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LEVEL CROSSINGS OF ABSOLUTELY CONTINUOUS
STATIONARY SYMMETRIC «-STABLE PROCESSES

By ROBERT ADLER' AND GENNADY SAMORODNITSKY?

Technion—Israel Institute of Technology and Cornell University

We describe the mean rate at which a general absolutely continuous
stationary SaS process crosses a high level. Only nondegeneracy assump-
tions are imposed in the case 1 < @ < 2. The same results hold for
0 < a <1 under certain conditions, ensuring existence of the required
conditional moments and the applicability of the classical integral formula
for the expected number of level crossings.

1. Introduction. Let {X(¢), ¢ € } be a real, stationary, symmetric,
a-stable (SaS) process, 0 < a < 2 with absolutely continuous sample paths,
representable as

(1.1) X(¢) =/Sf(t,x)M(dx), ten,

where (S,.%) is a measurable space, M is an independently scattered o-ad-
ditive SaS random measure on (S,.¥) with a o-finite control measure m,
and f(¢,-) € L*(S,.%, m) for every t € . (cf. Samorodnitsky and Taqqu [19]
for more details on SaS random measures and stochastic integrals with
respect to them.)

For A > 0, let C,(T') be the number of upcrossings of the level A in the
interval [0, T'], provided that this quantity is well defined. (cf. Cramér and
Leadbetter [6] for a formal definition. We will deal with the issue of “well
defined” below.) It is of fundamental importance for the application of stable
processes to be able to say as much as possible about the distribution of
C,(T). In particular, one would like to be able to calculate the expectation
E(C,(T)). Of course, by stationarity and the continuity of a-stable distribu-
tions, E(C,(T)) = TE(C,(1)), so that the parameter T is not important. We
will study, therefore, EC, = E(C,(1)).
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In the well-known Gaussian case, the famous Rice formula

1 (—R'(0))"* A2
ECA:%( R(0) ) eXp(_2R(O))

gives the expected number of level upcrossings for a stationary Gaussian
process with a covariance function R. See [16] and [6].

The Rice formula is generally derived in two stages. In the first, EC, is
represented as a general expression involving the joint (bivariate normal)
density of the process and its derivative at a given point. This expression is
then evaluated via a straightforward exercise in integration. We shall show
below that, under appropriate conditions, the first stage of this argument also
carries over to the stable situation. However, since even the univariate
density of a stable random variable is generally not available in closed form,
the second stage of this argument cannot be carried out, and so a precise,
closed form expression for EC, is not accessible in the general stable case
0 < a < 2. The route that one is forced to take is therefore one of bounds and
asymptotics.

The first result of this type is due to Marcus [12], and deals with a
particular class of stationary SaS processes, that of the real, harmonizable
ones. Adopting the representation (1.1), these have S = R X )’ and . =% X
F', where ((V,%’, P') is a probability space supporting two independent
standard normal random variables G, and G,. Furthermore, m = F X P’ (F
being a finite measure on M), and

f(t,(y,@)) =Gy )costy + Gy(w')sin ty, yeNR, o e

An alternative, and probably more familiar, representation in this case is

X(t) =a, Re{fx e”xM(dx)}, te N,

where M is a complex valued rotationally invariant SaS random measure
with the same control measure m, and a, is a constant depending only on «.
Using the fact that a real harmonizable stationary SaS process can be
written as a mixture of stationary Gaussian processes, Marcus [12] applied
the Rice formula conditionally, allowing him to derive bounds on the expected
number of level upcrossings. Later, Adler, Samorodnitsky and Gadrich [1]
improved Marcus’ results for harmonizable processes, while using the same
approach. In particular, they showed that, if the process is regular enough to
guarantee the finiteness of EC, then
(1.2) lim A*EC, = k, A;,

Ao ®©

where for 0 < @ < 2, k, is a finite positive constant depending only on «, and

A= fo; lx|F(dx).
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Given the success of this approach in the harmonizable case, it is natural
to try to extend it to more general stable processes, particularly in view of the
fact that essentially all the SaS processes described above can, in fact, be
represented as mixtures of Gaussians. However, in the general case, the
conditional Gaussian processes are no longer stationary, so that the simple
Rice formula no longer applies to them and the computations involved
become forbiddingly complicated. Consequently, there has been no further
development along this line.

In the present paper we shall determine the asymptotic behavior of the
expected number of level upcrossings for general, stationary, SaS processes,
obtaining a result similar to (1.2). Clearly, we need to take a different path
from that described above, based on a specific, mixed Gaussian, representa-
tion of SaS processes. While more general representations are also available
and the overall structure of stationary SaS processes is understood today
much better than a few years ago (primarily due to the work of J. Rosinski; cf.
[18]), our approach will not use this general structure either. Instead, we will,
essentially, revert to first principles, and proceed as follows.

Let {X(2), t € N} be a stationary SaS process given in the form (1.1). We
will assume that for m almost every x € S, f(-, x) is an absolutely continu-
ous function, with

f(t, %) =f(0,x) + ['f(s,x)ds, O<t<1
0

such that f:[0,1] X S = 9 is jointly measurable and satisfies one of the
following three conditions:

1 . o 1/a
(1.3) / (f | f(¢, %) m(dx)) dt <o ifl<a<?2,

o \’s

. ‘¢, x)| [ Js If(w,v) | dum(dv

[ |1+ 1o, |7t )| 3 Js (e, v) | dum( o)

(14) o Js Jslf(2,v)lm(dv) j3 [F(u, x)| du

<ow fa=1,

m(dx) dt

where, for a > 0,log, a = max(log a,0), and

(1.5) [S(fol|f(t,x)|dt)am(dx) <o if0<a<l.

Under these conditions, it follows from [17] that {X(¢), ¢t € %} has an
absolutely continuous version (which we henceforth identify with the process
itself), and that is derivative in the sense of absolute continuity is given by

(1.6) X(¢t) = jsf'(t, x)M(dx), 0<t<1.

(See also Section 11.7 of [19].)
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(These conditions are not only sufficient for existence of an absolutely
continuous version of the process, but also necessary for it. Furthermore, they
are not as forbidding or as difficult to check as they may seem. Example 1.1
below shows how they simplify in the case of a stationary moving average
process.)

The first step towards developing an asymptotic formula for C, will be to
establish when we are justified in using the standard, exact, formula

(1.7) EC, =/O yg(A,y) dy,

where g is the joint density of X(0) and X(0) (see, e.g., Theorem 7.2.4 of [9]).
We will see that, apart from nondegeneracy conditions, in the case 1 < a < 2,
the integral formula (1.7) holds for any absolutely continuous SaS process as
above. In the case 0 < @ <1 we will have to impose certain additional
regularity assumptions on the process {X(¢), t € N} to justify (1.7).

As mentioned above, it would be nice to be able to actually evaluate (1.7),
but this is not possible. Hence we turn to a study of the asymptotic behavior
of the integral in the right-hand side of (1.7) as A — «. The two steps in the
derivation are mathematically independent of one another and appear in the
Sections 3 and 4, respectively.

Our approach to the asymptotic behavior of the integral is, once again, via
conditional Gaussianity. However, instead of dealing with the entire process,
we merely rely on the facts that an SaS process and its derivative at any
fixed time are jointly S«aS, and that any SaS random vector is a mixture of
Gaussian random vectors. Thus the joint density g in (1.7) can be viewed as a
mixture of bivariate normal densities, and the corresponding integral for a
bivariate normal density can, to a certain extent, be simplified. The problem
is then to determine the asymptotic behavior of the expectation of the
resulting expression, and the reader will find the details of that in Section 4.

