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CONDENSATION IN LARGE CLOSED JACKSON NETWORKS

BY VADIM A. MALYSHEV AND ANDREI V. YAKOVLEV
1

INRIA and Universite d
X
Orleans´

We consider finite closed Jackson networks with N first come, first

serve nodes and M customers. In the limit M ª `, N ª `, MrN ª l ) 0,

we get conditions when mean queue lengths are uniformly bounded and

when there exists a node where the mean queue length tends to ` under
Ž .the above limit condensation phenomena, traffic jams , in terms of the

limit distribution of the relative utilizations of the nodes. In the same

terms, we also derive asymptotics of the partition function and of correla-

tion functions.

1. Introduction. We consider sequences of closed Jackson networks J ,N

Ž .N s 1, 2, . . . . The network J consists of N first come, first serve FCFSN

Ž .exponential single-server fixed-rate nodes, M s M N G 0 indistinguishable
Ž . � 4Ncustomers and it is assigned a probability routing matrix P s pN i j, N i, js1

Ž . Ždefining a finite Markov chain MC p stands for the probability of thei j, N

transition of a customer after the service at node i, to the node j; we also
.denote by m the service rate at node i in J . The latter is assumed to bei, N N

Žirreducible consisting of one class of essential states, with no inessential
.states and aperiodic.

w xThis type of network was introduced by Jackson 11 , and it gives a simple

example of product-form networks that model, for example, many telecom-

munications and data-processing networks, a large class of which was de-
w x Ž . Žscribed by Baskett, Chandy, Muntz and Palacios 1 ‘‘BCMP networks’’ . See

w x .also 13 .

In the quantitative and qualitative analysis of these networks, the equilib-

rium distribution has been of main concern. This distribution can be de-
Ž .scribed in the following way. Let r s r , . . . , r be the positive vectorN 1, N N , N

Ž .unique up to a positive factor satisfying the routing equation

1.1 r P s r .Ž . N N N

Then the relative utilizations of the nodes of the network will be given by

ri , N
r s C , i s 1, . . . , N ,i , N N mi , N
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LARGE CLOSED JACKSON NETWORKS 93

w Ž . Ž .for any C ) 0. Note that the right-hand sides of 1.3 and 1.4 below do notN

xdepend on C . For convenience, we putN

mi , N
C s maxN r1FiFN i , N

to obtain

1.2 max r s 1.Ž . i , N
1FiFN

Ž .Note that the vector r s r , . . . , r is proportional to the vector of theN 1, N N , N

� 4stationary distribution of an MC with the state space 1, . . . , N and with the
� 4Ntransition intensities m p .i, N i j, N i, js1

Ž . Ž Ž . Ž . Ž ..Let j t s j t , j t , . . . , j t be the stochastic pro-M , N 1, M , N 2, M , N N , M , N

w xcess of queue lengths J . Gordon and Newell 9 have shown that, for theN

equilibrium probability P in J with M customers, one has the followingM , N N

Ž .product form:

� 4P j s n , j s n , . . . , j s nM , N 1, M , N 1 2, M , N 2 N , M , N N

N1
n is r , 0 F n F M , i s 1, . . . , N ,Ł i , N i

Z is1M , N

1.3Ž .

Ž .where Z is the normalizing constant, or partition function p.f. , of J :M , N N

N
n iZ s r , n G 0, i s 1, . . . , N.Ý ŁM , N i , N i

is1n qn q ??? qn sM1 2 N

Many important performance characteristics of the network can be derived

from the partition function Z . For example, to obtain moments of theM , N

queue lengths, one can differentiate it: the mean number of customers at

node i is

r ­Zi , N M , N
1.4 m [ E j s .Ž . i , M , N P i , M , NM , N Z ­ rM , N i , N

It is important to mention that the problem of exact computation of the p.f.
w xhas been addressed by several authors. Buzen 5 has proposed a convolution

algorithm for the p.f. for closed networks with FCFS constant-rate servers.

w x w xHarrison 10 has found for it an explicit, closed-form expression. Gordon 8
Ž .has generalized his formula to networks with infinite servers IS’s and with

Ž .irregular constraint bounds e.g., clustering processes . Their formulas have

the most convenient form if all the relative utilizations of the nodes are

different.

ŽHowever, due to the computational difficulties large required time, numer-
.ical instabilities , asymptotic expansions of the p.f., as the size of the network

is large, are of greatest interest.

In the present paper, we develop a new framework for the asymptotic

analysis of closed Jackson networks. The network with only FCFS nodes has

been chosen mainly for the sake of simplicity of exposition of our ideas and

results. For networks with infinite servers, for example, the reader will find a
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discussion of possible generalizations of our results in Section 6. We also

believe that generalizations for networks with state-dependent service rates

or multiple classes of clients are possible.

We consider J in the following limit:N

1.5 M s M N ª `, MrN ª l ) 0 as N ª `.Ž . Ž .

That is, we let the number of nodes tend to `, keeping the density l sN

Ž .M N rN asymptotically constant. Further, we do not specify explicitly the

routing matrices P , but we require the weak convergence of the relativeN

utilizations. Precisely, we define the following sample measure: for any Borel
Ž . Ž . � 4set A, A ; R, we put I A [ 1rN a i: r g A . We make the followingN i, N

fundamental limit assumption.

ŽASSUMPTION W. As N ª ` the measures I converge weakly to a prob-N

. w xability measure I on 0, 1 .

We note that this assumption concerns the properties of solutions of the
Ž .systems of linear equations 1.1 and can be related to the network topology

Ž .see Section 6 for the discussion .

Ž . w xThe scaling 1.5 has already been considered by Knessl and Tier. In 14

they analyze closed BCMP networks with a single class of clients, an infinite

server and large numbers of customers and single-server queues with state-
w xindependent service rates. Starting from the recursion relation of Buzen 5

Ž w x. w xsee also 6 , they use the ray method of geometrical optics 12 and the
w xmethod of matched asymptotic expansion 2 to give asymptotic approxima-

tions of the p.f. when the servers ‘‘can be divided into classes with nearly
Žequal relative utilizations’’ see Section 2 for an analytical description of the

. w xdependence of r on i . Knessl and Tier 15 use the same methods to studyi, N

a closed BCMP network with multiple classes of clients. They use the
w xextension of the algorithm of Buzen 5 to BCMP multiclass networks by

w x Ž w x. w xKobayashi and Reiser 16 see also 18 . Mei and Tier 26 extend the results

to networks with state-dependent servers and with at least one IS node.

