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ASYMPTOTIC PROPERTIES OF CERTAIN ANISOTROPIC WALKS
IN RANDOM MEDIA

BY LIAN SHEN
ETH-Ziirich

We discuss a class of anisotropic random walks in a random media on 74 s
d > 1, which have reversible transition kernels when the environment is fixed.
The aim is to derive a strong law of large numbers and a functional central
limit theorem for this class of models. The technique of the environment
viewed from the particle does not seem to apply well in this setting. Our
approach is based on the technique of introducing certain times similar to
the regeneration times in the work concerning random walks in i.i.d. random
environment by Sznitman and Zerner. With the help of these times we are
able to construct an ergodic Markov structure.

1. Introduction. There are many works investigating random motions in
random media. The point of view of the “environment viewed from the particle”
has played an important role in the progress made so far; see Papanicolaou and
Varadhan [13], Kozlov [8], De Masi, Ferrari, Goldstein and Wick [2], Olla [12] and
also the lectures of Sznitman [17]. Lawler showed in [9] the central limit theorem
for driftless random walks in random environments by using this technique. This
technique has mostly been successful when one can find an explicit invariant
measure of the Markov chain of the environment viewed from the particle, which
is absolutely continuous with respect to the static distribution of the environment,
especially when this invariant measure is reversible.

In this article we study a class of anisotropic random walks in random media,
which are reversible Markov chains when the environment is fixed, but for
which the chain of the environment viewed from the particle has no obvious
invariant measure absolutely continuous to the static measure. Paradoxically,
we are able to apply a strategy, which has been used in the investigation of a
genuinely nonreversible model: the i.i.d. random walks in random environment
(cf. Sznitman and Zerner [18] and Sznitman [16]). The principal aim of the
present work is to derive a strong law of large numbers with nonvanishing limiting
velocity and a functional central limit theorem for the anisotropic random motion
in random environment under consideration. Incidentally, let us mention that
for the type of models we consider here, the question of the existence of an
effective, nonvanishing velocity was asked by Lebowitz and Rost (see [10]) in
their investigation of the Einstein relation.
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Let us describe our model in detail. First we denote with B¢ the set of nearest
neighbor bonds on Z¢. The random environment is given through i.i.d. nonnegative
random variables w (b) € I C (0, 00), b € B?, with common distribution . Here
I denotes a compact interval of (0, c0). A random environment @ = (w (b)) g
is an element of the product space 2 := B endowed with the canonical product
measure P = /,L®Bd and the canonical product o-algebra o = (%(]I))Bd, where
%B(I) denotes the o -algebra of Borel subsets of I.

In our model we have a nearest neighbor jump transition kernel p,(x, x + e),
that is, 3°,/1—=1 Po(x, x +€’) = 1, where e’ denotes unit vectors in Z4 and | - | the
L'-norm in R?. Further, we assume that the kernel fulfills the ellipticity condition,

(1.1) ppx,x+e)=>k >0 for all unit vectors e € Zd, X € Zd, w e,
and it is reversible; that is, there exists a positive measure (m,(x)), ¢z« such that
(1.2) My(X) po (X, X +€) = my(x + €) pu(x +e, x),

forall w € Q, x € Z4, le|] = 1. We also assume that p,,(x, x + ¢) has the form
(1.3) P, x +e) = f((@x, x + D)y €),

for all x € Z4 and unit vectors e. This means that the transition kernel Po(x,x+e)
depends only on the value of w for bonds connected to x, in the same way for all
x € Z4. This is a translation invariance assumption on the jump mechanism.

In addition, we assume there exists a nearest neighbor random walk on Z¢ with
jumps distributed according to the law (g(€))|e|=1,cczd> 9(€) #0 for all |e| =1,
such that

1 1
(14 r==[> (e 10g61(e))H >0 and {£:=— Ze logg(e) € $471,
214 21 4
with || - || denoting the L?-norm in R? and that there exist constants 0 < A < B,
such that
(1.5) AeP¥ <m,(x) < BePt forallw € Q, x € 79,

where x.y always denotes the standard scalar product of x, y € R? throughout this
article.
For instance, if we choose for given A > 0 and £ € S¢~,

o({x,x + g})e)\z.e
Y= @ (fx, x + e'}erte’”

then the conditions (1.1), (1.2), (1.3) and (1.5) hold for suitable choices of «,

A and B, provided g(e) = Zeiee/ and m, (x) = e2*tx dYeoo(x,x + e}erte

(1.6) Po(x,x +e)=

, eMt

o "¢’ (the last denominator is simply a matter of normalization).
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Actually, (1.6) is a special case of a transition probability with the form
o({x,x +e})q(e)

2ej=1 @({x, x +e'Hg(e) ’

and (1.7) fulfills all the conditions (1.1)—(1.5) for suitable choices of «, A, B, the

reversible measure for (1.7) being now

me(x) =Y " w({x, x +e}q(e),

(1.7) Po(x,x +e)=

with A and £ from (1.4).

With these assumptions over p,,, the random walk in the random environment
w is the Markov chain (X,,),>0 on (ZHN | with state space Z4 and “quenched law”
Py o, forx e Z4,

...

P
Px,w[Xn—H =X, +e|XOa---aXn] = pw(Xna X, +e),
Px,w[XO =x]=1,

(1.8)

where e denotes unit vectors in Z4. The “annealed law” P, is then defined as the
semidirect product on 2 X (ZHN:

(1.9) P,:=PxP,, withxeZ

A degenerate case of the above model is discussed in the physics literature. It
corresponds to the anisotropic random walk on the infinite percolation cluster; see
pages 136—-146 in Havlin and Bunde [6]. In this case the random variable w (b) only
takes the values 0 or 1. Although random walks an the infinite cluster have been
discussed in the isotropic case (cf. [2]), we know of no mathematical reference in
the anisotropic situation.

The main goal of this article is to show in Theorem 5.1 that

X C .
2 converges Py-a.s. to a deterministic nondegenerate velocity v.
n

Further, we prove in Theorem 5.3 that the process B”",
X [tn] — [t n]v
Voo

with [#] denoting the integer part of ¢ > 0, converges in law under the annealed
measure Py to a d-dimensional Brownian motion with nondegenerate covariance
matrix, as n — 00.

One special aspect of our work is that our results hold for arbitrarily small
anisotropy strength . We do not need any Kalikow-like condition as for the i.i.d.
random walks in random environment; see [7, 16, 18].

The strategy employed to derive these two theorems is to construct an embedded
Markov chain structure under the annealed measure Py, which has a “small state

(1.10) Bl = t>0,
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space” (cf. Corollary 3.6). The times ¢, k > 1, defined in (3.12) and (3.26), play a
central role here. In essence 7 is the kth time, when the random walker comes to a
new maximum in the direction £ and then never comes back below this level. The
true definition is in fact more sophisticated (cf. Remark 3.2). The random variables
consisting of 7y 41 — %, X, — X, and the value of some bonds connected to
X¢., k > 1, build a Markov chain, as shown in Corollary 3.6. In Theorem 3.8 the
ergodicity of this Markov chain is shown. Let us mention that the above strategy is
in the same spirit as the renewal structure attached to certain regeneration times 7
for 1.i.d. random walks in random environment model in [18] and [16]. However,
unlike what happens for the i.i.d. random walks in random environment model, the
times 7k in our model do not yield a renewal structure, but rather lead to a Markov
structure with a small state space; see Theorem 3.3 and Corollary 3.6. This comes
from the fact that the transition kernel p,, (x, x +¢) depends on all bonds connected
to x; therefore the jump probabilities p,,(x, x + €) and p,(x +e,x + e + ¢’) are
not independent under P.

Let us explain the organization of this article. In Section 2 we make full use
of the ellipticity condition (1.1) and the reversibility assumption (1.2)—(1.5) on
(Xn)n>0 under the quenched law P, ,, to derive a key estimate in Theorem 2.2. In
particular, with the help of this estimate we prove that the random walk has a strict
positive probability of never coming below its initial level (cf. Corollary 2.3) and at
the end of Section 2 we show that Py ,,-a.s. (X;),>0 tends to 400 in the direction £.
In Section 3 the times t;, kK > 1, are introduced [cf. (3.12) and (3.26)] and the
embedded Markov chain (Y}),>0 under the annealed measure Py is constructed in
Corollary 3.6. Its ergodicity is then discussed in Theorem 3.8.