This approach leads to the following theorem, which is the main result of
this paper.

THEOREM 1.1. Let {X(2), t € N} be a real stationary SaS process given in
the form (1.1) satisfying (1.3), (1.4) or (1.5) (depending on the value of «),
with absolutely continuous sample paths satisfying (1.6). Assume that for
every y; €N, i=1,2, y; + v, # 0,

(1.8) m{x € S:y,f(0, x) — ¥, £(0, x) # 0} > 0,
and for all n large enough and vy, € N, i = 1,2,

(1.9) m{x € S:y,f(27",x) — v, f(0,x) # 0} > 0.
If a = 1, we assume additionally that
f(0, x)
(0, x)

(1.10) [S £(0, x)log

Hm( dx) < oo,
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If 0 < a < 1, we assume additionally that
£(0, )|

f l—am

s | £(0,x)|

Finally, in the case 0 < a <1 we assume that there is a 6> 0 and
0 < M < » such that for all n large enough and t € (0,27"],

on( f(9-n _ (0 1+6
(1.12) / [2"(f(27", x) = f(0, x))|
s [27t(f(27", x) = f(0,x)) +£(0, x)]
Then (1.7) holds for every A € R, and, furthermore,
lim A“EC,

A—>

(1.11) (dx) < .

m(dx) <M.

1+6—«a

1+1/a
C—l/a
a

(1.13) = aza-l/%-(“l/ﬂ)ﬂ(r( ot 1)

2

x/slf'(o, 2) 1 £(0, %) [ "1(£(0, x) £(0, x) > 0)m(dx),
where C, is given by (2.11).
The following is an immediate application of this result.

ExamMpPLE 1.1. An important class of stationary SaS processes is that of
moving averages. These are processes of the form

(1.14) X(t) = [ f(t+x)M(dx), teN,

where the SaS random measure M has Lebesgue control measure on )i, and
f € L*(R). Unlike the harmonizable stationary processes described above,
moving average processes are mixing [13], and so provide an attractive
modeling tool. To ensure absolute continuity of a moving average process, we
need to assume (cf. [19], Section 11.7) that

f(b) = f(a) = [*f(s)ds, a<b,
with [ satisfying
fx |f(x)] dx <= ifl<a<2,

(1.15) fol f: |f(x)|[1 + log., %}dxdt <o ifa=1,

foo Fi(x)"dx <o if0<a<l.



LEVEL CROSSINGS OF STABLE PROCESSES 465

Here
Fy(x) = [ f(s)]ds.

It is obvious that, in this case, conditions (1.8) and (1.9) hold automatically
as long as the process is not identically equal to 0. The conditions (1.10),
(1.11) and (1.12) take, in the present case, the form of, correspondingly,

“ | f(x)
(1.16) LJﬂxmgﬂx)dx<,
= |f(x)]
1.17 — L —dx <
(117 LT &
and

<M.

1+6—«a -

fw [2"(f(27" +x) = f(x))]
—= [2"¢(f(27" + x) — f(x)) + f(x)]
Therefore, for every absolutely continuous stationary S«aS moving average

process with 1 < a < 2 [or with 0 < a < 1, under (1.16), (1.17) and (1.18)] we
have

(1.18)

1+1/a
C—l/a
a

a+1
lim)t“EC/\=a2"‘_1/27r_(1+1/“)/2(r( 5 )

A—>

(1.19)
<[ e 172 f(x) > 0) dx,

with C, given by (2.11). To give an even more explicit example, let {X (),
t € N} be the two-sided Ornstein—Uhlenbeck process, that is, a moving aver-
age process with

f(x) = (ay/2)%e ", xef,y>o0.
Then the conditions (1.10), (1.11) and (1.12) are easily seen to hold, and so we
have

a+1 1+1/a
(1.20) }im AMEC, = a2“‘1/277_(1+1/“)/2(r( 3 )) C, Vayet
forall0 < o < 2 and y > 0.

We now turn to the proof of Theorem 1.1. The following section contains
certain technical lemmas needed later. As noted above, the main work is in
Sections 3 and 4.

2. Some lemmas. We collect in this section some technical results that
will be used later.

LeEmMmA 2.1. Let R, R,,... be a sequence of i.i.d. nonnegative random
variables independent of the sequence I';, 1y, ... of the arrival times of a unit
rate Poisson process. Let 0 < a < 1. Assume that ER{ < .
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() The sum ¥;_, T, '/“R; converges with probability 1, and

(2.1) }iirgcA“P( 'erj_l/aRj > Al =0.
=
Moreover, if ER, < =, then for every A > 0,
(2.2) P( Y I VR, > A) < C)A~mind.20)
j=2

for some finite positive constant C depending on « and the distribution of R;.
(i) Assume that

E(R{log(1 + R;)) < .

Then
E( Zj’l/“Rj < oo,
j=1
(iii) Let

© T-1/ap.
-1

(2.3) F = ﬁ
j=1%j

Then for any p > «a, EF? < » if and only if ERY < %. Moreover,
(2.4) c;,lpER{’ <EF? <c, ,ER{

for some ¢, , € (0,) that depends only on a and p.
Furthermore, under the assumption of part (i) we have EF® < », and,
moreover,

1
(2.5) EF* <c,|E(R{ log(2 + R,)) + ER} logﬁ
1

for some ¢, € (0,) that depends only on «.

Proor. (i) The fact that the series converges with probability 1 is well
known (e.g., Theorem 1.4.5 in [19]), and one shows (2.1) by retracing the steps
of the proof of Property 1.4.4 there. For (2.2) with 1/2 < a < 1, note that
E(XC_ T 1/”‘Rj) < oo, while in the case 0 < a < 1/2, note that for all j > 2
we have P(I7'/“R; > \) < CA™?¢, while E(X;_gI; "/“R;) < » for K large
enough. Hence (2.2) follows in this case, since for every K we have

P( Y I7VeR, > A

Jj=2

Y. YR, > )/2).

K
< X P(IyV*R;> \/2K) + P
= j=K+1

Jj=2
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(i) This is a consequence of Proposition 5.2 of [3].
(iii) Clearly,

I‘l—l/a p
EF? > ERPE W ,
J=1%j

proving the left-hand side inequality in (2.4). To prove the other inequality we
consider two cases.
Suppose first that p > 1. Then by Hélder’s inequality,

p

o 1‘*'—1/04 o I"—l/a
P — -4 _J  pp
Fr = Z % F,_l/aRj < Z % F'—l/aRJ' ’
Jj=1“~i=1%i Jj=1%~i=1%i

and so EF?P <ER?. If a <p <1, set K=[2p/a] and note that for every
k> K, ET; 2P/* < », which implies that

< oo,

E( Z I‘jfp/a

j=K+1

Therefore,

sxa IRy
0 -1/« P

(Z5a V)

I Ve )

(51

j=17%J

EF? <E

K
Y R+
j=1

<ER}|K+E

1/2

<ER’|K+ |E

- _opy\ /2
E( Y r;l/“) ,
j=1

thus proving the second inequality in (2.4) in all cases.
For (2.5) let

o 2
Z rj—p/a)

j=K+1

a, :n(lfa)/Za(ERix)l/a, n>1.
We have
*  T"Y°R1(R, < a;) “
« j=17%] J J =
EF* <E ;,erfl/a
(2.6)
> I7"YeR1(R. > a.
p| ol EME > ) = EF{* + EFy.

