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SUPERPROCESSES OVER A STOCHASTIC FLOW

By Georgios Skoulakis and Robert J. Adler1

University of North Carolina and Technion

We study a specific particle system in which particles undergo random
branching and spatial motion. Such systems are best described, mathemat-
ically, via measure valued stochastic processes. As is now quite standard,
we study the so-called superprocess limit of such a system as both the
number of particles in the system and the branching rate tend to infin-
ity. What differentiates our system from the classical superprocess case, in
which the particles move independently of each other, is that the motions
of our particles are affected by the presence of a global stochastic flow.
We establish weak convergence to the solution of a well-posed martingale
problem. Using the particle picture formulation of the flow superprocess,
we study some of its properties. We give formulas for its first two moments
and consider two macroscopic quantities describing its average behavior,
properties that have been studied in some detail previously in the pure
flow situation, where branching was absent. Explicit formulas for these
quantities are given and graphs are presented for a specific example of a
linear flow of Ornstein–Uhlenbeck type.

1. Introduction. The initial motivation for the mathematics to follow
came from the following modelling problem in biological oceanography.

Dinoflagellates are microscopic, single cell, phytoplankton leading a rather
boring life. They have some limited ability for individual, small-scale motion,
but spend most of their time being moved about, on a large scale, by oceanic
tides. Every few hours they relieve their boredom by reproducing, unfortu-
nately by simple cell division, dividing obliquely to form two cells of equal size.

They would be of little interest to anyone other than pure biologists were
it not for the facts that “in bloom” they reach a density of some 108 cells per
cubic litre and that blooms can cover areas of the order of square kilometres.
Their reddish-brown color then becomes visible to an observer and the corre-
sponding phenomenon is called a “red tide.” Furthermore, certain species of
dinoflagellates contain potent neurotoxins. The toxins enter the food chain via
ingestion of the dinoflagellates by filter-feeding shellfish and fish, eventually,
unless care is taken, finding their way to human consumption. The conse-
quences of this can include “paralytic shellfish poisoning” (PSP) in which the
victim becomes paralyzed and may die. About 1,000 cases of PSP have been
reported in North America, with about a 25% death rate. The phenomenon is
widespread in the world’s oceans and because of the dramatic effects of PSP
is of major financial concern to the world’s fishing industries. (See, e.g., [18]
for more details, although still at an elementary level.)
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The traditional way to model the behavior of phytoplankton blooms is via
a combination of (deterministic) differential equations for the total popula-
tion growth, a diffusion equation to allow for spatial spread, with everything
superimposed over a fluid dynamical system of partial differential equations
to describe tides and other physical oceanographical phenomena. These mod-
els describe global behavior reasonably well, but fail to reproduce a visibly
observable “patchiness” in the blooms.

This paper is, in essence, about developing a model which will capture this
patchiness. The central thesis centers on modelling the structure of blooms in
two parts. During a bloom, which lasts up to two months and so covers trillions
of phytoplankton over about 500 lifetimes, total population size is reasonably
stable and so individual phytoplankton reproduction will be considered to be
that of critical, or close to critical, branching. The spatial motion of the plank-
ton will be modelled via the combination of two independent sources. The
first comes from individual phytoplankton following independent Brownian
motions, or other diffusion processes. The second is an an overall population
drift, due to the motion of oceanic currents, modelled as a stochastic flow. From
over two decades of accumulated knowledge, we know that the numbers asso-
ciated with blooms are in the “domain of attraction” of a superprocess, and
the one clear thing we know about superprocesses is that they generate very
“patchy” pictures.

While it seems reasonable that “billions of phytoplankton” are probably
enough to invoke the strong law behavior behind convergence of particle sys-
tems to superprocess limits, it is not clear that “about 500 lifetimes” are
enough. Nor is it true that 500 = O�“billions”�, which, as will be clear soon,
is a necessary requirement for the limit theorems to work. Nevertheless, as
anyone who has ever seen a simulation of a superprocess (e.g., [1]) can testify,
the fractal, “patchy” behavior of superprocesses occurs a long time before the
infinite density limits are reached.

As opposed to most papers on superprocesses, we shall not treat “local patch-
iness” of the kind measured by Hausdorff dimension of supports, etc., but will
rather concentrate on large scale motion as measured by the mean motion of
mass. It is this motion which is of most interest in the modelling scenario and
is all that is really quantifiable there.

This is all we shall have to say about motivation. A first attempt at reaching
the biological oceanography community with these ideas is in [2]. We hope
more works will follow, but now turn to a more conventional particle picture
for describing the process that we will work with.

