typical examples.

ExaMPLE 1 (Sums of independent random variables). Let X, X,,...,
X,,... be a sequence of independent random variables with a common
discrete distribution. Suppose that the moment generating function M(s) of
X, is analytic at 0. Then there exists an & > 0 such that log M(s) # 0 for
|s| < &, since M(0) = 1. In this case, Theorem 1 reduces to Cramér’s theorem
[7], since M, (s) = E exp(s(X; + X, + -+ +X,)) = M"(s). For other general-
izations, cf. [33], Chapter 8, and [35]. An interesting special case is when
M(s) =1 — p) + pe®, 0 < p < 1, namely, X, is a Bernoulli random variable.
Then we have in this case u(s) = log(1 — p + pe®) and

_p(l-p)

Qp = ———[s"7?]

m (e = 1)"

e’s™(1—p +pes)m*2

s)m—2

1- 1 e’s(l — p + pe
—p( p)- 56 ( L ds, 0<r<2m,

Isl=r (es — 1)m

which, by the change variable w = (e¢®* — 1) /(1 — p + pe®), becomes
p(l-p) 1 1+w(l-p)

S . 95 w

- M log————  dw,
m 271 )= 1—wp

m 21

m

0<r < min{p‘l,(l —p)_l},

1—
(- (™), mm 345

cf. [22].
ExampLE 2 (Exp-log scheme). The number of cycles in permutations in

which no two cycles are order-isomorphic has the bivariate generating func-
tion [15]:

ny (n—1!
P(z,w)=[T|1+ — = exp| w log - 8(z,w)|, lz| < 1,
n>1 n! 1-z
where w marks the number of cycles and

S Z (_w)k Z Zkn

(Z’w) k>2 k n>1 n(n!)]kl

is an entire function of z for any finite w. Theorem 3 applies with a = 1.
We list some examples belonging to the same class, the description of

which can be found in the cited reference. Many other examples to which

Theorem 3 applies can be found in [36], subsection 6.2.6.3, [24] and [18],

Chapter 5.

1. The number of connected components in a random mapping, a = 3 [15].
2. The number of monic irreducible factors in a random monic polynomial of
Fq[z], a finite field with g elements, @ = 1 [15].
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3. The number of connected components in a random mapping pattern, a =
[15].

4. The number of successful (or unsuccessful) searches in a random binary
search tree, a = 2 [29], Sections 2.4 and 2.5.

5. The depth of a random node in a random increasing tree in a polynomial
variety of degree d, d > 2, a = d/(d — 1) [2].

6. “Prime-divisor” functions in (additive) arithmetical semigroups under Ax-
iom A* [24].

ExaMPLE 3 (Algebraico—logarithmic scheme). Let G(z) be the generating
function of a subset of positive integers. If G(z) is aperiodic and not of the

form cz9, ¢ =1,2,3,..., then we can apply Theorem 4 to the bivariate
generating functions for integer compositions and cyclic compositions:
1 o(k) 1
— and lo ,
1- wG(2) ,El E 81— whG(2h)

since all such G(z) are 1-regular, where ¢(n) denotes Euler’s totient function,
namely, the number of integers greater than or equal to 1, less than or equal
to n, and relatively prime to n. For example, if G(z) = z/(1 — z), we obtain
u(s) = —log(2/(e® + 1)) and so

Qé) = X §k=—2;(i)2k £
kzs(Jk o 2k(2k — 1) \Vn |~ Vn

Hence, by (8), we have

w w k
o = __l[wk—z] e wk(e” + 1)
k (e¥ + 1)® wh 12k (ev — 1)*
-1 1+z
= sl g

0, k=3,51T,...,
" —(R(E-12¢Y) T, kE=4,6,8,....

This example is interesting since the zone of normal convergence contains the
interval 0 < x < X(n), where X(n) = o(n'/3).
Other examples include:

1. The number of blocks in a random ordered set partition and cyclic set
partition [16, 17]:

1 1

— d log——F—F—.
1—-w(e*—-1) an Og1—w(e2—1)
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2. The number of connected components (or cycles) in a random alignment
[14], Section 2.3, and its cyclic counterpart:
1 1

d 1 .
1+ wlog(l-2) and losy + w log(1 — z)

3. Other “ordered” and “cyclic” structures of partitional complex construc-
tions in the exp-log class, like random mappings, 2-regular graphs, chil-
dren’s yards, etc. [15].

4. Nodes of given out-degree in a random increasing tree in the polynomial
variety [2].

5. Nodes of given out-degree in a random tree in the simply generated family
of trees [30, 31].

6. “Factorisatio numerorum” in (additive) arithmetical semigroups under
Axiom A* [23].