%0 -1/«
j=1Fj
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Clearly, taking now K = [1/a'/?] + 1, one has

[e3
o0 F»fl/aa» o0 Ffl/ozj(lfa)/Za
=1 J J=17J
EFf <E|-2——-'| <ER{E
' SR P ' - e

<ER{| K1 /2« 4 |

%0 l‘*_—l/a

- —1/a:1-a)/2a\“
j=K+1 I‘J /aJ( /e )
j=17j

1/2

172\ @
(2.7) . o 1jas :
SER{X K(l u)/2a+ E Z 1"] 1/(1](1 a)/ZU()
Jj=K+1
- —a/-at/) 1
-1/a
X|E[ X T; ) )
Jj=1

=c,ERY},

where ¢, is a finite positive constant that depends only on « and that may
change from line to line. To see why the latter two expectations are finite, one
only has to recall the two simple facts that for any p € W we have ET? ~ 2z,
as p — », where z, is a finite positive constant that depends only on p, and
that a positive o-stable random variable (0 < @ < 1) has a density that
decays faster than exponentially fast at the origin, so that it has negative
moments of all orders. These two observations will be used throughout this
paper, often without additional comment.

It is easy to check (using, for example, the fact that the event I'; <j/2 has
low probability) that

.\ 2
J
(2.8) E(sup— < o,

i>2 I

Then, as before, we have
j-3 I 'RI1L(R; > a))
()]

J=1"J

EFy <2ER* +E

sup;. 5 J/1;

Jj=1

<2ER{ + E—"—"—5 ¥ j'ER{1I(R, > a
' (S, I ve) " 5 TR, > a;)
(2.9)
<c,B|Rf|1+ ¥ ()< (Rl/(ER?)l/a)zama))H

1
< Ca(E(Rf 10g(2 + Rl)) + ER} logﬁ).
1

Now (2.5) follows from (2.6), (2.7) and (2.9). This completes the proof of the
lemma. O
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We will also need the following lemma.

LEMMA 2.2. (i) Let X be a positive, a/2 strictly stable random variable
with scale parameter o, so that it has Laplace transform E exp{— 60X} =
exp(— o /29’2 /cos(ma/4)). Then for any p > —a/2 we have

(2.10) lim A***PE(X P exp(—A*/X)) = 0*/*(a/2)C, ;T (p + a/2),

A—>

where for 0 < a < 2, C, is given by
. -1
(2.11) C,= (/ x~* sin xdx) .
0
(ii) Let 0 < a < 2 and let X be a nonnegative random variable such that
P(X> ) =0(A"%"?) as A > =. Then for every p > —a/2,
lim A**?PE(X P exp(—A*/X)) = 0.

A— 0

Proor. (i) Let f denote the density function of X. Then
f(x) ~ (a/2)C, 0 ?x~1T¢/2 as x — .

(See, e.g., Property 1.2.15 in [19] and use the eventual monotonicity of the
density.) Therefore, for any fixed M > 0,

lim A**2PE(X P exp(—A*/X))

A— 0

= (a/Z)Ca/Zo.a/z lim /\a+2pf x~ P eXp(—)\z/x)x_(“”‘/z) dax
A—>®© M

= (a/2)Ca/2a“/2f exp(—1/x)x" (PTITa/2 gy
0

= (a/2)ca/2a-a/21—‘(p + 01/2),

thus establishing (2.10).

(ii) Suppose first that —a/2 < p < 0. Observe that for every £ > 0 there is
an a > 0 such that X <,¢Y, , + a, where Y, , is a positive, a/2 strictly
stable random variable with scale parameter o = 1. Therefore, letting C be a
finite positive constant that may change from line to line, we have

E(X 7 exp(—A?/X))
< E((eY, ), +a) * exp(—A2/(Y, ), + a)))
= E((£Y, ), + a) " exp(—\2/(£Y, 5 + a))1(£Y, , < a))
+ E((£Y, 5 +a) " exp(—A2/(£Y, 5 + a))1(cY, , > a))
< Cexp(—X2/C) + E((2¢Y, ) " exp(—1%/(2¢Y, 5))).
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We conclude by part (ii) of this lemma that
lim sup A“**PE(X 7 exp(—A*/X)) < Ce*/?,

A—
and since £ can be taken arbitrarily close to zero, our claim follows. If p > 0,
use the elementary observation that for any such p and A > 0,
(2.12) supz ? exp(—A%/z) = ¢, AP

z>0

for a ¢, € (0,%), to conclude that
E(X P exp(—A*/X)) < CA™?*PE(exp(-21*/2X)),
and apply the case p = 0, which we have just established. O

3. The expected number of level upcrossings. This section contains
the proof of the main result of the paper, Theorem 1.1. As we mentioned
above, this amounts to justifying the formula (1.7). The asymptotic behavior
of the integral appearing in the right-hand side of this formula is computed in
the next section.

To justify the integral formula (1.7) we start with the approach of Marcus
[11] to level crossings. Other available results, such as those of Brillinger [2]
or Geman and Horowitz [7] only deliver (1.7) for almost every, but not for
every, A. The result of Michna and Rychlik [14] also establishes (1.7) for SaS
processes. However, it assumes continuous differentiability for the process,
for which tight conditions are unknown (see, e.g., Chapter 12 of [10], Chapter
10 of [19] and [15]). For completeness, we list below the conditions of
Theorem 2.1 of Marcus [11] (simplified to our particular case, of a stationary
process and the first moment only) that we will check to establish the validity
of (1.7).

Let {X(2), t € N} be a stationary stochastic process with absolutely con-
tinuous sample paths. Let g(x,y) denote the joint density function of
(X(0), X(0)), with X being the derivative in the sense of absolute continuity.
Let

(3.1) N = [ “yg (A, y) dy.

Furthermore, for n > 1 and ¢ €[0,27"), let g, ,(x,y) denote the joint
density of 2"#(X(27") — X(0)) + X(0) and 2"(X(2™") — X(0)), and set

(3.2) BN = [ “y80a( A, y) dy.

Then Marcus (Theorem 2.1, Marcus [11]) sets out a set of seven conditions
that guarantee the veracity of (1.7). These are the following.

(M1) The density g exists.

(M2) The function A is bounded in a neighborhood of A.

(M3) The function A is continuous at A.

(M4) The density g, , exists for all n large enough and ¢ € [0,27").
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(M5) The functions %, , are uniformly bounded in a neighborhood of A, for
all n large enough and all ¢ € [0,27").

(M6) The function &, , is continuous at A for all n large enough and all
te[0,27").

(M7) For any sequence {¢,} such that ¢, €[0,27") for all n we have
lim, ., A, ,(A)=h).

With these conditions in front of us, we can now commence the proof of our
main result.

t,n

ProoOF OoF THEOREM 1.1. As a first step, we need to check the veracity of
(1.7), so that all we really need do is to check that the conditions of our
theorem guarantee that Marcus’ (M1)—-(M7) are satisfied.