Employing the method of generating functions together with the saddle-
w x w xpoint method, Kogan 17 has re-deduced the results of Knessl and Tier 14 ,

w xwith the same assumptions about r . Birman and Kogan 3 treat, with thei, N

help of the same techniques, a class of closed product-form networks with
Ž . Žlimited-queue-dependent LQD service rates two cases: one IS q a fixed

number of queueing stations q a large number of customers; one IS q several
Ž .groups of LQD nodes with ‘‘slowly varying parameters’’ in each group q a

. w xlarge number of customers . In 4 they apply the same methods to multi-

chain closed product-form networks with several groups of stations, each

group consisting of many identical stations.

w x w x w xThe hypothesis of Knessl and Tier 14 , 15 and Kogan 17 on the relative

utilizations of the nodes in the network can be easily accommodated by our
Ž .model see Section 2 ; for networks with one class of clients and without IS

nodes, our expansions coincide with those of Knessl and Tier.
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In our opinion, the important advantages of our ‘‘functional’’ approach
Ž .Assumption W over the ‘‘analytic’’ one are the following.

� 4̀First, it allows us to find a criterion for instability of the sequence J :N Ns1

we find the critical density l , depending only on the measure I, such thatcr

for l - l the mean queue lengths at all nodes are uniformly boundedcr

Ž .Theorem 2.1 . In this case we get the limit distribution for a sequence of

closed Jackson networks in equilibrium. It is, of course, the product of

geometrical distributions.

If l G l , then, at least at the node with maximal relative utilizationcr

Ž . Ž .r.u. , the mean queue length grows infinitely as N ª ` Theorem 2.2 . This

is a traffic jam phenomenon. The rate of divergence of queue lengths can be

quite arbitrary, since it depends on the way the measures I and the valuesN

of r converge. In Theorem 2.3 we consider a classical example of a networki, N

with a few distinguished nodes, where the mean queue length grows linearly

with N.

The knowledge of l is important in evaluating the sensitivity of thecr

network w.r.t. the fluctuations of the traffic andror the conditions of service.

We also find the asymptotics of Z and its first derivatives in terms of theN

limit measure I.

Second, considered as an unordered set of nodes with assigned r.u., a large
Ž .Jackson network strongly resembles an ideal gas canonical ensemble in

statistical mechanics. There is, however, a crucial difference between the two:

the former can be extremely inhomogeneous in the properties of the particles

which build up the system. Under Assumption W and for l G l , thecr

behavior of J resembles the Bose condensation phenomenon in quantumN

statistical physics: particles condense in the minimal energy state. This

together with other peculiarities can give rise to features in the mere defini-

tion of the thermodynamic limit.

Third, we give an extension of the techniques of the ‘‘saddle-point’’ method
w x7 which could be useful in further studies of large systems.

We use in our work a representation of the p.f. and its derivatives with the

help of Cauchy integrals. We then apply the saddle-point method to estimate

these integrals. The necessary theory of functions of the complex variable can
w xbe found, for example, in 20 .

For completeness, we mention here results on the asymptotic expansions of

the p.f. for a class of large closed networks under a scaling different from
w xours. McKenna, Mitra and Ramakrishan 23 have introduced a method of

asymptotic expansion based on the Gamma-function representation of the

factorials participating in the product form and on the saddle-point estima-
w xtion of the resulting integrals for networks with infinite servers. In 23 ,

McKenna and Mitra obtain asymptotic expansions in a large parameter N,

which reflects the number of customers in the system, for a network consist-

ing of several IS nodes, each serving its own class of clients, and a common
Ž . w xprocessor-sharing PS node. In 24 McKenna and Mitra they generalized

their results for networks with multiple queueing nodes under the conditions
w xof ‘‘normal usage.’’ In 25 they give analogous expansions for the moments of
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w xthe queue lengths. McKenna 22 has extended the methods to sojourn time

problems.

The outline of the paper is as follows. In Section 2 we define the key

functions and we formulate our main results. We prove in Section 3 some

auxiliary results concerning the monotonicity of the network and the proper-

ties of the functions introduced in Section 1. In Section 4 we prove our results
Ž .in the regular case absence of condensation and in Section 5, in the case of

condensation. Finally, we consider some examples and we discuss possible

generalizations in Section 6.

Ž .2. Main results. Let us put « s Mr Nl y 1. Denote, for z g C _N

w .1, q` ,

r1
2.1 h z [ dI r ,Ž . Ž . Ž .H

1 y zr0

N1
2.2 S z [ yl 1 q « ln z y ln 1 y zr ,Ž . Ž . Ž . Ž .ÝN N i , N

N is1

1
2.3 S z [ yl ln z y ln 1 y zr dI r .Ž . Ž . Ž . Ž .H

0

Ž . w .It is obvious that h z is strictly monotone on 0, 1 . We will denote l [cr

Ž .lim h z .z ª 1y

Ž .REMARK 2.1. Note that if dI r is absolutely continuous with a smooth
Ž . Ž .density f r , then l - ` if, for example, f 1 s 0.cr

REMARK 2.2. The case where l s 0 is, of course, possible. Then for anycr

l ) 0 we observe the overflow behavior in the system, but we do not study it

in this paper. In the sequel, we will assume that

l ) 0.cr

The main results of the paper are the following theorems.

THEOREM 2.1. Let l - l . Then:cr

Ž .i

1 1
Z ; exp NS z , N ª `,Ž .Ž .N N 0, NY z2p NS z' Ž . 00

and asymptotically the free energy satisfies

1
F s ln Z ; S z ;Ž .N N 0

N

Ž .ii m are uniformly bounded in N and i; that is, there exists somei, N

constant Q such that m - Q, N G 1, 1 F i F N;i, N
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Ž .iii if there exists r s lim r , 1 F i F K, for some K, K ) 0, then,i N ª` i, N

Ž .for any vector n , n , . . . , n G 0,1 2 K

K
n i� 4P j s n , j s n , . . . , j s n ª 1 y z r z r , N ª `;Ž . Ž .ŁN 1 1 2 2 K K 0 i 0 i

is0

Ž .iv if, for some i, there exists r s lim r , theni N ª` i, N
z r0 i

m ª , N ª `,i , N
1 y z r0 i

� 4where P A is the equilibrium probability of an event A in the Nth networkN

J , z is the root of the equationN 0

­S z lŽ .
2.4 s 0 m h z sŽ . Ž .

­ z z

such that 0 - z - 1 and z is the root of the equation0 0, N

­S zŽ .N
2.5 s 0Ž .

­ z

such that 0 - z - 1.0, N

Ž .Note that iii is, of course, true for any finite set of nodes, but we choose

the ‘‘first’’ ones for the sake of simplicity of the notation.