7. Branching compositions of integers introduced in [18], Chapter 8.

EXAMPLE 4 (Arithmetical functions). Let f, , denote the number of factor-
izations of n into % integer factors greater than 1, n > 2, & > 1, where the
multiplicity of each factor is counted. Define f,, = §,,, where §,, is
Kronecker’s symbol. Consider the Dirichlet series:

P(w,s) =1+ Yon ) fo,mw™,

n>2 m>1

where w marks the number of integral factors. It is easily shown that P
satisfies

w1
P(w,s) = n(l——s) , Rs > 1, |lw| < 2.
n>2 n

Define a polynomial P (w) = X, _, [k *]P(w, s), with which we can associ-

ate a random variable ¢, with distribution:
[w™]P,(w)
P = = 7

A YO

¢, being the number of integral factors (> 1) of a randomly chosen factoriza-
tion among those of {1,2, ..., n}, each being assigned with the same probabil-
ity. We show in [18], Chapter 10, that

w*n exp(2 w log m )
2V (log n)3/4

the error term being uniform with respect to |w| <2 — &, largw| < 7 — §,
g, 8 > 0. Thus we obtain

M,(z) = Ee** = exp(2ylog n (e*/* — 1) + z/4)
x(I(2 = e%) + O((log n) /%)),

P(w) = (T2 — w) + O((log n) "%},
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4,
uniformly for |z| small. Writing F,(x) = Pr{¢, < y/logn + x\/ 1log n}, Theo-
rem 1 gives, for example,

1-F(x) _ exp(—zx/@A(%))

1—-®(x)

1+0

==

4
for all x > 0, x = o(y/log n ), where A is as in Theorem 2.
For many other examples, cf. [18], Chapters 9 and 10, [8] and [26].

ExaMPLE 5 (Meromorphic functions). The Eulerian numbers A(n, k) are

defined by the generating function
z" w(l—-w

P(z,w)= Z A(n,k)wk—'=(w(_1)—z),
k=0 n! e —w
and they enumerate the number of permutations of size n having k rises. Let
), denote the number of rises in a random permutation of size n, where each
permutation of size n has probability 1/n!. Then EQ, = 32(n + 1) and
Var Q, = ;5(n + 1) for n > 2. In addition, M, (s) = Ee®* =[2"]P(z, e®) can
be expressed in the form

es_l)nJrl (es_l)n+1

— n>1,ls|<2m,

reo (8 + 2kmi)

by standard techniques for expanding meromorphic functions. When n be-
comes large, the sum on the right-hand side gives only exponentially smaller
terms. Theorem 1 applies with u(s) = —log(s/(e® — 1)) and ¢(n) =n + 1.
Local limit theorems for Q, can be found in [1].

Another example of the same class is the level number sequence of Flajolet
and Prodinger [13]. There they consider the number A, of level number
sequences for binary trees, which is equivalent to the cardinality of the set
H,=U,H,,, where

H, = {(nl,nz,...,nk):n1 =1;1<n;<2n,

M) - |

2sjsk;n1+n2+-~~+nk=n};

k is called the height of the level number sequence. We can consider the
distribution of the height. Let %,, = #H,, with generating function P(w, z)
=¥, yh,,z"wk. Then similar derivations as in [13] lead to P(w,z) =
alw, z)/(1 — b(w, z)), where

B (_1)k+122k+1_k_2
a2 = D =)= (1= )

k

and

_ k+1 ok+1_p_o
(-1 'z 5

ki

b(w,z) = - w
(w:2) kgl (1-2)(1-2°)(1-2")(1-2""1)
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the two functions being analytic for |z| < 1 and all w. Following similar
arguments used in [13], it is not hard to show that our Theorem 1 is
applicable to X, A, ,e** /X, h,,. In particular, the height of a random level
number sequence is asymptotically normally distributed.

ExaMPLE 6 (Orthogonal polynomials). Many interesting combinatorial in-
terpretations have been proposed for classical orthogonal polynomials. For
example, the number of fixed points (cycles of length 1), marked by w, in the
involutions is enumerated by

z
wz + —
2

)

n>0

exp

where the A ,(w) are Hermite polynomials. The asymptotic behavior of % ,(w)
is well known (cf. [38], page 200):

2

n w
h,(w) = 21/2n"/2exp(—§ +vVn+ 1w - e 1+0

1
il e

uniformly for all finite w. Defining (), as the number of fixed points in a
random involution of size n, where each involution of size n has the same

probability, we obtain
1
‘/; K

uniformly for small |s|. Theorem 2 applies with ¢(n) = Vn + 1. Note that Q,
is of maximal span 2 for n > 2.

In this way, we can study distributional aspects of the coefficients of
classical polynomials (not necessarily orthogonal), like Laguerre, Gegenbauer
(which includes Chebyshev and Legendre), Charlier, Meixner (first kind),
Lerch and Humbert polynomials; cf. [38]. Our theorems apply to all these
polynomials which also appear in the combinatorial study of histories of a
number of data structures: stacks, priority queues, dictionaries and so on; cf.
[11]. In the other direction, probabilistic methods have been used to derive
classical asymptotic expansions of certain orthogonal polynomials; cf. [28].

M,(s) =Ee"* =exp(Vn + 1(e’ — 1) — (e** - 1)/4)[1+ O

6. Concluding remarks. We have hitherto applied our Theorem 1 to
discrete random variables. It might be possible that it finds application in
other fields.

It seems of some interest to replace the error terms in (5) and (6) by
asymptotic expansions under suitable conditions.

Local limit theorems for large deviations applicable to combinatorial distri-
butions are treated in [21].
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