To simplify things, assume for the moment that the control measure m of
the SaS random measure M is a probability measure on S. ]

It follows from (1.8) that the SaS random vector (X(0), X(0)) is not
concentrated on any proper subspace of M2, and so it has an absolutely
continuous distribution with respect to the Lebesgue measure there. This
verifies condition (M1) above.

To check the conditions (M2) and (M3) we observe that, since m is a
probability measure, we can write (in distribution)

X(0) = b, ¥ G740, 7)),

(3.3) 1
X(0) =8, L GT;/f(0, 1)),
i
where
F1y 7\
(3.4) ba=(2‘“/2771/2(1“(a2 ) ca) ,

and where G;, j>1, 1}, j>1, and U;, j > 1, are three independent se-
quences of random variables, such that G;, j > 1, are i.i.d. standard normal
random variables, I}, j > 1, are the arrival times of a unit rate Poisson
process on (0, %), and U,, j = 1, are i.i.d. S-valued random variables with a
common law m. See, for example, Chapter 3 of [19]. Observe that, condition-
ally on T}, j>1, and U, j > 1, the random variables X(0) and X(0) are
jointly normal, with zero means and a variance-covariance matrix with
elements

o = b2 L I f(0,U)’,

Jj=1

fee] _ . . 2

(3.5) oy =02 Y I7¥f(0,U),
j=1

%]

o1 = b7 X I f(0,U)£(0,T).

Jj=1
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Let h, be the density function of a standardized normal random vector

with covariance p, [p| < 1. That is,

h( ) 1 x2 — 2pxy + y?
x,y) = ————exp| —
° 2m/1 — p2 2(1 - Pz)

We conclude then that

h(A) = Eoy oy fo yh (A/or, y/03) dy

with
p= 0'12/(0'10'2),
and so
(3.6) h(A) = E(O'Z/O'l)/:yhp()\/al,y) dy.

Easy manipulations of the integral show that for any A > 0,
“yh (M y) d Vi-e? ¥
'/(‘) y p( 7y) y_ 27T eXp 2(1_p2)

Ap ( /\2)/
+— exp| — —
2 P 2 ) ap/f1-p2

(3.7)

2

exp( - y_) dy.

oo

2

In particular,
h(A) < CE(oy/0y).

Therefore, both (M2) and (M3) will follow from (3.6) and (3.7) once we show
that

(3.8) E(oy/0y) < oo,

Now, (3.8) is trivial for 1 < a < 2 (recall that all negative moments of a
positive «/2-stable random variable are finite). In the case 0 < a < 1, it
follows from (1.10) and (1.11) that o cannot have a component independent
of of [in the sense that the spectral measure of the «/2-stable random
vector (o2, o) cannot have atoms at the points (0, 1) and (0, — 1)], and so we
can write

o]

(3.9) b (o2, 02) = BY| LI, ¥ I ¥R2|,
Jj=1 j=1

where

(3.10) B=E|f(0,U)|",
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and R;, j > 1, is a sequence of ii.d. random variables, independent of I'’s,
such that

R, = f:(O,W)/f(O,W),

where W has a distribution which is absolutely continuous with respect to
the law of U,, with Radon—Nikodym derivative given by

dFy

dFUl (x) = B_llf(()’ x)l .

The representation (3.9) follows, for example, from Corollary 3.10.2 and
Property 3.2.1 of [19]. The passage from the representation (3.5) to the
representation (3.9) is a version of the change of variables described in
Proposition 3.5.5 in [19]. We will use such a change of variables a number of
times below without further comment.

Observe that in the case 0 < o < 1, by (1.11),

[ £(0, x)|

SR T

(dx) <

(and the same is trivially true if 1 < a < 2). Moreover, if a = 1, it follows
from (1.10) that

£(0, x)
f(0, x)

1+

‘m(dx) < oo,

E|R,log(1 + IR,])| = Blfs‘f'(O, x)log

Therefore, (3.8) follows from Lemma 2.1(iii) for all 0 < o < 1, and so for all
0 < a < 2, which establishes (M2) and (M3).

Condition (M4) follows from (1.9) in exactly the same way as condition
(M1) followed from (1.8).

It remains to check the conditions (M5), (M6) and (M7). To this end, we
start by noticing that the same argument as in (3.6) and (3.7) gives us

o3(n) [V1-p%(t,n) 5
By (M) =E[o'1(t,n) ( o2 eXp(_Z(rlz(t,n)(l—PQ(t,n)))
Ap(t,n
(3.11) %exp(—)@/2a&2(t,n))
- y?
X/*)‘P/(U'l(t,n) 1p2)exp(_?)dy }
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Here, in parallel to (3.5),

o2(tin) = b2 T T2/ (20e(£(277,0) - (0. 1) + £(0. U,

Jj=1
(312) o2(n) =52 Y I (2n (27, U) - £0.T)))
j=1
st m) = b2 X 12 (274( (277, 15) = £(0,0)) + (0, 1)

x(2(£(27 U) = £(0, 1)),
and
p(t,n) = o(t,n)/oy(t, n)oy(n).
We claim that there is a positive number § and an M < o such that for all n
large enough and ¢ € [0,27"),

0_2(”) 1+6
(3.13) E(m) <M.

Before proving (3.13) note that, once proved, it will imply (M5) and (M6) in
the same way as (3.8) implies (M2) and (M3). The following argument also
shows that (3.13) implies (M7). Since our process is absolutely continuous, for
every o € () it is differentiable for almost every ¢ € )i, and its derivative
there is equal to X(¢). By Fubini’s theorem, for almost every ¢ € N,

P( lim Xt +a,) - X(6) =X(t)) =1

n—w« a

(3.14)

n

for every sequence of nonzero numbers a,, n > 1, that converges to 0. Since
{X(), t €N} is also stationary, (3.14) must hold for every ¢ 3. This
implies, in particular, that for every ¢ € N,

f(t+an")_f(t")

a

= f(t,")

n

in L*(m) as n — « for every sequence a,, n > 1, as above, and so

h,-) —f(t,- .
(G0 Rl (CORS

as h — 0. Therefore, for every sequence ¢, € (0,27 "], n > 1, we have, in
La/Z(m)’

(3.15)

(2"t,(£(27",) = £(0,7)) + £(0,))" = (£(0,))%,
(3.16) (2"(£(27", ) = £(0,)))" > (£(0,)),
(2"t,(£(27",7) = £(0,7)) + £(0,"))
X (2"(f(27",7) = £(0,))) = £(0,-) (0, ")
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as n — «. Therefore, the sequence V, = (a2(t,, n), of(n), o,(t,,n), n > 1,
of a/2-stable random vectors in N3, defined by (3.12), converges in probabil-
ity, as n > =, to the a/2-stable random vector V = (o2, 0, 0,,) defined by
(3.5). It follows from (3.6), (3.7) and (3.11) that for every A > 0,

by () =E®(V,),
h(A) =E®(V),
where ® is a measurable function, from R?3 — R, with a negligible set of

discontinuities (with respect to the distribution of V). Therefore, by the
continuous mapping theorem,

O(V,) = @(V)

as n — «. However, (3.13) implies that the sequence ®(V,), n > 1 is uni-
formly integrable, which implies (M7). Therefore, to complete the proof of the
theorem we only have to check (3.13).