LetY be a Feller process (e.g., Brownian motion) taking values in �d and n a
positive integer. Assume that, at time zero,Kn particles are placed in �d. Each
of the Kn particles follows the path of an independent copy of the process Y
until time 1/n. At time 1/n each particle, independently of the others, gives
birth to a number (≥ 0) of offspring according to some distribution, which
is common to all particles, and then dies. Typically the expected number of
offspring equals one; that is, the branching is critical. However, we shall also
treat asymptotically supercritical or subcritical branching.
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After branching, the individual particles in the new population follow the
path of an independent copy of Y, starting at their place of birth, which is the
place of death of their parent. This occurs in the time interval �1/n�2/n� and
the pattern of alternating branching and spatial spreading continues as time
evolves, as long as there remain particles alive. The process of interest to us
is the measure-valued Markov process

Xn
t �B� = Number of particles in B at time t

n
�

where B ∈ � = σ-algebra of Borel sets in �d. Note that, for fixed t and n,
Xn

t is an atomic measure. It is then well known that, under mild conditions on
the process Y and the branching distribution, if �Xn

0� converges weakly to a
finite measure then the sequence �Xn� converges, as n tends to infinity, on the
Skorokhod space of cadlag (right continuous with left limits) functions from
�0�∞� to the space of finite measures on �E���E�� endowed with the topology
of weak convergence. The limiting process is known as the Y superprocess
(or super Brownian motion if Y is a Brownian motion) and it is uniquely
characterized as the solution of a well-posed martingale problem. (See, for
example, the extensive review of Dawson [6] for details of both this and all
other facts about superprocesses that we quote without explicit reference.)

Think of the above particle picture as describing the motion of many phy-
toplankton in a glass jar. We now need to empty the jar into the ocean and
subject them all to a common, random, motion. We shall model this motion by
a stochastic flow, the details of which are in the next section.

In this case, it is possible to characterize the limit process as the measure-
valued solution of the following martingale problem:

For all f ∈ � �

Zt�f� = Xt�f� − ν�f� −
∫ t

0
Xs�Lf�ds− ξ

∫ t

0
Xs�f�ds

is a continuous square integrable

�� X
t �-martingale such that Z0�f� = 0 and

�Z�f��t = δ
∫ t

0
Xs�f2�ds+

∫ t

0
�Xs ×Xs���f�ds�

(1.1)

where � is an appropriate class of functions, L is the operator describing the
motion of a single particle, � is an operator reflecting the flow and ξ and δ
are nonnegative constants.

The exact formulation of the model, in a slightly more extended form than
presented here, along with the definition of all related quantities, appear in
Section 2. In the same section we also give the statement the weak conver-
gence result, the proof of which is deferred to the Appendix. In Section 3 we
derive formulas for the first two moments of the flow superprocess and con-
sider two descriptive, macroscopic, quantities related to flows in the context
of our model. As mentioned above, these are the most important functions in
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terms of experimental quantifiability. They have also been studied in detail in
a similar setting, but without the branching that is so central to our model,
in two papers by Zirbel [29, 30].

The formulas of Section 3 are rather abstract, so in Section 4 we look at
a specific example where, with a fair amount of work, they can be simplified
and explicitly computed so as to give a good idea of what happens in general.

Before beginning in earnest, one should note that there are at least two
different ways to look at the model we present. One is as a superprocess in
a random environment (the flow) and one is as an extension of models of
the motion of mass by flows, when the “mass” has an additional (branching)
noise factor added. In the first vein, precursors can be found in the papers of
Wang [26, 27], who considered a similar setup, but with a somewhat different
environment, described in more detail in Section 2.3.

In the second vein, the main precursors are the thesis of Finger [12] and the
works of Zirbel and Çinlar [28]–[32], who also developed a number of moment
formulas for the movement of mass, akin to those that we have in Sections 3
and 4, but for motion of mass by flows alone. We tend to see our results in the
latter vein and as being of more interest there.

Before turning to details, one of our referees asked for a list of notation to
ease some of the pain of following technicalities. Here it is.

��E�: σ -algebra of Borel sets in a metric space E.
� �E�: the space of probability measures on �E���E��.

MF�E�: the space of finite measures on �E���E��.
M�E�: the space of Borel measurable functions defined on E.
B�E�: the space of bounded Borel measurable functions defined on E.
Cb�E�: the space of bounded and continuous functions defined on E.
CK�E�: the space of continuous functions with compact support defined

on E.
C0�E�: the space of continuous functions vanishing at infinity defined onE.
Cl�E�: the space of continuous functionswith limits at infinity defined onE.
C2
K�E�: the space of continuous functions with compact support having con-

tinuous second order partial derivatives defined on E.
CE�0�∞�: the space of continuous paths taking values in the space E.
DE�0�∞�: the Skorokhod space of cadlag paths taking values in the space E.