In Section 4 we use the key estimate of Theorem 2.2 to derive the integrability
properties of X, and 1. Our main result is presented in Corollary 4.4. In Section 5,
with the help of the embedded Markov chain (Y,),>0 constructed in Section 3
and the integrability property of 7] proved in Corollary 4.4, a strong law of large
numbers for (X,),>0 under the annealed measure Py is proved in Theorem 5.1.
Further we are able to prove a functional central limit theorem for the process B”
in Theorem 5.3.

2. Notation, reversible structure and a key estimate. In this section we use
the ellipticity condition (1.1) and the specific reversibility assumption (1.2)—(1.5)
on the quenched Markov chain (1.8) to show that the random walk has a positive
probability of no-backtracking (cf. Corollary 2.3) and derive transience in direction
£ (cf. Corollary 2.4). We first provide a uniform lower bound for the generalized
principal Dirichlet eigenvalue in Theorem 2.1, which will be useful to prove our
key estimate in Theorem 2.2.

Before doing so we introduce some further notations needed throughout this
article; ¢ and ¢, j € N always stand for positive constants, which depend only on
the quantities (k, d, A, B, q(-)), which are introduced in (1.1)—(1.5). We denote by
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(61)n>0 the canonical shift on (ZHN, and by %,, n > 0, the canonical filtration of
(Xn)n>0, thatis, ¥, =o{Xop, ..., X} forn > 0.
The exit time Ty for U C Z is given by

2.1 Ty =inf{ln>0:X, €U},

and for u € R we introduce

2.2) T, =inf{n > 0:£.(X,, — Xo) > u},
’ T, =inf{n > 0:£.(X,, — Xo) < u}.

Further we shall also need the first backtracking time defined through
(2.3) D=inf{n>0:£.X,, <£.Xo}.

2.1. Principal Dirichlet eigenvalue. Keeping in mind the reversible structure
stated in (1.2)—(1.5), we introduce for each @ € Q2 the scalar product on the space
of functions f : Z¢ — R and its associated norm,

(2.4) (f:my =Y mu(x)f(x)g(x), I fllme ==~/ (s Pmy»
xezd
for f,g:Z¢ — R.
Forwe Q,U CZ4 nonempty, we introduce A, (U):
8’"(1} (f’ f)
>y Mo (x) f(x)?
with the Dirichlet form

Emy(f.8) =73 Y Mu(x)pu. Y (f &) — F(M)(gx) —g(»).
X,y

2.5) ApU):= inf{ f#0, flue=0, fe Lz(mw)},

f7 g € Lz(mw)’
where for x, y € Z¢ we use the following convention:

| pox,x+e), for y=x + e, with |e|] =1,
PolX, y) = {O, otherwise,

and by f|yc we mean the restriction of f to the complement U€ of U C Z¢.
With a slight abuse of language, we refer to A, (U) as the principal Dirichlet
eigenvalue attached to U;; it is in fact the bottom of the spectrum of the bounded

self-adjoint operator 1 — Py 4, on L?(m,,), where Py, is defined through
¢ Pu.w:i= P}] © provided,
(2.6) ’
(P’l’]’wf)(x) =Ey olf(Xy), Ty > n] forneN,f:Zd—>R.

The next theorem provides a uniform lower bound for A, (U).
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THEOREM 2.1.

2.7 inf A,(U)= 0,
2.7 it wlU)=¢>
where U varies over the collection of nonempty subsets of 7.2
Consequently,
n —ny . _
(2.8) U’w”Lz(mw) <e with y =log ——.

forall U c Z% and all w € Q.

PROOF. We begin with the proof of (2.7). The ellipticity condition (1.1) and
assumption (1.5) imply that for x, y € Z¢,
Mo (X) po(X, y) = Akm(x)q(x, y),
with

<N 20 _|gq(e), fory=x+e,
m(x) =e and  g(x,y) = {0, otherwise.

Therefore A, (U) > %[\(U), with
AU)

(2.9) __inf{ Yy MG (x, Y(f(x) — f(1))?
o 23, m(x) f2(x)

So we only need to provide a positive lower bound in the context of the determin-

istic random walk with jump probability (g(e))¢|=1. Further, because Aw(Zd) =

infy4p Ay(U) and for f € L2(m,,) we have o) = Jimy ,, Snal10 o),

F£0, flue=0, fe L%ﬁ)}.

we see that Aw(Zd) = infy 4z, finie Aw(U), hence we can assume without loss of
generality that sup{|f.z|:z € U} < oo.
Let us denote the canonical law of this random walk starting in x by Q,

and its expectation value by EQ. Because 20 (Xje1=1 €9 () = Z?Zl(q(ej) —
g(—ej))(logg(ej) —logg(—e;)) > 0 [recall A and ¢ are given in (1.4)], we can
find 0 < ¢ < 1 and § > 0 small enough such that

(2.10) EQe0¢Ki=X0 1 < ¢ <1,

Defining n = —logc > 0, we observe that exp{—§£.X,, + nn} is a Q,-supermartin-
gale. The stopping theorem implies that

(2.11) ES[exp{—M.(XTU —x)+nTy}l<1 forall x e U.

Let L :=sup{|¢.(z —x)|:z € U} < 00, and since —6¢.(X7, —x) > —8(L +1) we
find

sup EQlexp{—8(L + 1) + nTy}l <1,

xeU
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which implies

(2.12)  supEQ[e"U] < &% with p = sup{€.x} — inf {€.x} +1.
xe

xeU xeU

Notice also

(f.Qu i - .
EGR 0. flue=0, el (m)},

with the sub-Markov kernel Qg defined through
Qu = Q}] provided,
Q) f)x) =B f(Xp). Ty >nl.  neN, f: 2¢ >R,

AU)=1-— sup{

(2.13)

We observe also Q%, = (Qu)" and Qy is a bounded self-adjoint operator on L? (#i1)
with respect to the canonical scalar product (-, -),; attached to m.

It now suffices to show that | Qg ||L2("~1) <e ?%to prove (2.7). To show this we
observe

IQY Gy = 2o m)Qy > (x)
xeU
@14 2L QP = QL

L) s m()Q Ty > nlf2(y) < e PN f117 250

(2.12)
where the Chebychev inequality Q,[Ty > n] < Eg[e"TU M) e T g used

in the last step. Taking the nth root, it follows from Theorem V1.6, page 192 in [14],
that | Qull 2z, < e~ "/2, and hence (2.7) follows.

Inequality (2.8) is an immediate consequence of the fact that A,(U) =1 —
IPv,wllr2gm,) and Py, = (Pye)". U

2.2. Key estimate. Thanks to Theorem 2.1 we can prove the key estimate of
this section.

THEOREM 2.2. There exist constants ¢ > 0 and cy > 0 such that for m € N,
(2.15) sup Py [T om < Ton] < cre 22"

xeZ4, we

PROOFE. Let U C Z4 be finite, then (2.6) and (2.8) imply that for all w € Q,
xelU,

Moy (X)Py Ty >nl= (1, Py, 10) 12,
(2.16) < 1l z20my) - 11020y €77

= VMme(x) - ||1U||L2(mw) cem
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Using the assumption (1.5), Py [Ty > n] can be estimated from above by

ProlTu >n] < 11ullp2gn,) € 7" /Vmeo(x)
(2.17) B ~
< M1y L2 gm e

Now let U be a box centered at x with width L in the ¢ direction and size L? in the
directions normal to ¢, that is, with a rotation R of space R? such that R(e;) = ¢:

L L?
(2.18) U:= {z eZd:l(z —x)d| < E,suglR(ej).(z —x)| < 7}
iz

With rax :=sup{€.z:z € U} < oo, we see from (1.5) that for L > 1,
M5l 22gm,) < el M.