Suppose first that 1 < a < 2. Choose 8 = a'/2 — 1. Then, by Hoélder’s
inequality,

E( oy(n) )

o.(t,n)
B 0'2(n) al/z
< (Eo'z(n)a3/4)a71/4(Eo_l(t’ n)7011/2/(170(,1/4))1_&—1/4

f(27", ) = f(0, - o172 B
< o FE2 O e = 09) + 0.0
<M

for some finite constant M by (3.16), where C is also a finite positive
constant. This proves (3.13) in the case 1 < a < 2.

We turn now to the case 0 < a < 1. It follows from (1.12) that o2(n)
cannot have a component independent of o (¢, n), and so similarly to (3.9) we
obtain

(8.17) b *(0f(t,n), 05 (n)) = 2o | X I, X I7¥eT?,
j=1 j=1

where

(3.18) Y. = E|27¢(£(27",Uy) — £(0,T,)) + £(0,Uy)|",
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and 7}, j > 1, is now a sequence of i.i.d. random variables, independent of the
Poisson arrivals such that

_2(fETY) —F(0,V)
V2N (2 V) — F(0,V)) +£(0,V)

where V has a distribution which is absolutely continuous with respect to the
law of U,, with Radon—Nikodym derivative given by

dF

dy (%) = Va2 (27 ) = £(0,0)) +£0, )"

Observe that for all n big enough and ¢ € (0,27"],
Yen = Elf(O, Ul)la/2 > 0.

Therefore, with § as in (1.12) and for all n and ¢ as above, we have

1+6

E|T|1+B= _1/' |2n(f(2*n’x) _f(()’x))l
1 Vt,n S |2nt(f(27n, x) —f(O, x)) +f(0, x)
< 2M/E|f(0,U,)]" < o,

m(dx)

|1+5fa (

and so (3.13) in the case 0 < a < 1 follows from Lemma 2.1(ii).

The integral formula (1.7) is, therefore, proved completely in the case when
the control measure m of the SaS random measure M is a probability
measure. In the general case of a o-finite control measure m, let n be a
probability measure on S equivalent to m. Let b(x) = (dm/dn)x), x € S.
Then we can represent the process {X(¢), ¢ € %} and its derivative {X(¢),
t €M} as in (1.1) and (1.6), with m replaced by 7, f(¢,x) replaced by
ft, x) = f(t, x)b(x)* and f(¢, x) replaced by f(¢, x) = f(¢, x)b(x)/ .
Clearly, f, f and n satisfy the conditions of the theorem. Therefore, the
integral formula (1.7) holds in the general case as well.

This completes the main part of the proof of the theorem. What remains
is to show the veracity of the asymptotic formula (1.13). This, however, fol-
lows from Proposition 4.1 of the following section, with g,(x) = f(0, x) and
go(x) = f(0,x), x € S. Observe that (4.3) and (4.4) follow from (1.11) and
(1.10), correspondingly. Therefore, (1.13) is an immediate consequence of the
above proposition, and the proof of the theorem is complete. O

REMARK. Inspecting the assumptions of Proposition 4.1 in the next section
shows that one cannot dispense with conditions (1.10) and (1.11) in Theorem
1.1. Condition (1.12) can, on the other hand, most likely be relaxed (and, in
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particular cases, replaced by neater conditions), either by using an argument
different from the uniform integrability one in our proof, or just by using a set
of conditions different from those given in Marcus [11]. In other words, the
conclusion (1.13) remains true whenever (1.7), (1.10) and (1.11) hold. In
particular, (1.13) holds under (1.10) and (1.11) for continuously differentiable
stationary processes, by the result of Michna and Rychlik [14].

4. The asymptotic behavior of an integral. In this section we deal
with the second step in the proof of Theorem 1.1—the asymptotic behavior of
the integral in the right-hand side of (1.7). This is described in Proposition
4.1. This proposition may be of independent interest, and so our notation in
this section is to a certain degree independent of that of the previous section,
which is tied in more closely to the specific application of Proposition 4.1
there.

Let (U,W) be a nondegenerate (i.e., not concentrated on any proper
subspace of :1?) SaS random vector, 0 < a < 2, given in the form

U= [ gi(x)M(dx),
(4.1) S

W= fng(x)M(dx),

where M is, as before, an SaS random measure on S with a control measure
m, and g; € L*(m), i = 1,2. We denote the joint density of U and W by f;
and the marginal densities by f;; and fy; accordingly. Let

(4.2) 1) = [ sfow(hy)dy,  Az0.

The main result of this section is the asymptotic behavior of I(A) as A — <,

PROPOSITION 4.1. Let I(A) be given by (4.2). If 0 < a < 1, assume that

(4.3) [ lga()[lg:() " Pm(dx) <=,
while in the case a = 1 assume that
(44) J, lgao) | [1og(1 + | g2(x) /222 (k) < .

(No extra assumptions are needed for 1 < a < 2.) Then I(A) < = forall A > 0,
and
1+1/

C. "%, (81,82),

a+1
(4.5) limA%I(A) = a2a1/277(1+1/a)/2(1~( )
A—>

where C, is given by (2.11) and

(46) k(g1 82) = [ |g2(0)] [8:(0)[" "1(&1(x) g2 x) > 0)m(dx),

where here and below 1(:) is the usual indicator function.
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Proor. Obviously,
(4.7) I(A) < fuy(MNE(WIU = ).
The right-hand side of (4.7) is clearly finite if 1 < a < 2. Inthe case 0 < a < 1
the finiteness of the right-hand side of (4.7) under assumption (4.3) follows
from [4], while in the case a = 1, the finiteness of the right-hand side of (4.7)
under the assumption (4.4) follows from [5].

Assume for the moment that the control measure m of the SaS random
measure M in (4.1) is actually a probability measure on S. Then, as we have
done before, one can represent the random vector (U, W) in the form

J

U=5b,). Gijfl/“gl(U),
(4.8)
W=0b,2 GI; ' g,(U)

j=1
(the representation is, of course, in distribution), where b, is given by (3.4),
and where, as before, G;, j > 1, I}, j > 1, and U,, j > 1, are three indepen-
dent sequences of random variables, such that G;, j > 1, are i.i.d. standard
normal random variables, I, j > 1, are the arrival times of a unit rate
Poisson process on (0,%) and U;, j > 1, are i.i.d. S-valued random variables
with a common law m. We have seen before that, conditionally on I}, j > 1,
and Uj, j > 1, the random variables U and W are jointly normal, with zero
means and a variance-covariance matrix with elements

0

ol =b2 Y I ¥g(U),

Jj=1

oo B N 2
(4.9) oy = b2 Y I gy(Uy),
j=1
O = bf Z Fj_Z/agl([Jj)gZ([Jj)'
j=1
Again, using the technique developed in the previous section, we conclude
by (3.6) and (3.7) that

7 _ & g, V1 —p? A2
() =B| =5 ——exp| ~ 5575
oy T of (1 - p?)
05 p A2 ) e y?
+E Xexp| — — ~2 |4
27at eXP( Zalz)fAﬂ/(rrl 1p2)eXp( 2) Y
g, V1 — p? A?
T exp(_2¢72(1— 2
1 1 p )
AQ
(410) g

72P _exp| - ——|1(p > 0)
V2w ol P 20t P
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o] ELaY " s ( yz)dl( 0)
+ ex — exp| — — <
277'0'12 P 20’12 —xp/(oyy1-p?) P 2 ye
Oy p A? —Ap/(oy/1-p%) yZ
—E A - ! ——|dyl(p>0
27l eXp( %f)f_w exp| =5 | d¥1(p>0)
4
= ZECi(/\)
i=1
We will prove that
lim A“EC,(A)
A—> @
(4.11) o+ 1)\ 11/
and
(4.12) lim A“EC,(\) = 0