µ�f�: the integral
∫
f�x�µ�dx� of the function f with respect to mea-

sure µ.
fi: the first order partial derivative of the function f�x1� � � � � xn� with

respect to xi,
fi�j: Second order partial derivative of the function f�x1� � � � � xn� with

respect to xi and xj,
IA: indicator function of the set A,

card�A�: cardinality of set A,
⇒: weak convergence,
�: the set of natural numbers 0�1� � � � .
�∗: the set of positive natural numbers 1�2� � � � .
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2. Description of the model and weak convergence.

2.1. Description of the model. In this subsection we give a detailed and
precise description of the branching particle system superimposed on a
stochastic flow that described in the introduction. We start with some notation
and, since it is all quite standard, we shall be terse. Let ��d = �d ∪ �"� be the
one-point Alexandroff compactification of �d where " is the point at inf inity,
which we will also use as cemetery point. We use λ > 0 to denote the intensity
rate of the branching mechanism.

We need a family of multiindices,

I ≡ �α = �α0� α1� � � � � αN�� N ≥ 0� αi ∈ �1�2� � � ��� 0 ≤ i ≤ N��
and set �α� = ��α0� α1� � � � � αN�� = N, α�i = �α0� � � � � αi� and α − i = �α0� � � � ,
α�α�−i�. Moreover, for t ≥ 0, write α ∼n t if and only if �α�/�λn� ≤ t <
�1 + �α��/�λn�.

Let Kn be the number of particles alive at time zero, spatially distributed
in �d at time zero at the points xn1 � x

n
2 � � � � � x

n
Kn

and defining the deterministic
initial atomic measure

νn =
Kn∑
i=1

δxni �(2.1)

For each n ≥ 1, let �Bα�n� α0 ≤ Kn� �α� = 0� be a collection of independent
�d-valued Brownian motions, stopped at time t = �λn�−1, such that Bα�n�0� =
xnα0 and define the “tree” of processes, recursively, as follows: for each k ≥ 1
let �Bα�n� α0 ≤ Kn� �α� = k� be a collection of �d-valued Brownian motions,
stopped at time t = ��α�+1��λn�−1, which are conditionally independent given
the σ-algebra σ�Bα�n� α0 ≤ Kn� �α� < k� and for which

Bα�n�t� = Bα−1� n�t�� t ≤ �α��λn�−1�(2.2)

To handle the branching, for n ≥ 1 let �Nα�n� α0 ≤ Kn� be a collection of
i.i.d. copies of Nn, where Nn is an �-valued random variable such that

ENn = 1 + γn
n

= βn� γn ≥ 0� γn → γ as n → ∞(2.3)

and

Var�Nn� = σn
2 → σ2 as n → ∞�(2.4)

That is, we assume the branching to be asymptotically supercritical. We fur-
ther assume that

ENp
n ≤ M for all n = 1�2� � � �(2.5)

for a constant p > 2 and a positive constant M. For each n = 1�2� � � �, the col-
lections �Bα�n� α0 ≤ Kn� and �Nα�n� α0 ≤ Kn� are assumed to be independent.
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We now turn to the final and novel last component of our model, that of
the stochastic flow. Let e and b be mappings from �d to �d and c a mapping
from �d to the space of d×mmatrices, satisfying the global Lipschitz condition

�e�x�−e�y��+�b�x�−b�y��+�c�x�−c�y��≤K�x−y�� x�y∈�d�(2.6)

and the linear growth condition,

�e�x�� + �b�x�� + �c�x�� ≤ K�1 + �x��� x ∈ �d�(2.7)

for some finite positive constant K. Assume that t → Fn
s� t�x� is the solution

of the stochastic differential equation

dY�t� = b�Y�t��dt+ c�Y�t��dWn�t�� Y�s� = x

for all t ≥ s and x ∈ �d, where Wn is a �m-valued Brownian motion, inde-
pendent of the collections �Bα�n� and �Nα�n�. This defines a unique Brownian
flow of homeomorphisms from �d to �d. We refer to [16] for more details.