Ž .THEOREM 2.2. Let l G l and let i N be such that r s 1. Thencr iŽN ., N

m ª ` as N ª `.iŽN ., N

We remark that one of the ways to obtain approximations for finite

networks from our asymptotic formulas is to put z [ z . The values that0 0, N

we obtain then correspond to the limit, where we fix N relative utilizations

and take l nodes for each of these r.u.’s and then we let l ª `. In this case

the condensation is absent and the approximations we obtain coincide with
w xthose of 15 , formulas 3.46]3.49, for networks with one class of clients. It is

w xshown in 15 that the accuracy of the approximations is very good. However,

if there are some nodes with r.u.’s very different from all the other r.u.’s, it
Žmay be better to use the approximations for the networks with overflow as in

.Theorem 2.3 below .

w x w xIn 14 and 17 the condition on the r.u. is the following:

i
2.6 r s g , i s 1, . . . , N ,Ž . i , N ž /w xlN

Ž . w y1 x wwhere g x is finite-piecewise continuously differentiable on 0, l assume
Ž . x Ž . Ž .also that max g x s 1 ; 2.6 gives us the following measure I: I A sx gw0, lx

Ž y1Ž .. w xln g A for any Borel set A, where n is the Lebesgue measure on 0, 1 .

Ž .This means but is not equivalent to that I has discrete and continuous

components and its support is a finite number of continuous sets. It is also
Ž .easy to see that the above regularity properties of g ? exclude the condensa-

tion in the network. It is clear that our framework is more general.
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We also treat a classical example of overflow, traditionally considered in
Ž w x w x.the literature e.g., 14 and 17 for the respective networks with one IS

node, when there is a finite number of identical distinguished nodes having

the maximal relative utilization. The critical value of the density l for a
w x Žnetwork of this type was implicity found by Kogan 17 see the discussion in

.Section 6 .

Let, for some fixed K, K ) 0, and for all N, N G K,

2.7 r s ??? s r s 1.Ž . 1, N K , N

Let there also exist B, 0 - B - 1, such that

2.8 r F B , l ) K .Ž . l , N

Ž .It is clear that under these conditions l - q`, and h z is defined forcr

w . w . Ž .z g C _ 1rB, q` , and it is strictly monotone on 0, 1rB . Moreover, S z s
B Ž . Ž .yl ln z y H ln 1 y zr dI r , and it can be continued to a neighborhood of0

XŽ .z s 1. Note also that S 1 - 0. Suppose also that

2.9 lim h z s q`.Ž . Ž .
zª1rBy

Ž . Ž .THEOREM 2.3. Under conditions 2.12 ] 2.14 , if l ) l , then:cr

Ž .i
N 1

Ky1X
Z ; yNS 1 , N ª `,Ž .Ž . ŁN

1 y rjsKq1 j , N

and

S
X

1Ž .
m ; yN , i s 1, . . . , K , N ª `;i , N

K

Ž .ii m are uniformly bounded in N and i, K - i F N;i, N

Ž .iii if, for some i, i ) K, there exists r s lim r , theni N ª` i, N

ri
m ª , N ª `.i , N

1 y ri

If l - l , then the asymptotics of Theorem 2.1 hold true.cr

Ž .REMARK 2.3. Condition 2.9 holds, for example, if, in some neighborhood
Ž . Ž .to the left of B, dI r rdr exists and dI r rdr ) L for some L, L ) 0.

Ž .In the above example, the maximal mean queue length is of order O N ,
w xand the condition of overflow is similar to that obtained in 17 . Note,

however, that the overflow can be of much more general character, and

Theorems 2.1 and 2.2 together give its criterion. Let us have the same
Ž .network as in Theorem 2.3 but with K s K N ª ` varying. A natural

Ž .conjecture would be that, if K N rN ª 0 as N ª ` and l ) l , thencr

Ž Ž ..m s O NrK N . Note that the classical techniques of the saddle-point1, N

Ž .s.p. method will not work in this situation, as the order of the pole
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coalescing with the s.p. contour grows infinitely with N. The analysis can be

again more complicated if, for example, the r.u.’s are different but they are

approaching 1 as N ª ` and so on.

3. Auxiliary results. Recall that r / 0, i s 1, . . . , N. We will need thei

following result on the monotonicity of the network.

LEMMA 3.1. For any M G M G 0, any N, N G 1, j, 1 F j F N, we have2 1

m G m .i, M , N i, M , N2 1

PROOF. We will prove the lemma using the stochastic monotonicity of
Ž .j t . We note that another quite simple proof can be done using theM , N

Ž w x.so-called arrival theorem for closed networks see, e.g., 19 .

Let us introduce the following partial ordering on E s Z N:q

� 4 � 4x F y ' x F y , i s 1, . . . , N , x , y g E.i i

� < 4We call G an increasing set iff G s y y G x for some x g G . The family of
Ž . Ž w x.increasing sets TT E induces the strong stochastic order F cf. 21 : for twost

probability measures P, Q on E,

� 4P F Q ' P G F Q G ; G g TT E .� 4Ž . Ž . Ž .st

� 4̀Consider now the generator A of the family j . It is the sum of theM , N Ms0

respective generators of j . Note that, as each network is closed, A is aM , N

reducible generator. For A we have

A s a F f y I ,Ž .Ž .Ý i j i j

i , js1, . . . , N

where

a s m p , i , j s 1, . . . , N ,i j i , N i j , N

. . . , x y 1, . . . , x q 1, . . . , x ) 0,Ž .i j i
f : E ª E, f x sŽ .i j i j ½ x , x s 0,i

I: E ª E, I x s x ,Ž .

y1F f s f , f: E ª E.Ž .

w xIt is easy to show that the conditions of Theorem 4.1 of Massey 21 are
Ž .verified and therefore A is a TT E -monotone generator.

Ž .Let us consider j , j with the initial conditions: j 0 sM , N M , N M , N1 2 1

Ž . Ž . Ž . Ž . Ž .M , 0, . . . , 0 , j 0 s M , 0, . . . , 0 . Then j 0 F j 0 and both1 M , N 2 M , N st M , N2 1 2

Ž .processes have the same TT E -monotone generator. Hence, by Theorem 3.4 of
w x Ž . Ž .21 , j t F j t for any t G 0, and therefore P F P .M , N st M , N M , N st M , N1 2 1 2

Ž .Now let g x s x . Theni i

m s E g jŽ .i , M , N P i M , NM , N

` `

� 4 � 4s jP j s j s P j G j .Ý ÝM , N i , M N M , N i , M N

js1 js1
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� 4 Ž .As the sets x G j g TT E , we get the desired result. Ii

To evaluate Z , for every fixed N we consider first the grand partitionM , N

Ž .function the generating function of the sequence of networks

` N 1
M < <3.1 J z [ z Z s for z - 1.Ž . Ž . Ý ŁN M , N

1 y zris1 i , NMs0

In accordance with the Cauchy formula on residues,

1 J zŽ .N
Z s dz ,HM , N Mq12p i zg

where g is a circle of radius less than 1 centered at 0, or, using the notation
Ž .of 2.2 ,

1 1
3.2 Z s exp NS z dz .Ž . Ž .Ž .HN N

2p i zg

Note that the integrand is a meromorphic function with poles z s 1rri, N i, N

G 1, i s 1, . . . , N.