A— 0

for i = 1,3, 4, which will imply the conclusion of the proposition by (4.10).
We start with the proof of (4.11). We have

1
= ——=AH,(}),

1
ECy()) = —AE
(1) —

V2m

and so the proof of (4.11) reduces to proving that

019 A2
F exp| — -5 1(0’12 > 0)

1 204

a+1

1+1/«
(4.13) }i_r)rclo)\““Hl()\) = a2°‘77_1/2“(r( )) Co V%, (&1, 85)-

Observe that by (4.9)

-1 172 g1(U;)82(U;)
3,2
( §=1Fj_2/ag1(Uj)2)

H,()\) =b'E
(4.14)

A2 )
Xp| ————— - 5
255,17 "y(U))

. 1( Y L2, () () >0
j=1

Furthermore, we can change the representation in (4.9) in the same way as
was done in the proof of Theorem 1.1 to obtain

(415) b;Z(O_IZ’ 0.12) =, Bz/a( Z I"J_*Q/a’ Z I‘j2/aRj)’
j=1 j=1
where this time

(4.16) B=E|g(UyI,
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and R;, j > 1, is an independent of the Poisson arrivals sequence of i.i.d.
random variables, such that

R, =, 8:(W)/8:(W),

where W has a distribution which is absolutely continuous with respect to
the law of U, with the Radon—Nikodym derivative given by

dFy, N
(9= B el

Once again, we have

(4.17) ERR,| = B7'E|g,(U)||g:,(U)|" " <=,

(This is trivial for 1 < a < 2 and follows from (4.3) if 0 < « < 1.)
Therefore,

o0 -2/a 2
*_ 1 I72/°R; A

exp(— = — )
- _9/a\3/2 2/a ° -2/a
(T3, I 2°) 28 y

H,(\) =b'B"Y°E

(4.18) -
x1| Y I7%*R;> 0

Jj=1

= b,/ EZ.

We now decompose H,(A) in the following way. For a (1 V @) < § < 2 and
0 < & < 1 write

Hy(\) = b1~ VE

Zl( y 7% < /\"))

j=1

o r;2/
_'_ba—lﬁ_l/aE Z]_ ZF'—Z/a>)\0,ml—7S1_8
(4.19) -1’ -
o I, 2/«
+o BTVE|ZL LIV >N, g > 1 e
j-1 -1l

= Hy; (A) + Hyp(A) + Hyg(A).

In the sequel we will be using, in addition to (2.12), the following elementary
observation. For any p > 0, 6 < 2 and A > (2p)/@~9)

(4.20) sup z 7" exp(—A%/2z) = A~ exp(—A*""/2).

0<z<aA?
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Using (4.20) we immediately conclude that for all A big enough

Hy (M) <b,'B"'“EIR,|E

)\2
ex -
(o, 12y p( 232/“Z§1rj2/“)

J=17J

X1

Z Fj—Z/a < /\6)
j=1

< CA"2exp(—A*"7/0),

where C is a finite positive constant that in the sequel may be expected to
change from line to line. We see that

(4.21) /\113}0 A“TIH(A) = 0.

Let

A=

o o/a , 1"1—2/0(
er >/\,m£1—8 .
Jj=1 j=1j

Observe that by Lemma 2.1(3)

P(A) < P( Z ijz/“ > g\ < CA*Omin(l,a)’

j=2

and so

Hyy(A) < b, 'B~ Y “EIR,|E

/\2
exp(— = - )IA)
- _ « 1/2 2/a 0 '2/01
(551 T7) 2B bl
1/2

<C (P(A))"*

E

1 \?
W eXP( - B T, ij2/oz ))
< CA~(@+2/2~0min(, @)/2
by Lemma 2.2(1). Since 6 > 1 V «, we obtain immediately that
(4.22) }1_1)1;10 AT1H 4, () = 0.
We conclude by (4.21) and (4.22) that (4.13) reduces to proving that

1+1/a

C. " %,(81,85)-

a+1
(4.23) lim A“"'H ;(A) = a2°‘77_1/2"(r( )
A—> @

We further decompose H,; as follows. Set

oo

o 1'*—2/(1
B = erfz/aRJ->0,ZF{z/a>)\6,wl—_2/a>1—8.
Jj=1 j=1 j=1r}
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We have
—-1p-1/a FI_Z/QR )\2
Hy(A) =b, B E - [-2/a 3,2 €XP _232/01 Yo T e 1p
(T 17%) j=11;

(4.24) »_, T 2/°R,

.y 22
J= J

32exp(— 2@ v - a)]'B
(Zioa %) ’ 2B X 1
= Hy51(A) + Hyzo(A).

We will see that H,5,()) is the main term in (4.23). We start by showing
that H,;,()) is small. Specifically, we claim that there is a C € (0, ) such
that
(4.25) lim sup A** ! Hy35(A)| < Ce.

A—>

+ b, '8V E

Indeed,

|Hy35(A)| < CEIR,|E

o -2/a A2
;=2 exp| —
S 2 K T EE R vl

J=1"J

X1

K> (1-6) ¥ FJ—Z/Q))

Jj=1

< CeE

/5 €Xp

)\2
( ?ZIFJ_Z/Q) 2B2/u O;=11—‘j_2/ﬂ)

< Cer (et D

once again by Lemma 2.2(1). This establishes (4.25).
We now consider H,;,(1), which we decompose once more. Let

Ff2/aR1 )\2
Z, =b'p " 3/2 €XP| — 2@ v “2/a |-
( ?=1Fj‘z/a)/ 2B L I

For a 6 € (0,1) write
Hi51(A) = E(Z151(Ry| > 8)) + E(Z,151(IR,| < 5))
= H,(\) + Hy(A).
Note that, as before,
[ H,(0)]

(4.26)

< CE(R,11(R,| < 6))E

1 A
exp| —
( » F72/a)1/2 p 282/ §=1I}—2/a

j=17%j

< Ch(8)A~(a*D,
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where h(8) = E(|R{|1(|R,| < 8)) and A(8) — 0 as & — 0. Therefore,

(4.27) lim sup A** Y| H,(\)| < Ch(5).
Ao
Consider now H, and write
— p1/a I;2/*R, A?
HI(A) =ba B E ( 0 11_"_2/01)3/2 exp| — 2[32/(1 0 F 2/a
J= J

1{R, >3, ZF 2/as N0 T2/ > (1 - s)ZF 2/

~———
~——————

Jj=1 j=1
Iy 2/*R, A2
+b, '8V E p
4.28 a o 9 /a)\3/2 932/ y= T 2/a
( ) ( -1 I ) k
X1| L T2« > A Iy 2/“>(1—,9)Zl“ 2/“)
J=1 Jj=1

—1(R, > 8) +1{IR,| > 8, Y I*/°R; >0

j=1

= Hyy(A) + Hpy()).
We claim that
(4.29) lim sup A“* | Hy,(A)| = 0.