Thereafter for

AL
(2.19) n>— [recall that y is defined in (2.8)]

14
it follows from (2.17) that

€3 _Mxgpd Mmax,—vn - 3 7d _—(/2)L
Py olTy >nl < —=e LéeMmxe™V < T [4p
(2.20) e VA VA
< cqeOIAL,

The boundary of U is defined through
(2.21) U ={z¢U:3yelU,|z—y|=1},

with | - | denoting the L'-norm on R¥. Now we divide it into U = U UI_UU
ooU, with

L
04 U = {zeaU:E.(z—x)z 5},

(2.22) 3_U:={z€8U:€.(z—x)§—%},

U :=0U\(0+UUI_U)
and setting L = 2"*! in the above definition of U, we observe that
~ AL AL
(2.23) Py o[T-om < Tom] < Px,w|:TU > 7] + Px,w[TU = 77 XTU ¢ 8+U]
Using (2.20), the first term on the right-hand side of (2.23) can be estimated by

AL
(2.24) Px,w[TU > —} < e ML
y
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To estimate the second term, we use Carne’s inequality for reversible Markov
chains (cf. [1], Theorem 1), (there is a small typo in the paper: x and y are
interchanged on the right-hand side of the inequality.):
me(y) exp{_ x = yI? }
Mg (X) 2k )

with | - | denoting the L'-norm on R¢.
Because |x — y|> > ||x — y||%, the second term can now be estimated through

AL
Px,w|:TU =< 7, XTU ¢ 8—|-Ui| =< Z Z Px,a)[Xk = ))]

k<AL/y yedpUUd_U

20L M () ylx—yl?
@26 b2 w25

y yeBOU ma)(x)

me(y) ylx —yl?
Z w(x) ( 2AL >i|

(2.25) Px,w[Xk:y]fz x,yEZd, weQ,

yed_U
By using (1.5) again the first sum on the right-hand side of (2.26) can be estimated
by
Z ma)(y < yllx—y||2>
2.27) venU mw(x) 20L

B L
< C5L2d_3\/;e“‘ exp(—&—z> <cq exp(—C7L3),

and the second sum by

Mg, (Y) eXp( yilx— y||2> Z L omeshL —coL
(228) yeoru | Mel¥) ved-U
< cpoL2@- l)e—(69+)»Cg)L
50118_6121‘.

Putting the above inequalities together,
(229)  Pyo[Topn < Tl <cie™?*"  forallxeZ¢ weQ, m>0. O
2.3. Transience. The next corollary of Theorem 2.2 will be useful in Sec-
tions 3 and 4.
COROLLARY 2.3. There exists c13 > 0 such that for all x € 74 and w € Q,
(2.30) Px’w[D =o0] > c13 > 0,
where D is the first backtracking time defined in (2.3).
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PROOF. With the notation U := {z € 72 :10.(z — x)| < 2™}, the ellipticity
condition (1.1) and the strong Markov property imply that Py ,[Ty» = co] = 0 for
all y e U, w € Q. Therefore (2.15) implies

(2.31) Jirn};PX,CU[T—Zm >Tm]>1— Cle_CZQ"l‘

Letm:=inflk >1:1> cle_cﬂk}; we claim foranyn >m +1,x € Z¢, w € Q,

n—1
(2.32) Px’w[T_zm > Ton_om] > 1_[ - Cle—csz)'

k=m

We show this by induction. The case n = m + 1 is immediate from (2.31). The step
n — n + 1 follows easily by the strong Markov property and (2.31):

ProlT_om > Tyusi_om]
> Ex,w[T—Z’" > Ton_pm, PXTzn_zm,w[f—Z” > Ton]]
> Py o[ T_om > Tan_om](1 — cre=2%").
From (2.32) it is clear that for all x € Z9, w € Q:

ProlTon = Ty on] > [T (1 —c1e72%) > 0,

k>m

and hence

Px’w[f_zm > Tok_om forall k > m] > H (1— cle_czzk) > 0.

k>m

Therefore by using ellipticity condition (1.1) and the strong Markov property again
we find that P, ,-a.s.,

Py w[D =00] > /ccszx,w[Pxsz wlT—om > Tyi_om for all k > m]]

> KCZ'” 1_[ (1— 018—622]‘) >0 forall x e Zd, w e Q.

k>m

This completes the proof. [J

As an application of the above corollary we prove the transience of X, in the
direction £ under the quenched law Py .

COROLLARY 2.4. The random walk is transient and P ,[lim, £.X, = oo]
=1, forall x € 74, we Q.
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PROOF. At first we show
(2.33) Pyo[infl.X, = —00]=0  forallx e Z¢, w € Q.
Indeed with
Dy:=D and Dy4i:=Dobp, + Dy, m>1,
we find

sup Px,w[ilr}fﬁ.X,, = —00] < sup Py ,[Dy < 00, Vm]

xeZ4 xeZd

< sup E, ,[D1 < 00, Px,, [ Dm < 00, v m]]
xeZ4

< sup Py »[D; <o0] sup Py ,[D,, <00, Vm]
xezZd yezd

< (I —c13) sup Py o,[Dy, <00, Vm],
yEZd

where we used (2.30) in the last step. Because 1 — cj3 < 1, it follows that
sup, Py o[ Dy <00, Vm] =0, and hence (2.33).

Now we claim that for 2z > 0 and u € R,
(2.34) Py,-as., {((X,—x)<ulio}C{l(X,—x)<u—hio.l}.

To verify this, we observe that from the ellipticity condition (1.1) there exists
a large enough integer N > 0 and ¢ > 0, such that

(2.35) PeolT_n<Nl>c forallwe, xeZ.
Then we define a sequence of auxiliary stopping-times (Vk)kzo,

Vo :=0, Vi :=inf{n > 0:£.(X, —x) <ul,
Vk+1i=‘7109‘7k+N+‘7k+N§OO fork > 1,

and let G, = {V; < oo}, 1y, =1 o 6y, . We observe that G € Fy; and

{T_p=<N)
Hy € 9«7(%1 . Using the strong Markov property and (2.35) we find
(2.36) PoolHilFyl=clg, forallxeZ!, weQ, k>1.
Therefore it follows from Borel-Cantelli’s second lemma (cf. [4], page 240) that
(2.37) Py »-a.s., Z lg, =00 on { Z lg, = oo}
k>1 k>1

which implies (2.34).
As an immediate consequence of (2.34) we see that for u” € R, Py ,-a.s.,

(238)  {.X, <u'fo}C [){t.-Xy <u'+hfo}={lime.X, =00}
heN
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Due to (2.33) we have Py ,[inff.X, > —oc] =1, and since {inf¢.X, > —oo} C
Uwez{l.Xn <u’ f.0.},it follows from (2.38) that
Py olliml.X, =oo] = 1. O
3. Embedded Markov chain and ergodicity. In this section we will define
the regeneration times 7, k > 1, introduce the resulting Markov chain under

the annealed measure Py and then show that this Markov chain has an invariant
probability measure, with which the chain is ergodic.

3.1. The first no-backtracking time t1. First let us introduce some further
notations. With #,: Q — , x € Z¢, we denote the spatial shift operator
(3.1) (o) ({y.2) =y +x.z+x)  with {y, 2} e BY.

Let us also denote by € the set of unit vectors in 74, which maximize {£.e} and fix

one such vector from €; call it e:

€:={ee Z4: el =1, L.e =max{l.e/:¢' €79, || = 1}},
(3.2) ~

e € ¢é fixed.

With the help of this ¢ we are able to introduce the set of maximizing bonds
containing the point x — e:

(3.3) B =[beB!:b={x—é,x—é+e} ec?)

and separate B? into two subsets, R* and L* (R and L, respectively, stand for
“right” and “left” of the point x € Z¢):

R :={{y,z} e B¢ :max(£.z, £.y) > l.x},

(3.4)
L5:= B\ RY) U B*,
so that
(3.5) R¥ N L5 = B*.

We depict L and R* for d =2 in Figure 1, where solid lines are bonds in £*,
dashed lines are bonds in R* and the two thick lines are bonds in B~*.

Further, we introduce two sequences of (%,),>0-stopping times Sk, k > 0 and
Ry, k > 1, and a sequence of successive maxima in the direction £ € RY, My, k >0
[we recall the definition of D in (2.3)]:

So :=0, My :=1£.X,

Si=inf(n>2:X,— X,_1=¢; X1 — X,,_p=¢;
(3.6) 0.X <8.X,_2,Vm <n —2},

Ry :=Dofs + 81,

My :=sup{l.X,,:0 <m < Ry}
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and inductively for k > 1,
Sky1:=inf{n > R : X, — X1 =¢; X1 — X2 =¢;
X <Xy, YVm <n-—2},
Riy1:=Dofbgs,  + Sk+1,
M1 :=sup{€.X,;, : 0 <m < Ryy1}.