For the means, we have

r ­Z 1 1 ri , N N i , N
3.3 m s s exp NS z dz .Ž . Ž .Ž .Hi , N N

Z ­ r Z 2p i 1 y zrgN i , N N i , N

For the joint distributions of the queue lengths, we have

1
n n n K1 2 K

K� 4P j s n , j s n , . . . , j s n s r r ??? r Z ,N 1 1 2 2 K K 1, N 2, N K , N MyÝ n , Nis 1 iZN

where
N

K n iZ s r .Ý ŁL , N i , N
isKq1n qn q ??? qn sLKq1 Kq2 N

� K 4̀We consider again the generating function of the sequence Z :L, N Ls0

` N 1
K L K < <J z s z Z s , z - 1.Ž . Ý ŁN L , N

1 y zrisKq1 i , NLs0

Using again the Cauchy formula for Z K , we obtainL, N

� 4P j s n , j s n , . . . , j s nN 1 1 2 2 K K

n n n N1 2 Kr r ??? r 1K1, N 2, N K , N yMqÝ n q1is 1 is z dzŁH
Z 2p i 1 y zrg isKq1N i , N

K N1 1 1n iyM y1s z 1 y zr zr dzŽ . Ž .Ł ŁH i , N i , N
Z 2p i 1 y zrg is1 isKq1N i , N

3.4Ž .

K1 1 n iy1s z 1 y zr zr exp NS z dz .Ž . Ž . Ž .Ž .ŁH i , N i , N N
Z 2p i g is1N
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LEMMA 3.2. All roots of the equation

­S zŽ .N
3.5 s 0Ž .

­ z

Ž .are real and positive. There is always one and only one root in 0, 1 .

Ž .PROOF. Rewriting 3.19 , we obtain

N­S z l 1 q « 1 rŽ . Ž .N N i , N
3.6 0 s s y q .Ž . Ý

­ z z N 1 y zri , Nis1

Ž .It is easy to see that, for Im z / 0, the imaginary parts of all terms in 3.6
Ž .have the same sign. Hence, the roots of 3.6 can only be real. Note also that

Ž .all terms in 3.6 are positive if z - 0, which proves that the roots cannot be

negative.

Ž . Ž .Let us consider the interval 0, 1 . All terms of 3.6 are strictly monotone
Ž . won 0, 1 and their sum has infinite limits of different signs at its ends at

Ž .x0}evident, at 1}due to 1.2 . Therefore, the lemma is proved. I

LEMMA 3.3. For any fixed l, l ) 0, there exists lim z \ z sN ª` 0, N 0

Ž .z l ) 0. It has the following properties:0

Ž . Ž .i if l - l , then z l is the root of the equationcr 0

l
3.7 h z s ,Ž . Ž .

z

Ž . Ž . Ž .z l is strictly monotone and 0 - z l - 1, lim z l s 1;0 0 lª lcry 0

Ž .ii if l G l , then z s 1.cr 0

Ž . Ž . w .PROOF. i l - l . Note that zh z is strictly monotone on 0, 1 . Sincecr

Ž . Ž . Ž .l - lim h z s lim zh z , 3.7 obviously has a unique solutionz ª 1y z ª 1y
Ž . Ž . Ž .z s z l g 0, 1 , strictly monotone in l. Hence, there exists lim z l .0 0 lª l y 00

It is easy to see that it equals 1.

Ž . Ž .Let us show that lim z ,s z . For any N, let g z [ ­S z r­ z,N ª` 0, N 0 N N

w Ž .x Ž .which is a monotonically increasing see 3.6 continuous function on 0, 1 ;
Ž . Ž .g z [ h z y lrz is also a monotonically increasing function on the same

Ž . Ž . Ž .set of z; and, for any z, z g 0, 1 , g z ª g z as N ª `.N

Ž . Ž .Take any small interval around z : z y « , z q « . Then g z will be0 0 0

different from 0 at the endpoints of that interval, and will have different
Ž .signs. But, for N large, g z will have the same signs at the respectiveN

points. Hence, the interval will contain z .0, N

Ž . Žii l G l . It is obvious that lim sup z F 1 since z F 1rr ,cr N ª` 0, N 0, N i, N

. Ž . Ž .1 F i F N . For arbitrary « ) 0 sufficiently small, g 1 y « - lim g z Fz ª 1y
Ž .0. For N sufficiently large, g 1 y « will also be negative for z, 0 - z F 1 yN

Ž .« , that is, z g 1 y « , 1 . I0, N
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Ž Ž ..LEMMA 3.4. The quantity Re S r exp iw monotonically decreases whenN

Ž . Ž .w g 0, p and monotonically increases when w g p , 2p , r ) 0.

PROOF. Indeed,
N1 1

3.8 exp N Re S z s .Ž . Ž .Ž . ŁN NlŽ1q« .N < <1 y zr< <z is1 i , N

Ž .The first factor on the right-hand side of 3.8 has constant value on the curve
Ž . Ž . < Ž . < 2 X Ž .r exp iw . Let d w s 1 y rr exp iw . Then d w s 2rr sin w, soN i, N N i, N

Ž .the denominators in 3.8 increase when 0 - w - p and decrease when

p - w - 2p . I

4. Proof of the main results in the regular case. We will first prove a

theorem slightly more general than Theorem 2.1, from which the latter will

follow.

Ž . � < < 4 �In the sequel, we shall denote U v [ z g C: z y v - d , g [ z g C:d

< < Ž .4z s z l .0

THEOREM 4.4 Assume:

Ž .I l - l ;cr

Ž . � Ž .4 �II f u , z is a family of functions, holomorphic in the ring z g C:u g Q

Ž . < < Ž . 4z l y s - z - z l q s for some s ) 0, and uniformly bounded in0 0 0 0 0

that ring, and such that, for a given « sufficiently small, « ) 0, there exists
< Ž . < Ž .s , s ) 0, such that f u , z rf y 1 - « , z g U z , u g Q, for some con-u u u 2 s 0u

� 4stant f g R _ 0 .u

Then there exists N such that, for any N, N ) N , u g Q,« «

1
L f [ f u , z exp NS z dzŽ . Ž . Ž .Ž .HN N

2p i g

fu
< <s exp NS z 1 q z , z g R, z - 25« .Ž . Ž .Ž .N 0, N N N NY

2p NS z' Ž .0

PROOF. Essentially, we will apply to the integral along g the usual
Ž .techniques of the saddle-point method. But the way S z depends on NN

makes a generalization of the method necessary.

Ž .From the convergence of z to z see Lemma 3.3 , we obviously have0, N 0

the following result.