Set an = 1/�λn� and kn = k/�λn�. Then the tree of Brownian motions over
the flow is given by the collection of processes Yα�n, defined as follows: let
α ∼n kn for some k ∈ �� First, in the time interval �0� kn +an�, Yα�n is defined
as the solution of the following d-dimensional stochastic differential equation:

dYi�t� = bi�Y�t��dt+ ei�Y�t��dBα�n
i �t� +

m∑
l=1

cil�Y�t��dWn
l �t��

Y�0� =xnα0 �

(2.8)

The existence and strong uniqueness of the solution is ensured by the con-
ditions imposed on b, c and e. Now set Yα�n

t = Y
α�n
kn+an for t > kn + an. Note

here that from the construction of the family �Bα�n� α0 ≤ Kn� it follows that
Y

α�n
t = Y

α−1� n
t for 0 ≤ t ≤ kn in the case k ≥ 1.

In order to “prune” this tree, we need the stopping times τα�n, defined as
follows: for each α ∈ I, let

τα�n=


0� if α0>Kn,

min
{
i+1
λn

� 0≤i≤�α��Nα�i =0
}
� if this set is �=� and α0≤Kn,

1+�α�
λn

� otherwise.

(2.9)

The “pruned” tree of processes, with branching accounted for, is now the
collection of processes Xα�n defined by

X
α�n
t =

{
Y

α�n
t � if t < τα�n,

"� if t ≥ τα�n.
(2.10)

The measure-valued process for the finite system of particles is

Xn
t �B� = card�α ∼n t� Xα�n�t� ∈ B�

n
�(2.11)

where B ∈ ���d�.
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We also need to define the corresponding filtrations,

� n
t ≡ σ�Bα�n�Nα�n� �α� < k� ∨

σ�Wn
s � s ≤ t� ∨

σ�Bα�n
s � s ≤ t� �α� = k��

for t ∈ �kn� kn + an�, k = 0�1� � � � .
Next we define two semigroups of operators that will be needed to describe

the limit of the Xn. Let W be an �m-valued Brownian motion, B1, B2 be
�d-valued Brownian motions and assume that all three are mutually inde-
pendent. Let �Y1�Y2� be the solution of the stochastic differential equation,

dY1
i �t� = bi�Y1�t��dt+

m∑
l=1

cil�Y1�t��dWl�t� + ei�Y1�t��dB1
i �t��

dY2
i �t� = bi�Y2�t��dt+

m∑
l=1

cil�Y2�t��dWl�t� + ei�Y2�t��dB2
i �t��

(2.12)

i = 1�2� � � � � d, t ≥ 0. For t ≥ 0, f ∈ Cl��d� and h ∈ Cl��d × �d�, set
Ttf�y� = Eyf�Y1�t�� = E�f�Y1�t���Y1�0� = y�(2.13)

and

Sth�y1� y2� =Ey1� y2h�Y1�t��Y2�t��
=E�h�Y1�t�� Y2�t���Y1�0� = y1� Y2�0� = y2��

(2.14)

It follows from our global Lipschitz assumption on b, c and e and the discussion
in [22], Chapter V, Section 22, that �Tt� t ≥ 0� and �St� t ≥ 0� are strongly
continuous contraction semigroups on Cl��d� and Cl��d × �d�, respectively.
In the terminology used in [22], Tt and St are Feller–Dynkin semigroups.

We will need three more operators. Let L be the second-order differential
operator defined for f ∈ C2��d� by

�Lf��x� =
d∑
i=1

bi�x�fi�x� + 1
2

d∑
i=1

d∑
j=1

dij�x�fij�x�� x ∈ �d�(2.15)

where

dij�x� = δijei�x�ej�x� + a
�m�
ij �x� x�� x ∈ �d� i� j = 1�2� � � � � d(2.16)

and

a
�m�
ij �x�y� =

m∑
l=1

cil�x�cjl�y�� x� y ∈ �d� i� j = 1�2� � � � � d�(2.17)

In addition, for f ∈ C2��d�, set

��f��x�y� =
d∑
i=1

d∑
j=1

a
�m�
ij �x�y�fi�x�fj�y�� x� y ∈ �d(2.18)
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and

�6f��x� = ��f��x� x� +
d∑
i=1

�ei�x�fi�x��2� x ∈ �d�(2.19)

Finally, define the class of functions � ,

� = �f ∈ C2
l ��d�� Lf�6f� cilfi ∈ Cl��d�

∀ i = 1�2� � � � � d�∀ l = 1�2� � � � �m��
(2.20)

For all f ∈ � , let Bf denote a common bound for f, its first- and second-
order partial derivatives, �f, 6f and Lf such that Bf ≥ 1. It is clear that
�K = �f+ c� f ∈ C2

K��d�� c ∈ �� is a subset of � .