(3.7

Clearly we have 0 = Sp < S1 < R < 8 <--- < 00, and the inequalities are strict
if the left member is finite.
Now let us introduce

(3.8) K :=inflk > 1:S; <00, Ry = o0}.

Before defining 11 as Sk, we first prove the finiteness of K.

LEMMA 3.1.

(3.9) P, oK <ocol=1  forallx eZ® we.

PROOF.  First we show Py ,[S] < oo] =1, for all x € Z4, » € Q. To this end
we introduce a sequence of auxiliary (%,),>o-stopping times S, k > 0,
So =0,
S'k+1 = inf{n > S'k +2:4.X,, <L.X,, YVm <n}.
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In words, §k+1 is the first time, at least two steps later than Sk, when the walk
reaches a new maximum. oo
Because from Corollary 2.4 we have Py ,-a.s. £.X, —— o0, it follows that

~ ~ —> 0
Py w-a.s. Sk <oo and Sy —— oo, forall x € 74, w e Q.
We prove now by induction that there exists a constant ¢ € (0, 1) such that

(3.10) ProlS1 > 8 <ck  forallk,x eZ?, weQ,
which implies by the Borel-Cantelli lemma immediately that
(3.11) P, olSi=00]=0 forallx eZ?, we.

For k = 0, (3.10) is immediate. Assume then (3.10) up to k. Because of (1.1)
there exists a ¢ > 0 such that sup, .4 ,ecq Py.ol(X1 — Xo, X2 — X1) # (¢,€)}] <
¢ < 1. Using the strong Markov property we get

Px,w[Sl > Sk—H] =< Ex,w[Sl > Sk; (X§k+1 - ng’ X§k+2 - XS‘k_H) 7é (57 é)]
=Ex.o[S1 > Sk Pxg ol(X1 = Xo. X2 = X1) # (2. 9)]]

< Py o[S1 > Sl < AL

The claim (3.10) follows.
Now we return to the proof of finiteness of K. By (2.30), sup,, Py »[D <
o0] <1 —c13 < 1, therefore for k > 1,

Px,w[Rk < ool = Ex,w[Sk < 00, PXSk,a)[D < OO]]
< (1 = ¢13)Py 0[Sk < 0]
< (1 —c13)Py [Rr—1 < 0],

with the convention Ry = 0. By induction itis Py ,[Ry < oo] < (1 — c13)k, for all
x €24, w € Q, from which we deduce that Py w-a.8. D p>1 1Ry <00} < 00, for all
x € Z¢, w € Q. It is only possible when

P, oK <ool=1 forallx eZ% weQ. O

Now we are ready to define

(3.12) 71 := Sk,
and certainly we have
(3.13) P,olti<ool=1 forallx eZ weQ.

Let us give the meaning of t;: The random variable 71, when finite, is on the
one hand the first time n, at which £.X,_, reaches a maximum and the next
two steps have increment e € €; that is, £.X; 2 > £.X,,, forall m < 7; — 2, and
X7 — X¢—1 =¢€, X1 — X¢,—2 = e. On the other hand it is a time such that after
71, £.X, never becomes smaller than £.X, .
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REMARK 3.2. In the definition of S, kK > 1, we chose quite artificially that
the random walk (X,),>0 has increments ¢ in the previous two steps before S.
Indeed, we can also choose any number of steps larger than two, and this will not
affect our later discussion, as the proof of Theorem 4.3 shows.

Loosely speaking, we want to reduce the common dependency of the bonds
involved before and after time 7 to only finitely many bonds, namely to {b €
cﬁ’X’l} [recall (3.3) for the definition of B*]. To achieve this we need that the
walker perform at least two steps in the direction e € € just before time 7;. This
reduction of dependency is essential to the proof of Theorem 3.3.

Before going to the key result of this section, let us introduce some further
notations used in the remainder of this article. Recall the definition of €, ¢ in (3.2)
and that T C R, is the compact interval given above (1.1). We introduce, for each
x eZ4,

(3.14) ay = (({x —&,x —&+e}),ce = (@) yegs €I°,

and for a € I¢,

(3.15) P{:= (Sa((a)({x—é,x —E+e}))e€%)® / ® du(w(b))
be(B\B¥)

as well as for the annealed measure

(3.16) P{ =P% x Py .

We also need the o -algebra 9; on Q x (Z%)N, describing the history of path and
environment involved before 7;:

(3.17) G1 =0 {11, Xeyam)m=0: {0 () :b € LX1}};
that is, %9 is generated by the sets

(3.18) {t1=m)N{Xy, =x}NA,

withm >0, x € Z¢, A e o{w(b):b € L5} ® F,, and

(3.19) {i=00}NA  withAecdQ Fu.

[Recall & is defined above (1.1).]
The key step in the study of the embedded Markov chain structure mentioned
in Section 1 is now the following.

THEOREM 3.3. Let f, g, h be bounded and respectively o{X, :n > 0}-,
o{w®):be RY- and G| -measurable functions, then for a € Ié:

(3200 E4Lf (X1 — Xz)) g o1, h1=E4[hEy " [fg|D = oo],

where t, is the spatial shift operator introduced in (3.1).
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PROOF. The left-hand side of (3.20) is
Eolf (Xei+.— X)) g0 X, h]

= Y Eff(Xgq.—Xq) gotx, h, S <00, Ry =00, Xg, =x]
(3.2D) k>1,xez4

=Y E§[Eo.olf (Xs+. — X)h, Sk <00, Ry =00, Xg5, =x]goty].
k,x

Observe that on the event {r; = S} N {X;, = x}, there exists a bounded
o{w(b):b e L} ® Fg, -measurable variable hy ,, which coincides with /. Indeed,
from the definition of 9; in (3.18), by applying the monotone class theorem
(cf. [4], page 280), on any set {t; = m} N {X,, = x} there exists A, , which is
bounded o{w(b):b € L*} ® F,,-measurable and coincides with 4. Now we can
define

hk,x = Z iim,xl{Sk:m}a

m=>0

so that Ay, is o{w(b):b € L*} ® Fg, -measurable, and coincides with & on
{r1 =Sk N{Xy =x}.
As a result, the rightmost side of (3.21) equals

Y E§[Eo.wlf (X5 4. — )i x, Sk < 00, Dobs, =00, X5, =x]got];
k,x

applying the strong Markov property at the stopping time Sy yields

> E§[Eo,0lSk <00, X5, =x, hicx] Ex ol f(X. —x), D=00]got,].
k,x

Because by definition of Sy in (3.7), Xg,—1 — X5,—2 = X5, — Xg5,—1 =€ and
0. Xm < €.Xg,—> for all m < S — 2, and also because £.e < £.e for all unit
vectors e € Z4, it follows that (X, X +e} e LXSk , for all m < Sy — 1. Therefore
Eo,0[Sk < 00, X5, = x, hi x]is o{w(b) : b € L*}-measurable. On the other hand,
due to the restriction D = oo, E; o[f(X. —x),D =o00] - g oty is o{w(b):
b € R*}-measurable. Because L* N R* # &, these two random variables are not
P-independent. Fortunately, by our definition of Si, we observe the dependence of
Eo,0[Sk < 00, X5, =x, hg x] and By [ f(X. —x), D =00] - g oty is concentrated
on {w(b):b € B*}. [Here we see that it is necessary in the definition of Si to have
the random walk (X,),>0 going at least two steps in the direction e € € before time
Sk, otherwise Eg ,[Sk < 00, X5, = x, hy x] is not o {w(b) : b € L*}-measurable.]
Using this fact and Fubini’s theorem, the last expression equals

Y E§[Eo.wlSk <00, X, =x, hix] EF[Er o[ f(X. —x), D =00]g oty]]
k,x

=Y E§[Eo.ulSk < 00, X5, = x, i x EZ[f(X. = x)g 0 1y, D = 00]].
k,x
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Using then the translation invariance of P measure we have Ey*[ f(X. — x)g o ty,
D =o00]= ng [f(X.—0)g oty, D= o0], therefore the rightmost side of the last
expression now equals

Y "E§[Eo,0[Sk < 00, X, = x, hi x] Eg* [ fg, D = 0]

k,x
= ZES[Eo,w[Sk <00, X5, =x, h x] Py'[D = 00] E*[ fg| D = o0]].
k,x
This means
EGLf (X7 4. — Xy)g otx, hl
(-22) =3 Ei[Eo.ulSk <00, X5, =x, hix] Py'[D = 0] E§'[ fg| D = oo]].

k,x
By taking specially f = g = 1, we get from the above equation
(3.23) Eglh]l = ZES[EO,Q)[S/( <00, X5, =x, hy ] PS”[D = o0]].
k,x

Define now ¢(a) := Ej[fg|D = oc], and note that ¢(ay) is o{w(d):
b € B*}-measurable, hence o{w(b):b € L} ® Fg, -measurable, and there-
after hy x@(ay) is o{w(b):b € L} ® Fg,-measurable and coincides with the
% -measurable function h<p(ale) on {t] = 8§} N {X; =x}.