PROPOSITION 4.1. For any s , s ) 0, there exists N
X

such that, for any N,
X Ž . Ž .N ) N , U z ; U z .s 0, N 2 s 0

LEMMA 4.5. For any given « sufficiently small, « ) 0, and any given s ,u

s ) 0, there exist N
X

and s , s G s ) 0, such that the following sevenu r u r
X Ž .properties hold true for N ) N and for z g U z , where applicable:s 0, Nr

Ž . Ž . Ž .a S z can be expanded into a power series in U z :N s 0, Nr
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2
z y zŽ .0, N Y

4.1 S z s S z q S z 1 q R z ,Ž . Ž . Ž . Ž . Ž .Ž .N N 0, N N 0, N 2, N
2

where

q` Žk .2 S zŽ .N 0, N ky2
R z s z y z ;Ž . Ž .ÝY2, N 0, N

S z k!Ž .N 0, N ks3

b S
Y

z ) F for some constant F , F ) 0;Ž . Ž .N 0, N

Y
S zŽ .0

c y 1 - « ;Ž . Y( S zŽ .N

d R z - « ;Ž . Ž .2, N

X
e z y z R z - « ;Ž . Ž . Ž .0, N 2, N

Im R zŽ .2, N
f - 1;Ž .

1 q Re R zŽ .2, N

g z g r q s , z q s y s .Ž . Ž .0, N 0 r 0 0 r

Ž . Ž .PROOF. To ensure a in U z , is is sufficient to require that 0 - s -s 0, N aa

Ž . Ž .1 y z r2 for l - l implies z - 1. Then any S z can be expanded into0 cr 0 N

Ž .the power series when z g U z :s 0, Na

q` Žk .S zŽ .N 0, N k
S z s S z q z y z ,Ž . Ž . Ž .ÝN N 0, N 0, N

k!ks2

Žn.Ž .all S z g R,N 0, N

N
ynnŽn. yn y1 y1S z s y1 n y 1 ! l 1 q « z q n y 1 ! N r y z .Ž . Ž . Ž . Ž . Ž . Ž .ÝN N i , N

is1

REMARK 4.4. It is easy to see that there exists N
X

such that z ga 0, N

Ž . X Ž .U z for N ) N , and the above expansions are valid in U z .s r2 0 a a r2 0a a

Note that for any n there exists

lim SŽn. z \ SŽn. zŽ . Ž .N
Nª`

n yns y1 n y 1 ! lzŽ . Ž .4.2Ž .
yn1 y1q n y 1 ! r y z dI r ,Ž . Ž .Ž .H i , N

0

w . Ž .uniformly on every compact set outside 1, q` , and hence for z g U z .s r2 0a

Hence, for any n there exists

4.3 lim SŽn. z s SŽn. z and S
Y

z ) 0.Ž . Ž . Ž . Ž .N 0, N 0 0
Nª`

Ž .This obviously implies b .
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Y Ž . Ž .Using the uniform convergence of S z in U z , N ª `, and that ofN s r2 0a

Ž .4.3 , we can choose s to be small enough, so thatc

Y
S z «Ž .0

y 1 - , z g U z .Ž .Y 2 s 0( cS z 2Ž .N

X Ž .From Proposition 4.1 it follows that there exists N such that c is also truec

if N ) N
X
.c

Ž . X
From 4.2 it follows that there exist N and M, M ) 0, such thatd

< Ž . < Ž . w .S z - M for z s z q m exp iw , w g 0, 2p , for some small m andN 0, N
X < Žn.Ž . < n < <N ) N . Then S z rn! F Mrm . Let z y z F s - m. Thend N 0, N 0, N

Žk .q` S z s 1Ž .N 0, N ky2
z y z F MŽ .Ý 0, N 3k! 1 y srmmks3

< Ž . < < < X Ž .and therefore R z ª 0 if z y z ª 0, N ) N , which yields d .2, N 0, N d

Ž .To ensure e , we can just evaluate

Žk .q`2 k y 2 S zŽ . Ž .N 0, N ky2X
z y z R z s z y zŽ . Ž . Ž .ÝY0, N 2, N 0, N

S z k!Ž .N 0, N ks3

q` ky22 M s
F k y 2 ,Ž .ÝY 2 ž /lS z lŽ .N 0, N ks3

< < X
z y z - s F m , N ) N ,0, N d

and, by choosing appropriate N
X G N

X
and appropriate small s , we cane d e

Ž .provide e .

Ž . Ž . X
Property i follows from d , with some s , N .f f

Ž . X
It is obvious that property g can be easily satisfied, too, with some s , N .g g

Ž . X Ž X X .Now, by taking s s min s , . . . , s and N s max N , . . . , N , we con-r a g a g

clude the proof. I

Now we proceed to the proof of the theorem. Under its conditions, the

conditions of Lemma 4.5 are satisfied, and we will refer to the properties
Ž . Ž .proved therein simply by a ] g .

First, we deform the integration contour g into the new integration

contour g , depending on N, in the following way. From the two level curvesN

Ž . Ž . Ž .of the function Im S z passing through z : Im S z s Im S z s 0,N 0, N N N 0, N

we choose the one orthogonal to the real axis of the z-plane. As the only finite
Ž .singularity points of S z are 0, 1rr , 1 F i F N, this level curve goes outN i, N

Ž .of U z , crossing its boundary at two points, symmetrical with respect tos 0, N

Ž .the real axis. We denote the intersection of this curve with U z by g ,s 0, N s , N

and by z , z we denote the ends of g . Then we connect z and z1, N 2, N s , N 1, N 2, N

Ž .by an arc centered at z s 0, which is located outside of U z , thuss 0, N

obtaining the integration curve g since lies inside of the domain of analytic-N

Ž .ity of the integrands by g and by the conditions of the theorem, it would give

the same integral values as those counted along g .
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Ž .Now we will evaluate the integral along the part of g outside of U z .N s 0, N

Ž . ŽŽ .2Ž Ž ...But z y z s s exp iw , j s 1, 2, and Im z y z 1 q R z sj, N 0, N j j 0, N 2, N j

Ž . Ž . Ž Ž .. Ž .0, j s 1, 2, from which tan 2w s yIm R z r 1 q Re R z . From bj 2, N j 2, N j

Ž . Ž .and 4.23 and f , we can prove that there exists C, C ) 0, such that, for any
X Ž . Ž .N, N ) N , Re S z - Re S z y C, j s 1, 2.N j, N N 0, N

� Ž .4If we take into account the uniform boundedness of f u , z , we obtainu g Q

4.4 f u , z exp NS z dz F G exp N S z y CŽ . Ž . Ž . Ž .Ž . Ž .Ž .H N N 0, N
g _gN s , N

for some C ) 0, G ) 0 and any N ) N
X
, u g Q.

Ž .Now we proceed to an evaluation of the main part along g of thes , N

integral.