A—>

To this end denote

Zy = ba_lﬂ_l/a

I %/“R, ( A2 )
3,2 SXP 2/a v 2/«
(S, T %) 2B¥ i I

J= J

ZF 2/ > €\ Ty 2/“>(1—g)ZF 2/“)

Jj=1 Jj=1
and observe that

|Hy,(V)| < B[ Z,1

R, >8, LI ?/°R, < 0)
j=1

oo

Z I2/°R; > 0))

+E(Z,1| R

Ff2/a|R1| /\2
p a 0 — a

[7%/°R,| > 8T %/, T 2/“>(1—a))\9))
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484
CE FfZ/a|R1| /\2
< exp| — — —
( ?=1Fj_2/a)3/2 2BY T
X1 Y I72/¢R| > 8(1 — a)A”)).
j=2
Now define

B, = { Y T2/9R | > §(1 - 8))&}.

Jj=2

It follows once again from Lemma 2.1G) that P(B;) < CA ¢ ™n: ) and so

(4.29) follows at once as in (4.21). _
It only remains therefore to consider H;;(A). We have

Hy()) =b,'87V*E(R,1(R, > 8))

2/ 22
X E 372 €XP| — 282/ T, Fj—z/a

(X5 I72)

(4.30)

><1( LI e> AT e> (1—-¢) ) Fj‘z/“))
j=1

j=1
= b, BV E(R,L(R, > 8))T(A).

Observe that

(4.31) 1-)T,(AN)<T(N)<T, (N,
where
0 -1/2 /\2
T.(A) =E ZF»Z/“) exp| — —
+ i J 232/ j=1Fj 2/
X1| L I72e> A I > (1-¢8) ) Fj‘z/“)).
j=1 j=1

It follows from our derivation of (4.21) and (4.22) that

lim A*"1T, ()

A—>x©

lim A\“*E ( Y F-‘Q/“) exp| — —
(4.32) A= o P! J 232/01 Zj:lrj 2/a

a a+1
. 2 2/ (a+1)/2
e (LT RO
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where to compute the limit we have used Lemma 2.2() and the fact that the

scale parameter o of ¥_; I’ >/ is equal to C, { * (see Theorem 1.4.5 of [19]).
We now conclude by (4.25), (4.27), (4.29) and (4.30)—(4.32) that

—Ce—Ch(8) +(1—¢)— r( )(232/“)(““)/2ba13V“E(Rll(Rl > 8))

< hmlnf AT H 5(A) < limsup A*"TH 5(A)

A—
+
< Ce+ Ch(8) + r( )(2;32/01)(““)/2 C187VeE(R,1(R, > 8))

for any 0 < &, 8§ < 1. Letting £ and 8 go to zero, we conclude that

o o
lim A*"1H ;(A) = Er(

A—>

1
2 )(232/“)(a”)/zb;lﬁ‘”“E(RlL

1+1/a

C;l/a

a+1
=a2”‘77_1/2“(r( )

X fs | g2(x) || g1(%)[* " 1(g,(x)go(x) > 0)m(dx),

thus proving (4.13) and so (4.11) as well.
It remains to prove (4.12) for i = 1,3,4. We start with i = 1. We now
consider separately the three cases, 1 < a <2,0<a<1land a= 1.
Assume first that 1 < « < 2. Clearly,
(4.33) EC,(A) E Y ! G(A)
< — exp = — .
! o 2(0‘2 0'122/0'22) 2@

2 _
Observe that, changing a variable, we can write
(4.34) (0'12,0'22,012) =,(X,0,0) +C(S%,S§,812),

with the terms in the right-hand side of (4.34) being independent, where
C > 0 is a constant, X has an S, ,(0yx, 0, 0) distribution with

o /? = B(|£,(U)|"1(g,(U) = 0))

and
d= T rew,
Jj=1
(4.35) s5 = Z e,
S19= 2 I, %V,
j=1

Here V,, j > 1 is an independent of the Poisson arrivals sequence of i.i.d.
random variables such that

V= gl(W)/gQ(W)’
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where W has a distribution which is absolutely continuous with respect to
the law of U,, with the Radon—Nikodym derivative given by

dFy

2 (%) = B g0

and g = Elg,(U,)I".
Therefore,

Sy A2
(CS% +X)1/2 exp(— Z(CS% + X — CS%Q/SS) ))

Observe that for all a,b > 0

(4.36) G(\) = C/2E

E((X +a+b) "exp(—A?/2(X + a)))
(4.37) =E((X+a +b)_l/zexp(—A2/2(X+a))l(XSa))
+E((X+a+b) exp(—2/2(X +a))1(X > a))
< (a+b) Zexp(—A?/4a) + E(X~ /2 exp(—212/4X)).
Therefore, using (4.37) with
a = C(sf—sly/s3),
b = Csi,/s5

and Lemma 2.2(i), we conclude that

(4.38)  G(A) < CA~“*DEs, + CE

Sy A2
s CPlT (st =85 8D ||

Recall that C stands for a finite positive constant that may change from line
to line. Therefore, (4.12) with i = 1 will follow if we show that

s A2
(4.39) lim AE| — exp| ——5——5—5 || = 0
S1 S1 — 812/S3

A—>x©

Observe that by (2.12)
Sy A2
5 e"p(‘ (7~ sh/s3) ))
A2 A?
Sy exp( — —2(3% —5%,/50) ) (31—1 exp( - 2_.5‘%)))

)\2
< C)\_IE(S2 exp(——)),

E

(4.40) <E

27
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where Z = s — 52, /s2. We have

82 ©
_ w2 C12 -2/a172 _
Z =s; 2 2 IV,
2 j=1

(T I V)

o0 -2/«
i=11j

© -1 © ©
— ( Z FjZ/a) |:I‘12/a( Z ijz/a‘/jZ + V12 Z I‘jZ/a)
Jj=1 j=2 Jj=2
+ Z 1‘}—2/04‘62 Z Fj—Z/a
Jj=2 Jj=2

% o 2
(4.41) —2T2/*V, Zsz’2/a‘/j - ( .Z2Fj2/avj)
Jj= Jj=

oo =]

- -1 ©
—2/a -2/« -2/« 2 —2/a -2/«
:(erz/) (F12/ ZFjZ/(Vl—Vj)JrZFjZ/VjZZI}Q/

j=1 j=2

j=2 ji=2

. 2
j=2
< LY (V= V) + LIV =2,
j=2 j=2

In particular,

/\2

442) E

< C)\IE(S2 exp

Sy A2
L . —
$1 (57 — sta/s3)

Note that

o

P(Zy,>)) < P(Vf Y I7e>a/4

j=2

+P| Y I72V2> /\/6)
j=2

(4.43)
=o(A /%)

by Lemma 2.1(i). Since the conditional distribution of I'; given 7., = o([,,
n > 2) is uniform in the interval (0, T,), we conclude that

0 1/2
B(s,19.,) < E(I7/"15.,) + | & r)
j=2

o 1/2
=CIy Ve + er—z/ﬂ) = A,
j=2
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and by Lemma 2.1G), P(A > A) = o(A™%) as A — . Therefore,

A2 A2
E - — E|A ——
(szexp( 2Z0))S ( exp 27,
< 5|8+ 2)) P exp| - || = o)
= o) Pl T a1 z,)

by Lemma 2.2(ii). This proves (4.12) with i = 1in the case 1 < a < 2.