Substituting & through h¢(a Xrl) in (3.23), we find

Eglhe(ax. )] = Y "E§[Eo,0lSk < 00, X5, =x, hix - 9(ax)] Py [D = o0]]
k,x

=Y E§[Eo,0lSk < 00, X, =x, hgx] Py*[D = 0]
k,x

x Eg'[fg|D = oc]].
Comparing this with (3.22) yields our claim (3.20). O

REMARK 3.4. Define

(3.24) V(X 0) = (Xg 4. — Xopi 1y, 0) € ZHY x Q,
Then equation (3.20) can also be expressed as
(3.25) §1(f2) o yh] =EG[hE, " [fg|D = ool].

3.2. The kth no-backtracking time ty and the Markov structure. Because
{D =00} ={D > 11} € 41, we can define on {r] < oo} a nondecreasing sequence
of random variables inductively, by viewing 1%, kK > 1, as a function of X.,

(3.26) T 1 (X)) == 11(X) + e (Xg 4. — X)) fork>1,
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and by convention set 7y = 00 on {t; = 00}. Because of (3.13) and Theorem 3.3
we observe that Pp-a.s. 7y < oo, for all k£ > 1. One could ask why we do not use
the equivalent formula 71 = 7 (X.) + 71 (X, +. — X4, ) as the definition for 7j .
The reason will be clear in the proof of Theorem 3.5.

With 1341, k > 1, introduced, we are now ready to introduce o-algebra 9|
fork > 1,

(B27) Gs1 =01, s T Tt 1s Kapuyamdm=0; @ (b), b € LX),

describing the history of the path and environment involved before time ti ;.
With G :=o {71, ..., %; Xgamm=0; w(b),be RON QCX’k}, which is clearly
included in %y, we also have

(3.28) G =0{G Uy (G}

with ¢ introduced in (3.24).

The main result showing the embedded Markov chain structure comes in the
next theorem, displaying the conditional distribution of the joint random variables
(Xgp4n — X dn=0s (Tktn — T)n=0; terw(b), be ﬁsz) given G, k> 1.

THEOREM 3.5. Let f, g, hy be bounded and, respectively, c{X,: > 0}-,
o{w®): be R%Y- and Gi-measurable functions with k > 1. Then for a € I¢,

(3:29)  E4Lf (Xo4 — Xo)g 0 tx, hid = E3[mEy ™ [fg]D = ool].

PROOF. We prove (3.29) by induction. The case k = 1 is just Theorem 3.3.
For the step k to k + 1, we observe that in view of (3.28) it is sufficient to show
(3.29) for hg41 = hy hg oy, while h1 and hy are bounded and, respectively, 9
and 9;-measurable. For such an £, the left-hand side of (3.29) equals

Eg[f(XTk+1+' — ka-H)g o tXTkJrl hihy o 1,0]
=Ej[f (Xg4. — X)) 0¥ (g otx, o) (hg o Y)hi],
applying now (3.25), the right-hand side of the last expression equals

ax,
E§[Ey "[f (X4 — X)g 0 tx, hi| D = 00]]

a T a T
= E4[Ey " [f (Xopt. — Xg)g 0 1, hi, D = 001/Py " [D = 00]]

and because hil{p=co) i1 ¥Y;-measurable, we can use the induction assumption
and find

ale

a[hEy 1 [Ey * [ fg|D = oolhy, D = 00] /Py ™ [D = oo]]

ale

E
E4[hE, " [E, “[fg]D = ocolhy|D = oo]]
E

ax, oy
aE, " [fg|D = oolhy o]
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ax,

=E§[h1hx o WE, “*'[fg|D = 00]]
a AXtpp

= Ef[h+1E, [fglD =o0]],

where we applied (3.25) backward in the third line, and this completes the proof.
O

As an immediate consequence we get the next corollary.

COROLLARY 3.6. Let
(3.30) =N xZz¢xTI¢

with its canonical product o-algebra and let yy = (j*, z%,a*) e T', k > 0. For
a € 1¢ and G C T measurable let also

(3.31) R(a; G) :=P{[(r1, X, ax,,) € G|D = 0],

Then under Py the T"-valued random variables (with convention tg = 0),
(3.32)  Yi:= (ks Zi, Ar) = (Tt — T Xy — X axy, ), k>0,
define a Markov chain on the state space I, which has transition kernel
(3.33) P[Yit1 € GIYo=yo, ... Y = k] = R(d"; G),

and initial distribution

(3.34) A(G) :=Pol(1, Xy, ax,,) € Gl.

Similarly, on the state space 1%, the random variables

(3.35) Ap=ax, k>0,

also define a Markov chain under Py. With a € ¢ and B C 1¢ measurable, its
transition kernel is

(3.36) R(a; B) :=Pflax, € B|D=00]l= ) R(a; (j,z, B)),
jeN
zezd

and the initial distribution is
(3.37) A(B) :=Polax, € Bl=Y_ A((j.z, B)).

jeN
zezd
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3.3. Doeblin condition, invariant measure and ergodicity. In this section we
will show that the transition kernel R(a; -) has an invariant distribution and it is
ergodic. First we need the following lemma.

LEMMA 3.7. There exists a unique probability measure v on 1¢ and two
constants ¢ > 0, c15 > 0 such that for m > 0,

(3.38) sup [[R™ (a; -) — v(-)[lvar < ce™B",
acl?
where || - ||lvar denotes the variational norm on the space of measures on I¢.

Further, this probability measure v is invariant with respect to the transition
kernel R; that is, vR = v, and the Markov chain (Ay)k>0, defined in (3.35) with
transition kernel R and initial distribution v on the state space 1€ is ergodic.

Moreover, the initial distribution A(-) given in (3.37) is absolutely continuous
with respect to v(-).

PROOF. First we show that the kernel R(a; -) satisfies the Doeblin condition
(cf. [15], page 178):

(3.39) R(a; B) > K2C13( ®% 1) (B) for all measurable B C I¢,

where we recall that p is the distribution of w(b) on I. Indeed the ellipticity
condition (1.1) implies

R(a; B) =P{lax, € B|D = oo] =E{[Pylax, . D=o0]]/P§[D = o0]
> ES[PO,w[Xl =e, X, = 2e, D 0bhr = 0], ax, € B]
= ES[PO,w[Xl = é, X, = 2@] Pzg’w[D = 0], ajs € B]
> k?E8[Pys [ D = o0, ay; € B]
230) , . )
>k c13Pylaze € Bl = k“c13(Q¢p)(B).

Applying Theorem 6.15 in [11], the Doeblin condition immediately implies that
there exists an invariant measure v and (3.38) holds. (The Doeblin condition
implies that the kernel is small and aperiodic in the terminology of [11]; cf.
pages 15, 20 and 21.) The uniqueness is a trivial consequence of (3.38).