Let us introduce

Yc z s z y z S z 1 q R z , z g U z ,' 'Ž . Ž . Ž . Ž . Ž .N 0, N N 0, N 2, N s 0, Nr

where the positive branch of the square root is used. It is obvious that
X YŽ . Ž .c z s S z and that yic z g R, z g g .' Ž .N 0, N N 0, N N s , N

Ž . Ž . Ž .From d it follows that c z in U z has only one 0 at z and thatN s 0, N 0, N

1 c X
zŽ .N

dz s 1,H
2p i c zŽ .g Ns

� Ž . Ž . 4where g s z: z s z q s r2 exp iw , 0 F w - 2p .s 0, N r

< Ž . < Ž .XLet d s inf c z . Note that d ) 0 due to c . And let< zyz <ss r2, N ) N N0, N r

Ž � X X Ž . y1Ž Ž .. 4.X Xs s min s r2, inf sup s : s exp iw g c U 0 , 0 F w - 2p .r N ) N s ) 0 N d
X Ž .Note also that s ) 0. Then, for any z g U z ,s 0, N

1 c X
zŽ .N

dz s 1,H X
2p i c z y c zŽ . Ž .g N Ns

which, due to the argument principle, implies that there are no other points
Y Ž . Ž Y . Ž X. Ž .z g U z : c z s c z . Hence, c z performs the analytical isomor-s 0, N N N N

Ž . X
phism of U z , N ) N , into some neighborhood of 0.s 0, N

y1Ž . Ž Ž ..Let us put z s c w , w g c U z . ThenN N s 0, N

1
f u , z exp NS z dzŽ . Ž .Ž .H N

2p i gs , N

1 Nw2 dw
y1s exp NS z f u , c w expŽ . Ž .Ž . Ž .H XN 0, N N y1ž /2p i 2 c c wŽ .Ž . Ž .c g N NN s , N

1
s exp NS z I ,Ž .Ž .N 0, N N

2p

Nu2 f u , z uŽ .Ž .N
I [ exp y du,H XN ž /2 c z uŽ .Ž . Ž .yic g N NN s , N
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Ž . y1Ž .where w s iu and z u [ c iu . Note again that u g R. ButN N

1
Xc z uŽ .Ž .N N

1 q R z u' Ž .Ž .2, N N
s .

Y X1S z 1 q R z u q z u y z R z u' Ž . Ž . Ž . Ž .Ž . Ž . Ž .N 0, N 2, N N N 0, N 2, N N2

Ž . Ž . Ž .From c ] e together with condition II of the theorem, it follows that

f u , z u fŽ .Ž .N u
s 1 q z u ,Ž .Ž .X 1, NYc z uŽ .Ž . S z' Ž .N N 0

z u g C, z u - 10« , iu g c U z , u g QŽ . Ž . Ž .Ž .1, N 1, N N s 0, N

Ž . X
as « is small . So, for N ) N , u g Q,

Nu2 fu
I s exp y du 1 q z ,Ž .HN 2, NYž /2Ž . S zyic g ' Ž .4.5Ž . N s , N 0

< <z g C, z - 15« .2, N 2, N

YŽ . Ž .But yic z s z y z S z 1 q R z , j s 1, 2, and' Ž . Ž .'N j, N j, N 0, N N 0, N 2, N j , N

Ž . Ž . Ž . X
due to c , d and f , for small « and for N ) N ,

s
Y

D - yic z - 2s D , j s 1, 2, D s S z .'Ž . Ž .N j , N 0
2

Ž . Ž 2 .So the last integral in 4.5 is bounded by the integrals of exp yNu r2 on
w x w xys Dr2, s Dr2 and y2s D, 2s D , the latter two being equivalent to

Y Y X'2prN as N ª `. Hence, we can conclude that there exists N , N G N ,

such that, for any N, N ) N
Y
,

2Nu 2p
exp y du s 1 q z ,Ž .(H 3, Nž /2 NŽ .yc gN s , N

< < Yz g R, z - « , N ) N ,3, N 3, N

and therefore

2p fu Y< <I s 1 q z , z g C, z - 20« , N ) N , u g Q.Ž .(N 4, N 4, N 4, NYN S z' Ž .0

Ž .From this estimate together with 4.4 , it follows that the integrals along

g _ g are exponentially small compared to those along g ; that is,N s , N s , N

Theorem 4.4 is proved. I

Ž . Ž .Now we will prove the statements of Theorem 2.1. Take f u , z s f z s
1rz, f s 1rz . Then, for any small « , « ) 0, we can find small s , s ) 0,u 0 u u
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Ž .such that condition II of Theorem 4.4 is satisfied. Therefore, for any «
sufficiently small, « ) 0, ' N : ; N, N ) N ,« «

1 1
< <Z s exp NS z 1 q z , z - 25« , N ) N ,Ž . Ž .Ž .N N 0, N N N «Y z2p NS z' Ž . 00

Ž .which proves statement i of Theorem 2.1.

Ž . Ž .To prove ii , we fix some small « , « ) 0, and assume f u , z s Arz q
Ž . w x Ž .ur 1 y zu , u g Q s 0, 1 , A ) 0, f s Arz . The f u , z rf s z rz qu 0 u 0

Ž Ž .. Ž Ž ..z ur 1 y zu rA. By choosing s s «r8 and A s 16 z r 1 y z r« , we can0 u 0 0

Ž .ensure condition II of Theorem 4.4.

Then we obtain that ' N : ; N, N ) N , u g Q,« «

1 A u
q exp NS z dzŽ .Ž .H Nž /2p i z 1 y zug

1 A
< <s exp NS z 1 q z , z g R, z - 25« .Ž . Ž .Ž .N 0, N N N NY z2p NS z' Ž . 00

Ž .After dividing by Z and applying the results of i to the right-hand side ofN

the resulting equality, we obtain that, ' N
X
: ; N, N ) N

X
,« «

1 1 u
X X< <A q exp NS z dz s A 1 q z , z - 30« .Ž . Ž .Ž .H N N N

Z 2p i 1 y zugN

y1 Ž . Ž . Ž . Ž .As m s Z L f with f z s r r 1 y zr and Arz q f z si, N N N i, N i, N i, N i, N i, N

Ž . < � Ž .4f u , z g f u , z , the above evaluation implies thatusr u g Qi, N

< < X
m - 30 A« , N ) N , 1 F i F N ,i , N «

Ž .which proves statement ii of the theorem.

Ž .To prove iv , we can take, for some fixed i,

1 1
f u , z s f N , z s , f s .Ž . Ž . u

1 y zr 1 y z ri , N 0 i

Then, for any « sufficiently small, « ) 0, we can obviously find N 0 and s ,« u

� 0 0 4 Ž .s ) 0, such that, for Q s N , N q 1, . . . , condition II of Theorem 4.4 isu « «

satisfied. Then we obtain

­Z 1 1N
s exp NS z 1 q z ,Ž . Ž .Ž .N 0, N NY­ r 1 y z r 2p NS z' Ž .i , N 0 i 0

< < 0z - 25« , N ) max N , N .Ž .N « «

Ž .Applying i , we can see that

1 ­Z zN 0
ª , N ª `.

Z ­ r 1 y z rN i , N 0 i

And, as r ª r , N ª `, we obtain in a straightforward manner the desiredi, N i

result.