2.2. Weak convergence. We need to make some further assumptions about
the functions b, c and e, necessary for establishing the uniqueness of the
martingale problem satisfied by the weak limit points of the �Xn�.

Assumption U. One of the following conditions is satisfied:

(a) For all i = 1� � � � � d, l = 1� � � � �m the functions bi, cil and ei have
bounded and continuous first and second partial derivatives. Furthermore, for
each N ≥ 1, there exists λN > 0 such that

d∑
i�j=1

N∑
p�q=1

ξ
p
i dij�xp� xq�ξqj ≥ λN

N∑
p=1

d∑
i=1

�ξpi �2

for all x1� x2� � � � � xN ∈ �d and �ξ11� ξ12� � � � � ξ1d� ξ21� ξ22� � � � � ξ2d� � � � ξN1 � ξN2 � � � � �
ξNd � ∈ �dN where

dij�x�y� = a
�m�
ij �x�y� + δijei�x�ej�y�� x� y ∈ �d� i� j = 1� � � � � d

and a
�m�
ij is given by �2�17�.

(b) There exists a d×d matrix A, a d×m matrix C, and column vectors a� ε
in �d such that b�x� = Ax+ a, �cij�x�� = C, and �ei�x�� = ε. Furthermore the
matrix �E�AE� � � � �Ad−1E� has rank d, where E = diag�ε�.

The case described in (a) is referred to as the uniformly elliptic case, while
the case described in (b) is referred to as the linear case. We note that under
either (a) or (b) the diffusion describing the joint motion of N particles in our
system has a transition density.

The weak convergence result, the proof of which we leave to the Appendix,
can then be stated as follows.
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Theorem 2.2.1. Assume that Xn
0 ⇒ ν in MF��d�. Then, under the assump-

tion U, the sequence �Xn� converges weakly to X, where X ∈ CMF��d��0�∞� is
the unique solution of the following martingale problem:

For all f ∈ � �

Zt�f� = Xt�f� − ν�f� −
∫ t

0
Xs�Lf�ds− ξ

∫ t

0
Xs�f�ds

is a continuous square integrable

�� X
t �-martingale such that Z0�f� = 0 and

�Z�f��t = δ
∫ t

0
Xs�f2�ds+

∫ t

0
�Xs ×Xs���f�ds�

(2.21)

where ξ = λγ and δ = λσ2.

2.3. A related model. In [26, 27], Wang independently considered a model
closely related to ours. In his model, the first line of (2.8) is replaced by

dYi�t� =
∫
�
g�x�Yi�t��W�dx�dt� + dB

α�n
i �t�� i = 1�2� � � � � d�

where g is a smooth function andW is a space time white noise. This equation
is somewhat simpler than ours in that the drifts bi and diffusion coefficients ei
are missing. However, the novelty of our model, which lies primarily in the
random environment provided by the stochastic flow, is also present here.

Not surprisingly, the tightness arguments for Wang’s system and ours are
similar. There is a significant difference when treating the uniqueness of the
limit process, however, since his dual (cf. Section A.4) is simpler than ours.

What is quite different in the present analysis is the detailed study of the
evolution of the moment structure of the limit process, which is made some-
what more transparent and interesting because the underlying environment
is generated by a stochastic flow.

3. Moment formulas, mean and spatial covariance measures. Our
main aim in this section is to derive moment formulas for certain function-
als of the process we obtained in Theorem 2.2.1. The reader familiar with
superprocess theory will know that, in that case, this is usually done by dif-
ferentiation of the Laplace functional of the process. (cf. Theorem 1�1′ in [9]
for general results.) In the current situation, however, this does not seem pos-
sible. We do not have an explicit form for the Laplace functional and, in view
of the fact that, unlike in the basic superprocess case, we are not dealing with
an infinitely divisible process, one would expect it to be rather complicated.
(cf. the discussion in Section 5.)

Consequently, we shall adopt a technique used in Section 3 in [1], which
computed moments for the limit process as a limit of moments for the particle
picture. Whereas there it was primarily an expository tool, here it seems to
be the only analytic tool available to us.
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A referee pointed out that it may also be possible to compute moments via
the dual process of Section A.4, something which we did not try, but which does
not seem to be straightforward. Such an approach, however, would undoubt-
edly be more elegant than the one we have taken.

We shall need the following assumption about the particle motions, which,
while not essential for the existence of moments, is intrinsic to the structure
of the formulas that we shall obtain.