In view of (3.38) the ergodicity of (A,),>o follows from Proposition 2.4 in [15],
Chapter 6. To prove that the initial distribution A(-) is absolutely continuous with
respect to the invariant measure v(-), we observe that the Doeblin condition (3.39)
also implies

v(B) = / v(da)R(a: B) = %13 / v(da)( ®¢ 1) (B) = k%c13( @ 1) (B).
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Therefore v(B) = 0 implies (g )(B) =0, and hence
A(B) < Y Pola; € Bl= ) (®¢u)(B) =0,

ze74 ze74

that is, A is absolutely continuous with respect to v, and this completes the
proof. [

With this lemma we can now prove Theorem 3.8.

THEOREM 3.8 (Ergodicity). 7 := vR is the unique invariant distribution for
the transition kernel R, for which the relation

(3.40) sup |R™(a; ) — D) < clae 5™, m >0,
aclé

holds for some c14 > 0. With initial distribution equal v, the Markov chain (Y )r>0
defined in (3.32) is ergodic. Moreover, the law of the Markov chain (Yi+1)ik>0
under Py is absolutely continuous with respect to the law of the chain with initial
distribution V.

PROOF. We observe that for any bounded and measurable function f on I¢
we have R f = Rf and thereafter )R = vRR = vRR = vR = ¥. This means that
D is an invariant probability measure with respect to R on I'. From RR = R? and
(3.38) it follows that || RM+1 (a; ) = V() |lvar < ce™ 15" for m > 0, and hence (3.40)
with some constant c14 > 0. Applying again Proposition 2.4 in [15], Chapter 6, the
ergodicity of (Yx)x>0 with initial distribution v follows.

From Corollary 3.6 we know that, the initial distribution of (¥Yx41)x>0 under Py
is AR. From Lemma 3.7, A is absolutely continuous with respect to v, therefore
the absolute continuity of the law (Yi41)x>0 under Py with respect to the law with
initial distribution D follows immediately from the obvious relations AR = AR
and PDR=vR. O

4. Integrability properties of £.X,;, and 71. As a last step of preparation
toward the strong law of large numbers and the functional central limit theorem
mentioned in Section 1, we will show in this section that for ¢ > 0 small enough,
supy E, »[e‘"] < oo. The proof will be divided in several auxiliary lemmas.

LEMMA 4.1. There exists ci6 > 0 such that for all w € Q, x € 74,
C13
@.1) Evolexpleist.(Xs, = Xo))] < 142,

with c13 given in (2.30).
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PROOF. At first we define a sequence of auxiliary (%,),>0-stopping times
[recall the definition of ¢ in (3.2)],

Ny :=0; Ny :=inf{m > 0:£.(X,, — Xo) > 2L.¢};
Ni41:=Ni+ Njoby, fork > 1.
Observe that for all k > 1,
20.e<l.(Xn, —Xn,_,) <3l and Ny— Ny_1>2.
Therefore we have £.(Xs5, — Xo) <3k(£.e) on {Ny_1 < S1 < N}, and hence

Ex,ole“ X X0 =3B, ,[e“K7X0 Ny <5 < W]
k>1

<Y e3HKEAP, JINk_1 < S1 < Nkl
k>1

4.2)

Because for all y € 74, weQ,
Py w[Nig1 < S11 <Py o[Ne < S1, (X1 — Xves Xvg2 — Xvr1) # (e, e)]
< (1= kHPy [Ny < Sil,

where we used the ellipticity condition (1.1) in the last step, the rightmost side of
(4.2) can be estimated further by

Ze?’CkZ.EPx’w[Nk—l < Sl E Nk] E Ze3Ck€‘EPx,w[Nk—1 < Sl]
k>1 k=1

S Ze3£’k€.§(1 _ KZ)k—l < OO,
k>1

4.3)

provided c is small enough. i
Take now co > 0 and mg € N such that } 4, e3cokbe (] _ e 2yk=1 %, 4.2)
and (4.3) imply that for all ¢ < co,

~ C
Ex,a)[ece.(xsl _XO)] = Z e3cmoe.epx,w[Nm—l <81 < Npyl+ %

m=<m
c13
3 .

Thereafter there exists ci¢ € (0, cg) small enough such that e3ciemot-e 4 %
and that completes our proof. []

< &3Mtep 181 < Nyl +

Let us introduce the random variable
“4.4) M :=sup{f.(X, — Xo):0 <n < D},
which is the maximal displacement in the direction £ before backtracking. It will
turn out that M is a key variable later in studying integrability properties of

£.X¢,. Because for all a € ¢, PS[D = oo] > 0, we cannot expect M < 00 Pg—a.s.
Nevertheless we claim the following lemma.
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LEMMA 4.2. There exists some c17 > 0 small enough such that

4.5) (1 + Cﬁ){ sup Ey ole™ | D < oo]} <193
4 xezd 2
weR

PROOF. At first we show that
(4.6) Py 2" <M <2" D <ool <cige 2" forallx € 29, we Q.

Recall the definition (2.18) for the box U centered in x with width L in the
direction ¢ and size L? in the direction normal to £; also recall (2.22) for its
boundary dU = 8,U UJ_U U dpU and setting L = 2"+, we observe that

P, o[2" <M < 2" D < o0]

AL AL
fpx,a) Ty > 7 +Px,a) Ty < 7» XTU ¢8+U

AL ~
+Px,a)|:TU < 7, X, € 0+ U, PXTU,w[T—zm < sz]]_

By (2.24)—(2.29) the first two terms together are < cre=2" To estimate the third
term we observe

AL -
Px,w[TU = 7» X1, € 04U, PXTU,w[T—Z’” < sz]]

< Z sup Py’w[f_zm < Dom],
y€8+Uy€a+U

. ~ _ m
and using supy, Py o[T—om < Tom] <cye 22"

<CWd,0)L¥ 2cje 22",

Putting them together the claim (4.6) follows.

With (4.6) in mind we show in the second step that sup, ,, Ex,w[eCM ,D <o0] <

__3ci3

7> provided ¢ > 0 small enough. This can be seen by the obvious estimate

E. oleM, D < 0]

sz+l

<Py ol0<M <1,D<o0]l+ Y Ppo[2" <M <2"" D <oole
m>0

CZm+l

<P, ,[D <o0le? + 3 P ,[2" < M < 2" D < oole

m>my

1 1
< ProlD <o0le 4 3 cpgeleme?™,

m=>my
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m+1
Now let cg = %42 and mg € N be chosen such that Y, ., cige(©™19)2 "< &
the rightmost side above is less than or equal to
o+l C 3c
(1—cr3)e?™" + % <1- —413,

with 0 < ¢ < ¢p small enough. Our claim follows immediately. [J

With the help of these two lemmas we can now provide the integrability of
Ex’w[ecE.Xrl ]

THEOREM 4.3. There exists cog > 0 small enough such that

@.7 sup E, olexp{caol.(X¢, — X0)}] < o0.

xezd
we2

PROOF. Since

Ex’w[ece.(le —Xo)] — ZEx,w[ece.(XSk_XO)’ Sy < 00, D 0B, = o0]
k>1

S ZEx’w[eCZ.(XSk—X()), Sk < OO],
k>1

4.8)

in view of (4.1) it suffices to show that sup, ,, > >» Ex,w[ece‘(xsk X0 g, < 0]
< 00. -

To this end we define another sequence of auxiliary (%j),>0-stopping times
[recall the definition of M} in (3.7)],

4.9) Vi:=inf{n > R : £.X,, > My} fork>1,

that is, Vj is the first time after Ry such that the random walker (X,), >0 reaches a
maximum in the direction £ again.

It is clear that Ry < Vi < Sk+1, and the inequalities are strict if S;41 < 0o. We
observe that for k > 2,

(X5, — Xo) =4.Xg5 — €. Xy, | +L.(Xy,_, — Xo)
< E-(XSI —Xp) o QVk—l +Z.(Xvk_l — Xo),
whence

Ex’w[ece-(xsk—xo)’ S < OO] < Ex’w[ece-(xsk—xo)’ Viey < OO]

(4.10) < Ex’w[ecﬁ.(XVk—l _XO), Vi1 < 00, EXVk_l ’w[ecﬂ.(Xsl —X())]]

“4.1) _
s Ex,wl:ecg'(kal X0)<1+C4£>,Vk—1 <Ooi|‘
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Further, we observe that
Z'()(Vk,1 - X()) = E'(XV](,I - XS](,I) +f-(XSk,1 - XO)
<M1 +1—-4L0.Xs, | +L.(Xs,_, — Xo)
=Mofs , +1+L.(Xs,_, — Xo).