Ž .Statement iii can obviously be proved in exactly the same manner. I
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5. Proof of the main results in the condensation case.

Ž . ŽPROOF OF THEOREM 2.2. Note that by Lemma 3.3 the value z l r 1 y0

Ž ..z l is strictly and infinitely increasing when l p l . Hence, for any m,0 cr
X XŽ . Ž X.Ž Ž X..m ) 0, we can choose l s l m - l such that z l 1 y z l s m q 1.cr 0 0

Ž .Note also that, instead of tracking the varying index i N of the node,
Ž .where r s 1, we can assume, without loss of generality, that i N s 1,iŽN ., N

that is, r s 1. Indeed, the value of the expression for m does not1, N i, N

depend on i, but only on the value of r .i, N
XŽ . w X x Žw x Ž ..With M N s l N ??? denotes the integer part of ??? , the assump-

tions of Theorem 2.1 hold true, and therefore there exists N
X
: ;N ) N

X
,

Ž X. Ž Ž X .. X
Xm ) z l r 1 y z l y 1 s m. But MrN ª l G l ) l . Hence,1, M ŽN ., N 0 0 cr

Y Y Ž . Ž . XŽ .' N : ;N, N ) N , M N s Nl 1 q « G M N . Therefore, by Lemma 3.1,N

Ž X Y . X;N, N ) max N , N , m s m G m ) m. As m is arbitrary,1, N 1, M ŽN ., N 1, M , N

Theorem 2.2 is proved. I

PROOF OF THEOREM 2.3. The case of l - l was treated in Theorem 2.1.cr

Proceeding to the case of l ) l , we note that under the assumptions ofcr

the theorem it represents just one of the possibilities for the general case of

z s 1, which appears to be more difficult to study than the regular one, due0

to the unknown rate of convergence of the network parameters. But in this

particular situation we can evaluate the integral for Z by taking intoN

account the residue at z s 1, the new integration curve crossing the real axis
Ž .to the right of that point. Indeed, 3.7 is not satisfied with z F 1 if l ) l ,cr

and 1 is separated from other singularity points.

Let us rewrite

1
KZ s Z r , . . . , r s T z dz ,Ž . Ž .HN N 1 K N

2p i g

K1 1
K KT z [ exp NS z ,Ž . Ž .Ž .ŁN N

z 1 y zrjs1 j

where

N1
K5.1 S z s yl 1 q « ln z y ln 1 y zr .Ž . Ž . Ž . Ž .ÝN N j , N

N jsKq1

K Ž .Let z be the leftmost point, where ­S z r­ z s 0. Note that, for any n,1, N N

n G 0,

­ n ­ n

KS z ª S z , N ª `,Ž . Ž .Nn n­ z ­ z

w .uniformly on every compact set outside 1rB, q` . It is clear that there exists

lim z \ z G 1. But z is a root of the equationN ª` 1, N 1 1

l r ­S zŽ .B
y q dI r s 0 m s 0.Ž .H

z 1 y zr ­ z0
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XŽ . Ž .Since S z s ylrz q h z and l ) l ,cr

5.2 S
X

1 - 0 and z ) 1.Ž . Ž . 1

Ž .Note also that z - 1rB because of 2.9 .1

Ž .Now we split the integral for Z r , . . . , r into two:N 1 K

Z r , . . . , r s I r , . . . , r q I r , . . . , r ,Ž . Ž . Ž .N 1 K 1, N 1 K 2, N 1 K

1
K

I r , . . . , r s y T z dz , I r , . . . , rŽ . Ž . Ž .H1, N 1 K N 2, N 1 K
X2p i g5.3Ž .

1
Ks T z dz ,Ž .H N

Y2p i gN

where g X
is a small circle around z s 1, and g Y

embraces 0 and z and goes0 N 0

through z . The quantity I can be evaluated in the same way as in1, N 2, N

Theorem 2.1, and we have

1 1 1
K

I 1, . . . , 1 s exp NS z dzŽ . Ž .Ž .H2, N NKY2p i zg 1 y zŽ .N

const
K; exp NS z , N ª `.Ž .Ž .N 1, N'N

5.4Ž .

Observe that the following equality holds due to the residue formula for r

inside g X
:

1 1 1
Ky exp NS z dzŽ .Ž .H NKX2p i 1 y zrzg5.5Ž .

s r Ky1 exp NS K ry1 ,Ž .Ž .N

which yields that

<I r , . . . , rŽ . rs11, N

Ky1­
Ky1 K y1s r exp NS rŽ .Ž .Ž .NKy1­ r rs1

5.6Ž .

Ky1X K; yNS 1 exp NS 1 , N ª `.Ž . Ž .Ž . Ž .N

Ž .The asymptotics in 5.6 are easy to establish, since in the expansion of the
Ž .derivative in 5.6 only one term has the maximal order of growth.

Ž . Ž . Ž .From 5.2 it follows that 5.4 is exponentially small with respect to 5.6 ,

and the asymptotics for Z are therefore proved.N
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Ž .Let i s 1 the case of 1 - i F K can be treated in the same way . We will
Ž . Ž .differentiate the representation 5.3 , taking into account 5.5 ,

­Z r , . . . , r 1 ­Z r , . . . , rŽ . Ž .N 1 K N
s

­ r K ­ r rs11 r s ??? sr s11 K

K1 ­
Ky1 K y1s r exp NS rŽ .Ž .Ž .NKK ­ r rs1

5.7Ž .

1 ­
q I r , . . . , r .Ž .2, N

K ­ r rs1

Ž .The second term of the sum in 5.7 can again be evaluated as in Theorem 2.1,
K 'Ž Ž ..and it is equivalent to const = exp NS z r N . For the first term ofN 1, N

Ž .5.7 we have

K­
Ky1 K y1r exp NS rŽ .Ž .Ž .NK­ r5.8 rs1Ž .

KX K; yNS 1 exp NS 1 , N ª `.Ž . Ž .Ž . Ž .N

The second term is again exponentially small compared to the first one, and

therefore

X
r ­Z r­ r S 1Ž . Ž .1 N 1

m s ; yN , N ª `,1, N
Z KN r s11

Ž .which proves statement i of the theorem.

For i ) K,

­ZN

­ ri , N r s ??? sr s11 K

­ I r , . . . , r ­ I r , . . . , rŽ . Ž .1, N 1 K 2, N 1 K
s q .ž /­ r ­ ri , N i , N r s ??? sr s11 K

5.9Ž .