Assumption I. For every a ∈ I and n ≥ 1, the �d-dimensional diffusion
Yα�n, restricted to the interval �0� τα�n�, has a transition density, denoted by
p1
t �x�y�, which is Lipschitz in x, uniformly in y. We refer to the collection

�Yα�n� as the one-point motions. Furthermore, for every n ≥ 1 and every pair
�α� α′� such that α� α′ ∈ I� α �= α′, the �2d-dimensional diffusion �Yα�n�Yα′� n�
restricted to the interval �0�min�τα�n� τα′� n�� has a transition density,
denoted by p2

t �x1� x2�y1� y2�. We refer to the collection ��Ya�n�Ya′� n�� as the
two-point motions.

This assumption is verified if the diffusions are, for example, either uni-
formly elliptic or linear of Ornstein–Uhlenbeck type (cf. Section 4).

3.1. Moment formulas for the particle picture We start with some formulas
for the particle picture. These require the seemingly restrictive assumption
that the branching be binary. However, since what we are really interested
in is formulas for the superprocess limit, which depend only on the first two
moments of the branching distribution, there is no loss of generality involved
in this assumption.

Assumption II. We assume that the branching is binary, so that the possible
numbers of offspring are 0 and 2, with probabilities 1/2 − γn/2n and 1/2 +
γn/2n, respectively.

Note that under this assumption we have σ2
n = 1 − γ2n/n

2 → 1 as n → ∞;
that is, σ2 = 1. Our arguments follow very closely those employed in Section 3
in [1]. The next proposition provides the first and second moment formulas
for the particle picture.

Proposition 3.1.1. Let f1� f2 ∈ Cb��d�, 0 < t1 ≤ t2, N1 = �λt1n�, N2 =
�λt2n� and n > ��λ�t2 − t1��−1� if t1 < t2. Then, under the set-up described in
Section 2 and Assumptions I and II above, we have that

E�Xn
t1
�f1�� = �1 + γn/n�N1

∫
�d

∫
�d
p1
t1
�x�y�f1�y�dyXn

0�dx�(3.1)
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and

E�Xn
t1
�f1�Xn

t2
�f2��

=
(
1 + γn

n

)N1+N2 ∫
�d

∫
�d

∫
�d

∫
�d
p2
t1
�x1� x2�y1� y2�

×
(
f1�y1�

∫
�d
p1
t2−t1�y2� z�f2�z�dz

)
dy1 dy2X

n
0�dx1�Xn

0�dx2�

− 1
n

(
1 + γn

n

)N1+N2 ∫
�d

∫
�d

∫
�d
p2
t1
�x� x�y1� y2�

×
(
f1�y1�

∫
�d
p1
t2−t1�y2� z�f2�z�dz

)
dy1 dy2X

n
0�dx�

+ 1
n

(
1 + γn

n

)N2 ∫
�d

∫
�d
p1
t1
�x�y1�f1�y1�

×
(∫

�d
p1
t2−t1�y1�y2�f2�y2�dy2

)
dy1X

n
0�dx�

+ 1
n

N1−1∑
r=0

(
1 + γn

n

)N1+N2−r−1 ∫
�d

∫
�d
p1
rn

�x1�x2�

×
(∫

�d

∫
�d
p2
t1−rn�x2� x2�y1� y2�f1�y1�

×
(∫

�d
p1
t2−t1�y2� z�f2�z�dz

)
dy1 dy2

)
dx2X

n
0�dx1�

(3.2)

with the convention
∫
�d p

1
0�x�y�h�y�dy = h�x��

Proof. We shall only give a full proof of (3.2) for the case t1 < t2. The proof
of (3.2) for the case t1 = t2, as well as the proof of (3.1), follows using very
similar, and actually simpler, arguments. Note that we take n large enough so
that branching occurs, at least once, between the times t1 and t2. Let Iα�n�t�
denote the indicator of the event that the particle labelled by α is alive at time
t. We need to calculate

E�Xn
t �f1�Xn

t �f2��

= 1
n2

∑
α∼nt1

∑
α′∼nt2

E
{
f1�Yα�n

t1
�f2�Yα′� n

t2
�}E{

Iα�n�t1�Iα′� n�t2�
}
�

(3.3)

Let α∼nt1 and α′∼nt2. Then there are three cases one should consider:

(i) α0 �= α′
0. In this case the particles labelled by α and α′ are the descen-

dants of different ancestors in the initial generation.
(ii) α = α′ − �N2 − N1�. In this case the particle labelled by α is a direct

ancestor of the particle labelled by α′.
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(iii) α − �N1 − r� = α′ − �N2 − r� for some 1 ≤ r ≤ N1 − 1. In this case
the particles labelled by α and α′ have a common ancestor, but the particle
labelled by α is not a direct ancestor of the particle labelled by α′.