Therefore with the strong Markov property the rightmost side of (4.10) can be
further estimated by

c
< eCEx,w[eXp{c(M ofs,_, +0.(Xs,_, — XO))}(I + %) Ri_1 < oo}

c13

:eCEx’w[eCZ-(XSk—I_X())’ Sk—l < 00, (1 + 1

)Engl,w[eCM» D< 00]},

and this is, by (4.5) and induction,

C —
< €C<1 _ ;)Ex’w[ece.(x‘gk_l X())’ Sk—l < OO]

(-3

provided 0 < ¢ < c17.
Therefore we can find ¢y € (0, ¢17) small enough such that e20(1 — %) < 1.
Therefore,

k
ZEx’w[BCZ()Z’(XSk_XO), Sy < oo] < Z <6020<1 _ %)) < 00

k>2 k>2

And with (4.8) this completes the proof. [

As a corollary we obtain an estimate on the tail of 77 and its integrability
properties.

COROLLARY 4.4. There exists cy1 > 0 and coy > 0 such that foru € N,

4.11) sup Py p[t1 > u] <cp1 e,

xezd
we2

and consequently,

4.12) sup Ey o[eP™] < ¢4 < 00,

xezd
we

for some cy3 > 0 and cy4 > 0.
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PROOF. Recall y =log 11: from Theorem 2.1 and choose u € N, u > 2% We
denote with U the box defined in (2.18), with center x, width 27/7u in the direction
¢ and size (27’714)2 in the direction normal to £.

By Chebychev’s inequality and with ¢y from (4.7) we observe

Px,a)[fl > u]

[ Y ] Y
<Piow _11 >u, (X — Xo) < Hu_ —I—Px,w[f.(X,l — Xo) > Hu}

<Pro|T1>u,l.(Xy — Xo) < %u —I—exp{—czoi/—ku}Ex’w[eCzoZ.(Xfl—Xo)]

<Pyo|T1>u,l.(Xy — Xo) < %u + cp5e M,

further we have

Px,w

| —

14
71> u, L.( Xy — Xo) < Hu}

IA

Pr ol Ty sy > u]
P,

A

ol Tty /a0u > Tu] + Pr.o[Tv = Ty ja2yu > u]

IA

u u
Px,w[TU > 5] +Px,w[TU =< 5, XTU ¢8+Ui|

+Prow[Tu = Tty ja0u > u).

Using the same argument as in (2.23)—(2.29), the first two terms on the right-hand
side together can be estimated uniformly: for all x € Z¢, w € Q and for all u € N,

(4.13) Px,w[TU > %] +Px,w[TU < % X1y & aJFU} < coe” B,

and by (2.20) the last term can also be estimated uniformly: for all x € Z¢, w € Q

andueN,uz%’\,

(4.14) P, ol[Ty > ul < cqe” /¥4,

because in our construction of U, u > %23/_;\“ = %, the condition (2.19) is fulfilled.

Altogether we get that forallu € N, x € Z4 and w € ,
(4.15) Py olt1 > ul <cpre” ",

our claim (4.11) follows immediately, and finally, (4.12) is an easy consequence
of (4.11). O
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5. Law of large numbers and central limit theorem. In this section we
will provide the main results of this article: first a strong law of large numbers;
moreover, we are able to prove a functional central limit theorem. Some parts of
the proofs presented in this section are similar to the proofs of [18], Theorem 2.3,
page 1864 and [16], Theorem 4.1, pages 130-131.

THEOREM 5.1 (Strong law of large numbers). Under the assumptions (1.1)—
(1.5) we have

5.1) Poas, Xn "2, ETXq]
. 0-a.s. " V= EM[z]

and fL.v >0,

where

(5.2) I[]:= / V(da)P4[|D =00] and E"[]:= / v(da)ES[-| D = oo].
(We recall that v is the unique invariant distribution on 1¢ given in Lemma 3.7.)

PROOF. Let Yi = (Ji, Zk, Ar) = (Tkt1 — T Xy — X akaH)’ k>0, be
the random variables on I" defined in (3.32). We know from Theorem 3.8 that the
Markov chain (Y )r>0 with initial distribution v is stationary and ergodic, further,
the law of (Yi+1)k>0 under Py is absolutely continuous with respect to the law
with initial distribution V. Therefore from the Birkhoff’s ergodic theorem (cf. [4],
page 341) it follows that for any f € L! (I, ¥), Pp-a.s.,

1 n— 00 ~

> fo0 == [avy,

=
Applying this formula to f(y) = j and f(y) =z fory = (j, z,a) € I', we find that
Pp-a.s.,

1

53 n—1
n—oo
(X7, — Xg) —— /dﬁzl =fv(da)E8[Xn|D=oo]=E“[Xn]»

(ty —11) == /di]l = / v(da)E4[7|D = 00] = EN[1] < o0,

n—1
where the finiteness follows from (4.12). We also observe that £.v > 0, because Pp-
a.s. £.Xy, > 0 by definition (3.6), (3.7) and (3.12), and E™'[| X, |] < E"'[7] < 0.

From (3.13) we observe that Pg-a.s. % — 0, as n — oo. Therefore (5.3)
implies that

1 n—00 . a I

-1, — | dvJ; =/v(da)E0[‘L'1|D =oo]=E"[11],

(5.3%) 1”
n—o0

X, —— [ dVZ, =/u(da)Eg[x,1 |D = ool =E"[X,,].
n
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Now let us define a nondecreasing sequence k,, n > 0, which tends to 400 Py-a.s.,
such that

5.4 Tk, <N < Tk, +1 (with the convention tg = 0).
Dividing the above inequality by &, and using (5.3*), we find that Py-a.s.,

k, n—oo 1
5.5 _——
©-) n EN[z(]

Further, we observe that
ﬁ _ Xz, | Xn—Xg,

+ ,
n n n

(5.6)

then in view of (5.3%) and (5.5), we obtain that Py-a.s.,
Xz, _ Xz, k_n n—00 EH[Xrl]

n k, n Ef[7]’
and by (5.5) again, that Pp-a.s.,

(5.7)

[ Xn = Xoy | _ Ttt =Ty _ Tt Ko+ 1 T, Ky no0

e

n n ke 4+1 n k, n
n—oo

Combining this with (5.6) and (5.7), we have proved that Py-a.s. % —— v, with
v givenin (5.1). U

We are now able to derive a functional central limit theorem for the process

(5.8) B! = %(X[m] — [tn]v), t>0,
where [7] denotes the integer partof € R, .

We denote by Dpa[0, 00) the set of R9-valued functions on [0, c0), which are
right-continuous and possess left limits (also called cadlag functions). We endow
this set with the Skorohod topology (cf. [5], page 117) and its Borel-o -algebra, so
that B defines a Dpa[0, 00)-valued random variable.

To simplify notations let us temporarily denote the law of the Markov chain
(Ym)m=o0 with invariant distribution v by P3[-] and its expectation value by Eg[-].
Further, we use x” to denote the transposed vector of x € R¥.

LEMMA 5.2. Let f(y) ==z — jv for y = (j,z,a) € I" and v from Theo-
rem S.1. Then

(5.9) sup (R| f])(a) < oo,

acl?
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where we recall that | - | denotes the L'-norm on R?. Further the R?-valued
random variables

(5.10) F(a):= §<Rmf)(a), Gy = mzﬂ F(Ym),

m=
W, =Gu+ F(Ap), n>1,

[with notations from (3.32) and (3.35)] are well defined, and under Py, (W,))>1 is
a (3, )n>1-martingale with respect to 3, == o {Y1, ..., Y,}. We use the convention
Wo := 0 and ¥o equals the trivial o -algebra.