We have

­ I r , . . . , rŽ .1, N 1 K

­ ri , N r s ??? sr s11 K

1 1 1 z
Ksy exp NS z dzŽ .Ž .H NKX2p i z 1 y zrg 1 y zrŽ . i , N rs1

5.10Ž .
Ky1­ 1

Ky1 K y1s r exp NS rŽ .Ž .NKy1 ž /r y r­ r i , N rs1

1
Ky1X K; yNS 1 exp NS 1 , N ª `.Ž . Ž .Ž . Ž .N

1 y ri , N
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By reasoning analogous to that of the proof of Theorem 2.1, it can be shown

that the ratio of ­ I r­ r and I is uniformly bounded when N ª `,2, N i, N 2, N

0 F r F B. Since I is exponentially small w.r.t. I , we can see, first,i, N 2, N 1, N

that

1 ­ZN
m s ri , N i , N

Z ­ rN i , N

are uniformly bounded in i, i ) K, and N, and, second, that m ª r ri, N i

Ž .1 y r , N ª `, if r ª r , N ª `, i ) K. Therefore, Theorem 2.3 is com-i i, N i

pletely proved. I

6. Remarks, examples and generalizations. We remark that our ap-

proach can also be taken w.r.t. networks including infinite servers. For
Ž .example, let the system contain one IS node i s 0 with mean service time

equal to ny1. Then the relative utilizations of the queueing nodes are given byN

n rN i , N
r s , i s 1, . . . , N ,i , N r m0, N i , N

Ž .where r s r , . . . , r are solutions of the routing equation with theN 0, N N , N

� 4N Ž .extended routing matrix P s p we suppose that r / 0 . ThenN i j, N i, js0 0, N

for the stationary distribution on the network we have the product form:

� 4P j s n , j s n , . . . , j s nM , N 1, M N 1 2, M N 2 N , M N N

N N1 M !
n is r , 0 F n F M ,Ł Ýi , N i

Z M y n y n y ??? yn !Ž . is1M , N 1 2 N is1

6.1Ž .

and the generating function of the network is

N 1
u r rma x, NJ u s e ,Ž . ŁN

1 y usis1 i , N

where s s r rr , r s max r , u s zr .i, N i, N max, N max, N 1F iF N i, N max, N

w x w xAfter making the same assumption as in 14 and 17 :

Nr ª C ) 0, N ª `,max, N 0

we can find the critical value of the density l s lim MrN in terms of theN ª`

Ž . � 4limit distribution I ? of s :i, N

1 s1
l s q lim dI s ,Ž .Hcr

C 1 y usuª1y 00

from which we can obtain the critical value for the network without the IS

node as the limit case when n ª `, since then 1rC ª 0.N 0

w xThis critical value of l was implicitly found by Kogan 17 , Proposition 2,
Ž .under assumption 2.6 and when there is one distinguished node with

Ž .y1r s const ) max g u . In fact, the density l is not a parameter inN , N ugw0, l x
Ž . Ž . w x2.6 it participates in the definition of g ? and the results of 17 are derived

Ž .under the assumption of l and g ? fixed. One can, however, make l variable
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Ž . Ž .by considering g u [ f lu with f finite-piecewise continuously differen-
w xtiable on 0, 1 . Through simple algebra one can see then the equivalence of

the results.

We believe that other generalizations should be possible, too.

As far as the limit measures are concerned, the natural question arises:

which measures are possible? Let us give some remarks.

REMARK 1. Trivially, for any J , P we can choose m so that multipli-N N i, N

cation on m gives any I we like; so any limiting measure can appear oni, N N

w x0, 1 .

REMARK 2. Even if m are fixed, for example, m ' 1, then for anyi, N i, N

positive vector r there exists a stochastic routing matrix P such thatN N

r P s r holds. It is sufficient to defineN N N

y1N

p s r r , i , j s 1, . . . , N.Ýi j , N j , N k , Nž /
ks1

REMARK 3. We can get the same results as in Remark 2 even for much

more restricted classes of topologies and interactions. An example for the

circle topology is as follows.

LEMMA 6.6. Let N be odd and the vector r be given such thatN

0 - r F r F ??? F r F 2 r .3, N 4, N 2, N 3, N

Then there exists a stochastic routing matrix P satisfying r P s r andN N N N

also
< < � 4p / 0 m i y j g 1, N y 1 .i j , N

In other words, in the circle topology, the interaction radius in this

network is equal to 1.

We skip the proof.

REMARK 4. If there exists a symmetry group G acting transitively andN

one-to-one on J so thatN
p s pi j g Ž i. g Ž j.

for all 1 F i, j F N and g g G , then all r are equal. If all m ' 1, thenN i, N i, N

I is the point measure at 1. Examples include the lattice on the torus withN

translation invariant probabilities and completely symmetric networks.

REMARK 5. Consider more closely the example of the network on the

torus, with the probabilities of jumps invariant w.r.t. the shifts in the state

space. If all the service rates are equal to 1, then I is the point measure atN

1, and l s q`; that is, there is no phase transition. If we decrease thecr

service rate only at the origin, mX
- 1, then I will become the point0, N N

X Ž . Ž . Ž .measure at B s m - 1. Hence, h z s Br 1 y zB and l s Br 1 y B -0, N cr

q`}there appears a phase transition.



LARGE CLOSED JACKSON NETWORKS 113

REMARK 6. Let us look at the maximal mean queue length in a system

with given distribution of r.u.’s and with varying density l. Let r s 1.N , N

According to our results, the relation m rN ª 0 as N ª ` and l - l ,N , N cr

Ž .and it can tend to some positive increasing function f l for l ) l . We docr

Ž .not have an analytic expression for f l . Figure 1 depicts a set of graphs of

m rN corresponding to the simplest condensation case: a network withN , N

Ž .one distinguished node see, e.g., the previous example . The graphs were

constructed using the explicit expression for the p.f. A solid boldface line
Ž .denotes the predicted f l .

Ž .We conjecture that f l will have similar properties in the general conden-

sation case. Figure 2 depicts a set of graphs of m rN as per our asymptoticN , N

formulas and in the way described in the remark after Theorem 2.2, for a
Ž . Ž .‘‘general’’ network, with r.u. given by 2.11 with g ? not satisfying the

w x w xsmoothness conditions of 14 and 17 . One can see that there exists an
Ž .asymptotic curve the solid boldface line resembling that given in Figure 1.

These examples illustrate the fact that knowledge of the critical point lcr

is important in the evaluation of the network’s sensitivity w.r.t. traffic andror

service condition fluctuations.

At the end we indicate another problem. It could be natural to define an

‘‘infinite’’ closed Jackson network in the following way. Let us take a count-

able Markov chain L with state space S and transition probabilites p . Fori j

any finite L ; S, define the finite Markov chain S by truncating theL

stochastic matrix in some way. For example, put

p , i , j g L , i / j,¡ i j

L ~p si j p q p , i s j.Ýi i i j¢
jgS_L

FIG. 1.



V. A. MALYSHEV AND A. V. YAKOVLEV114

FIG. 2.

Suppose also that for any i g S the service rate m is given. Then wei

define a closed Jackson network J with routing probabilities pL , rates mL i j i

w < <xand M s l L .L

One of the questions is what limiting measures I can appear for various

sequences

L ; L ; ??? ; L ; ???1 2 N

< <such that L s N, DL s S.N N
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