Note that, in what follows, all labels β we consider are such that β0 ≤ Kn,
that is, the particles belong to the branches starting from the initial particles
that were actually born. We proceed by evaluating the contribution to �3�3� of
the terms covered by each of the three cases just described.

Case (i). In this case, the particles labelled by α and α′ live on separate
trees. Hence,

E�Iα�n�t1�Iα′� n�t2�� = EIα�n�t1�EIα′� n�t2�

=
(
1
2

+ γn
2n

)N1
(
1
2

+ γn
2n

)N2

=
(
1
2

+ γn
2n

)N1+N2

�

Using the Markov property of the one-point and two-point motions, we
obtain

E�f1�Yα�n
t1

�f2�Yα′� n
t2

�� = E

{
f1�Yα�n

t1
�E

(
f2�Yα′� n

t2
��� n

t1

)}
= E

{
f1�Yα�n

t1
�
(∫

�d
p1
t2−t1�Y

α′� n
t1

� z�f2�z �dz
)}

=
∫
�d

∫
�d
p2
t1
�xnα0� xnα′

0
�y1� y2�f1�y1�

×
(∫

�d
p1
t2−t1�y2� z�f2�z�dz

)
dy1 dy2�

Next, note that there are 2N1 ×2N2 possible pairs �α� α′� corresponding to each
pair of initial ancestors. We are thus able to write the contribution to (3.3) of
the terms covered by the first case as

1
n2

2N1+N2
∑

α0� α
′
0=1

α0 �=α′
0

(
1
2

+ γn
2n

)N1+N2 ∫
�d

∫
�d
p2
t1
�xnα0� xnα′

0
�y1� y2�f1�y1�

×
( ∫

�d
p1
t2−t1�y2� z�f2�z�dz

)
dy1 dy2�

But this, on rearrangement, gives us the two first terms in the right-hand side
of (3.2).

Case (ii). Since, in this second case, the particle labelled by α is a direct
ancestor of the particle labelled by α′ we have that Yα�n

t = Y
α′� n
t for all t ≤ t1.
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Hence,

E�f1�Yα�n
t1

�f2�Yα′� n
t2

�� = E�f1�Yα�n
t1

�E�f2�Yα′� n
t2

��� n
t1

��

= E

{
f1�Yα�n

t1
�
(∫

�d
p1
t2−t1�Y

α�n
t1

�y2�f2�y2�dy2

)}
=

∫
�d

∫
�d
p1
t1
�xnα0 �y1�f1�y1�

×
(∫

�d
p1
t2−t1�y1�y2�f2�y2�dy2

)
dy1�

Moreover,

E�Iα�n�t1�Iα′� n�t2�� = E�Iα�n�t1�E�Iα′� n�t2��� n
t1

��

= E

(
Iα�n�t1�Iα�n�t1�

(
1
2

+ γn
2n

)N2−N1
)

=
(
1
2

+ γn
2n

)N1
(
1
2

+ γn
2n

)N2−N1

=
(
1
2

+ γn
2n

)N2

�

The number of possible pairs �α� α′� corresponding to each (common) initial
ancestor is 2N1 × 2N2−N1 . It is clear now that the contribution to (3.3) of the
terms covered by the second case gives the third term in the right-hand side
of (3.2). Note that this case does not appear if t1 = t2. Instead, when t1 = t2,
we have the possibility that α = α′ which can be treated in a very similar
fashion.

Case (iii). This is the most complicated case and also the most typical of
higher moment computations. In this case the particles labelled by α and α′

have a common ancestor. Let β be the label of their last common ancestor and
let r = �β�. Clearly r can assume any of the values 0�1� � � � �N1 − 1. Following
arguments similar to those used in the previous cases we obtain