Finally, the partial sum ﬁG[n.] converges under Py on the space Dpal0, 00)
in law to a d-dimensional Brownian motion with covariance matrix K,

K =E;[(Wo — W)(Wo — W)T]
= EN[(Xy, — 110)(Xg, — 110) 7]

G.11) + Y EM(Xy, — 1) (Xeysy — Xop — Gt — Ta)0)” ]

m=1
o0

+ Z EH[(XTin+1 - Xfm - (tm"rl - IWI)U)(X‘[] - TIU)T]’
m=1

where the last two terms converge in all matrix norms. [We recall the definition of
Ein (5.2).]
PROOF. Inequality (5.9) follows immediately from (2.30) and (4.12), because

sup (R| f])(@) < supES[| X+, | + |v]T1| D = o0]

aelé a
< (14 |v])supEj[r1]|D = 00] < 0.
a
With this, we can now show that

(5.12) sup | F(a)| < ca9 < o0.

aclé
Indeed, Theorem 5.1 implies that DR f = ¥ f = 0 and hence for a € I, m > 1,
I(R™ f)(@)] < |(R"" o (Rf))(a) — DRf|+ DR f]
(5.13) < IR" Ya; ) = D)llvar - | R f |0
< c1ae™ M DR £ oo,

where (3.40) is used in the last step, and this with (5.9) proves (5.12).
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To show that (W,,),>1 is a (¥,),>1-martingale, we observe from Corollary 3.6
that forn > 1,

EolWt1 — Wal%,1 = Eolf (Ya1) + F(Ant1) — F(Ap)|%,]
= (Rf)(An) + (RF)(A,) — F(A,) =0.

Now we show that under Py,

1 n— 00
(5.14) —=Wp —— B() in law on Dpa[0, 00),

Jn
where B(-) is a R?-valued Brownian motion with covariance matrix K given by
the first line of (5.11). With (5.14) proved, we can replace W[,.] by G, in (5.14),

because of (5.12).
To show (5.14), we observe at first that

E [(1 | 14 |)4]< : > EollWe — Wi 1]
— su Wi — Wi — - Wi—
0 NP p k k—1 = oLl Wk k—1

k<[nT] k<)

1
< —Bol(1Xy — vl + 29)*]

[nT]—1 y 4
e sup E[(1 Xy, — vry] + 2¢20)*| D = 0]

ael®

+

n—oo

—0 by (4.12) and (2.30),

where we used (5.10), (5.12) and Corollary 3.6 in the second and third line.
Second, by Birkhoff’s ergodic theorem (cf. [4], page 341) we get from
Theorem 3.8 that Pj-a.s. and hence Py-a.s.,

[ﬂt] — 00

1 n
> —~ (Wit = WO (Wier1 = W) —— tEs[(W2 — W) (W2 — W]
k=1

and the same limit holds true for a sum from k£ = 0 to [nt].

Thereafter, (5.14) follows immediately from the martingale central limit
theorem (cf. [5], Theorem 1.4 (a), Remark 1.5, pages 339-340). It remains to
show the second equality in (5.11). We show at first that the last two terms in
(5.11) are well defined; that is, the series converges in any matrix norm. Let || - ||
be an arbitrary matrix norm, then with the notations of (3.32) we have for m > 1,

HEH[(X'[I - Tlv)(Xfin+l - Xfm - (Tm+1 - Tm)v)T]H
(5.15) = |E;[(Zo — Jov)(Zm — Jn0) 1l = |E5LF (Yo) (R™ £)(A0) T 1|
< ¢’ sup, (R™| f)(a@) E;[1Zo — Jovl],
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where ¢’ > 0 is a dimension dependent constant. Thereafter it follows now from
(5.13) that the rightmost side above is

< c1ae™ VYR £l oo - E5l] Zo — Jov]

< c3pe” 15",

Consequently, the right-hand side of (5.11) converges in any matrix norm.
To verify the second equality, we put in the definition of W,,, m =1, 2,

K=E;[(Wy — W) (W, — W]
= Esl{f (Y2) + F(A2) — F(ADMf(Y2) + F(Ay) — F(A)]
= Es[f(Y2) (YD) 1+ Es[f (Y2) F(A2) 1+ E5[F (A2) f(Y2)" ]
+Es[F(ADF (AT 1 = Es[F(AD(f (Y2) + F(A42)"]
+E[F(ADF(ADT1—E5[(f(Y2) + F(A2)F(AD"].

Using the fact that ¥ is the invariant distribution of the kernel R, and applying the
Markov property, we see that the second and third line on the right-hand side of
the above equation vanish.

Now putting in the definition of F from (5.10), the second equality of (5.11)
follows from (5.15) and Corollary 3.6. This completes our proof. [J

Thanks to Lemma 5.2, we can now prove the following.

THEOREM 5.3 (Functional central limit theorem). Under assumption (1.1)—
(1.5), the DRal0, 00)-valued random variable B! defined in (5.8) converges under
Pg in law to a d-dimensional Brownian motion with a nondegenerate covariance
matrix

(5.16 L
10 Ef[7 ]’

with K given in (5.11) and EN defined in (5.2).

PROOF. Let k,, n > 0 be the sequence introduced in (5.4). Then (5.5) and
Dini’s theorem (cf. [3], page 129) imply that Py-a.s.,

n—oo

k[m] _ t

0.
n  El[g]

(5.17) forall T > 0, sup

0<t<T

Further, for the random variables B;' and G,, respectively, defined in (5.8) and
(5.10), we observe that Py-a.s. for any 7' > 0,

Gy Tl — T
Bl — < (14+]) sup =

Jn 0<k<kpur] NI

sup
0<t<T



508 L. SHEN

and
Tk-‘rl —_ ‘L’k n—oo
(5.18) sup ———— ——
O<k<kpury VP
To see (5.18), we observe that thanks to Corollary 3.6, and since k, < n, for u > 0,

Tkt — Tk
Py sup ———=—>1u
0<k<kp \/ﬁ

0 in Py-probability.

— 00
<Polt1 > /nul +nT sup P[r; > /nu|D = 00] — = 0,

aclé
where we used (4.11) and (2.30) in the last step.
G
Therefore, the Skorohod-distance of B” and % (cf. [5], page 117), tends to

0 in Py-probability, as n — oo. From this fact, (5.17) and Lemma 5.2 we obtain
that, under Py, B” converges in law to a d-dimensional Brownian motion with
. . K
covariance matrix gy
What remains to prove is the nondegeneracy of K. If w’ Kw = 0 for some
w € R4, it follows from the first line of (5.11) that

Pilw.f(Y2) =w.F(A)) —w.F(A))] =1,

and since from (5.12) we know that F' is bounded, we can find some constant
c31 > 0 such that

(5.19) Pilw. f(Y2) € (—c31,c31)] = 1.

Because 7 is the invariant distribution of R we obtain [recall the definition of IT in

(5.2)]
1 =Pglw. f(Y1) € (—c31, c31)]

(5.20)
=TII[(v.w)T) € (X7, w — 31, X¢pow +¢31)].

Now let r > 24/d and H = {z € Z¢: 4.z < r + 2¢.&}. Then for all x € dH we
can construct a path in H such that Xo = 0, X5 = x. To see this, we first
notice that with the argument in [16], page 102, the set {z € Z¢:0 < €.z < r}
is connected. Therefore there is a path connecting 0 and x — 2¢, which remains
in {z € Z¢:0 < £.z < r} except for the last point. By inserting a loop at each step
of this path, which goes back to the previous point and then returns to the current
position, we can make sure that X, does not occur within {z € 74:0 <tz <r).
Now letting the modified path go two steps in the direction ¢ after it reaches x — 2¢,
we get a path (X,),>0 with Xg =0 and Xg, = x.

This and (2.30) together imply that for each x € 9 H there exists n € N such that
for all a € T¢,

PG[X;, =x,11=81=n,D=00]>0.
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Using a nearest neighbor loop of length 2k, k € N, inserted at the first jump step,
we get from the ellipticity condition (1.1) that for all k € N and a € I¥,

(5.21) PUX, =x, 11 =S =n+2k, D=00]>0,

On the other hand it follows from (5.20) and (5.21) that for x € d H, there exists
n € N such that

Rk +n)(v.w) € (x.w —c31, X. W+ C31) for all k € N.
This is only possible when
(5.22) vaw =0.
Taking now limits points in d H, we observe from (5.20) that
(5.23) w.y=0 forall y 1 ¢,

hence w is colinear to £. But since v.£ > 0, (5.22) implies that w = 0, which
completes our proof. [
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