We now turn to the proof of (4.12) for i =1 in the case 0 < a < 1.
Inspecting the above proof for 1 < a < 2 shows that the only problem in the
present case is that Eo, = CEs, = «. Therefore, we start with the following
decomposition. For an M > 0 write

BC(A) = —E| Z21(0y > M)yyT = 52 »
= — —_— > a— N
1( ) A o, (02 ) p~ exp 20_12(1 _ pz)
(4.44) 1 o - A2
+—E|—1 M)y1 - p? ——
27 | oy (o7 = )‘/ prexp 202(1 - p?)

= Gy(A) + Gy(A).
The above remark shows that for any M > 0,
}in}o A*Gy(2) = 0.
Therefore, (4.12) with i = 1 will follow in this case once we establish that for
any £ > 0 there is an M > 0 so big that
(4.45) limsup A*G4(A) < e.

A—>®©

We use (2.12) to conclude that

)
o_llfa(o.la(l _ p2)0‘/2)

1+a)/2

Gy(A) = CE 1(oy > M)(1 - p?)

A2
Xexp(_ —2012(1 _ pz) )

1o, > )(1 - pt) ),

09
1-«a
51

< CA“E(
Therefore,

o
lim sup A*G4(A) < CE(%I(% S M)(l _ p2)(1+a)/2)’

a1

A— 0

and so (4.45) will follow once we prove that

— < o,
o “

(4.46) E( N
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To this end we note that, in the case 0 < a < 1, (4.15) extends to

(447) b 2(o}, 02, 005) = 5”&( Y 2 Y IR Y rj—Z/aRj).
j=1 j=1 Jj=1
(Note that it follows by (4.3) and (4.4) that in this case o, cannot have a

component independent of ,.) Therefore, we can write by (4.47), for a fixed
K>1,

T2

B = o)) < BRI - 00 4 8
1

o{£1m

j=2

N 1/2
(4.48) . (S r T 2/ °R2)

_ a 1- a)/Z
(T, 0%
=M, + M, + M,.
It follows from (4.17) that M, < « for every K > 2. Furthermore,
Z] K+1F /e
9% 1-a)/2
(55 T%)

- 2 o -(1-a) 1/2
j=1

j=K+1

M, <EIR,|E

<C

as long as K is large enough, once again because positive a-stable random
variables have negative moments of all orders. Therefore, (4.46) will follow if
we establish that M, < «. To do so we recall that by (4.41) we have

1 % ) = w0
(@40 157 a1 LR R - LR S

102 j=2 j=2 j=2
Therefore,

M, <E

0109

Fl—(1+1/a)|R1| ( o
J

1/2
LT (Ry — Rj)z) )

(4.50)

Ff1|R1| o0 © 1/2
( ) I}_Q/QR? by Fj_z/a) =M + My,.

0103 \j=2 j=2

Notice that

© 1/2 o 1/2
9% 2 —9/a
(znwwv&ﬁ:ﬂﬁznww
j=2

j=2

- 1/2
+ 21/2|R1|( Y Fj‘z/“) ,
j=2




490 R. ADLER AND G. SAMORODNITSKY

and so we can bound M, from above as follows:

o ToeRrz | S e A
M, <CE|TYR| 2152 + CE|I[ YR, jf—’_a)
-1 1 R} -l
o I‘TQ/“RZ»)IM ( o I‘-_Q/“)l/z
1-a ( j=2"J J j=2"j
< CE|(IR,] SR (Y + CE| —- YR
( i-11; Rj) ( i-11; )
oo a/2 0 a/2
< CE |R1|1‘“( r rﬂ/aRJ?) + CE ( ) rﬂ/a) <
j=2

j=2
by (4.17) and Lemma 2.1(1). Furthermore,

%0 F}Z/a)l/z

_ j=2
M, <E|IT'R| ==—5~ <®
j-1 e

as above. This proves (4.46), and so we have proved (4.12) with i = 1 in the
case 0 < a < 1.

This leaves us only with the case @ =1 to consider. The argument of
0 < a < 1 works verbatim in the present case, provided we can show that for
a K large enough,

< o,

- 1/2

=K
However, it follows from (4.4) that
E(IR,llog(1 + R})) < =,

and so we can use Lemma 2.1(i) to conclude that for K > 3,

(4.51) E

E < CE < oo,

o 1/2
o

j=K

- 1/2

j=K

This proves (4.51), and so (4.12) with i = 1 has been proved in all cases.
We now turn to proving (4.12) for i = 3 and i = 4. Using the formula

fwexp(—yz/Z) dy <t 'exp(—t?/2), ¢t>0,
t

we immediately conclude that

Ty p A2\ e y?
ECy(A) = E Aexp| — — — 5 |dy1(p=0
3( ) 27T0'12 exp( 20’12)'[—/\p/(0'1 l—pz)exp( 2) Y (p ))
<E Eiexp S S 1(p < 0)| < ECy()),
o 27 202(1 - p?)
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and so (4.12) for i = 3 follows from the already proven case i = 1. In exactly
the same manner we see that

2

E|C (M| =E 2P A exp —)\—2 '[7,\,3/(01 17P2)exp _ dy1( p > 0)
4 2mof 202 |/ _« 2

)\2

207(1 - p?)

g, Y1 — p?

2" " expl -
o 2 p(

<E

< EC{(A),

)1(p>0)

and so (4.12) for i = 4 also follows from the case i = 1.

This completes the proof of the proposition in the case when the control
measure m of the SaS random measure M is a probability measure. In the
general case of a o-finite control measure m, we proceed as in the proof of
Theorem 1.1. That is, let 1 be a probability measure on S equivalent to m.
Let b(x) = (dm/dn)(x), x € S. Then we can represent (in distribution) the
random vector (U, W) in the form

U= [ g(x)b(x)""My(dx),
(4.52) S
W= [ ga(x)b(x)"" My(dx),

where M, is now an SaS random measure on S with a control measure 7.
Observe that we have reduced the situation to that of the control measure
being a probability measure, with the new functions

g1(x) = g4(x)b(x)""

and
85(x) = go(x)b(x)"".

It is obvious that the functions g, and &, satisfy (4.3) or (4.4) (with m
replaced by 1) whenever g; and g, do. Therefore, we have (4.5) with

k(81 82) = [ 182(2)][&:()[" "1(8:(x) 8o %) > O)n(dkx)
X [ 1g2() | [ga(x)[" " 1(gu(x) go( %) > 0)m(dx),

and so the proposition has been proved in its full generality. O

REMARK. As mentioned above, Proposition 4.1 is of interest independent
of its use in the proof of Theorem 1.1. It is known (see [8]) that the conditional
law of W/A given U = A converges, as A = «, to the normalized spectral
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measure (mapped to the real line) of the SaS random vector (U, W) (thus
showing that the set of conditional distributions of bivariate stable random
vectors is weakly dense in the set of all univariate probability
distributions—very much unlike the normal case). Proposition 4.1 gives, in
the symmetric case, convergence of certain moments of these conditional
distributions. Indeed, it shows that the expectation of the positive part of
W/A given U = X [which is finite even in the case 0 < o < 1 under the
assumptions (4.3) and (4.4)] converges to the expectation of the positive part
of a random variable distributed according to the normalized spectral mea-
sure, mapped to the real line.

Moreover, an argument identical to that of Proposition 4.1 shows that both
the expectation of the whole of W/, given U = A, and the expectation of the
absolute value of W/ A, given U = A, which are finite under the same assump-
tions, converge, correspondingly, to the expectation and the expectation of the
absolute value, of the above random variable distributed according to the
normalized spectral measure, mapped to the real line.
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