E�Iα�n�t1�Iα′�n�t2�� =
(
1
2

+ γn
2n

)r(
1
2

+ γn
2n

)(
1
2

+ γn
2n

)N1−r−1(
1
2

+ γn
2n

)N2−r−1

=
(
1
2

+ γn
2n

)N1+N2−r−1

and

E�f1�Yα�n
t1

�f2�Yα′n
t2

�� = E�f1�Yα�n
t1

�E�f2�Yα′�n
t2

��� n
t1

��

= E

{
f1�Yα�n

t1
�
(∫

�d
p1
t2−t1�Y

α′�n
t1

�y2�f2�y2�dy2

)}
= E

{
E

(
f1�Yα�n

t1
�
∫
�d
p1
t2−t1�Y

α′�n
t1

�z�f2�z�dz�� n
rn

)}
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= E
∫
�d

∫
�d
p2
t1−rn�Yβ�n

rn
�Yβ�n

rn
�y1�y2�f1�y1�

×
(∫

�d
p1
t2−t1�y2�z�f2�z�dz

)
dy1dy2

=
∫
�d
p1
t2−t1�xnβ0

�x2�
(∫

�d

∫
�d
p2
t1−rn�x2�x2�y1�y2�f1�y1�

×
(∫

�d
p1
t2−t1�y2�z�f2�z�dz

)
dy1dy2

)
dx2�

Given β0 and r there are 2r × 2 × 2N1−r−1 × 2N2−r−1 possible correspond-
ing pairs �α� α′�. Summing over all possible values of β0 and r immediately
yields the last term in the right-hand side of (3.2) and therefore completes the
proof. ✷

3.2. Moment formulas for the flow superprocess. In this subsection we
let X be a weak limit point of Xn, where Xn is defined by (2.11). Under
the further Assumptions I and II we derive first- and second-order moment
formulas for X. We therefore assume, as in Theorem 2.2.1, that Xn

0 converges
weakly to an initial measure ν. Then X is a solution to the martingale prob-
lem (2.21) with σ2 = 1.

The next proposition is perhaps the most important result of the paper,
and provides first- and second-moment formulas for X by passing to the limit
in �3�1� and (3.2).

Proposition 3.2.1. Let f ∈ C2
K��d� and t > 0. Assume σ2 = 1 and let

Assumption I be in effect. Then

E�Xt�f�� = exp�λγt�
∫
�d

∫
�d
p1
t �x�y�f�y�dyν�dx�(3.4)

and

E�Xt1
�f1�Xt2

�f2��

= exp�λγ�t1 + t2��
∫
�d

∫
�d

∫
�d

∫
�d
p2
t1
�x1� x2�y1� y2�

×f1�y1�
(∫

�d
p1
t2−t1�y2� z�f2�z�dz

)
dy1 dy2 ν�dx1�ν�dx2�

+λ exp�λγ�t1 + t2��
∫ t1

0
exp�−λγs�

∫
�d

∫
�d
p1
s�x1�x2�

×
(∫

�d

∫
�d
p2
t1−s�x2� x2�y1� y2�

)
×f1�y1�

(∫
�d
p1
t2−t1�y2� z�f2�z�dz

)
dy1 dy2 dx2 ν�dx1�ds

(3.5)

with the convention
∫
�d p

1
0�x�y�h�y�dy = h�x��
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Proof. Since Xn
0 ⇒ ν it follows by Proposition 4.6(b), Chapter 3 in [11]

that Xn
0 × Xn

0 ⇒ ν × ν as well. Hence we easily see that the first term in
the right-hand side of (3.2) converges to the first term in the right-hand side
of (3.5) as n → ∞. Furthermore, since the multiple integrals in the second
and third terms in the right-hand side of (3.2) converge to finite quantities
as n → ∞, it is clear that these two terms vanish in the limit due to the
factor 1/n. The last term (a sum) in the right-hand side of (3.2) tends to the
last term (an integral) in the right-hand side of (3.5) as n → ∞. To see why
this is the case, we first let

g�s� x1� x2� = p1
s�x1�x2�

∫
�d

∫
�d
p2
t1−s�x2� x2�y1� y2�f1�y1�

×
(∫

�d
p1
t2−t1�y2� z�f2�z�dz

)
dy1 dy2

for 0 ≤ s ≤ t1 and x1� x2 ∈ �d. Note that it suffices to show that the difference
between

�λn�−1
N1−1∑
r=0

(
1 + γn

n

)−r ∫
�d

∫
�d
g�rn� x1� x2�dx2X

n
0�dx1�

and

�λn�−1
N1−1∑
r=0

e−λγrn
∫
�d

∫
�d
g�rn� x1� x2�dx2X0�dx1�

converges to 0 as n → ∞, where N1 = �λt1n�. But this is true since∣∣∣∣(1 + γn
n

)−r ∫
�d

∫
�d
g�rn� x1� x2�dx2X

n
0�dx1�

− e−λγrn
∫
�d

∫
�d
g�rn� x1� x2�dx2X0�dx1�

∣∣∣∣
≤

(
1 + γn

n

)−r∣∣∣∣ ∫
�d

∫
�d
g�rn� x1� x2�dx2X

n
0�dx1�

−e−λγrn
∫
�d

∫
�d
g�rn� x1� x2�dx2X

n
0�dx1�

∣∣∣∣
+

∣∣∣∣e−λγrn
∫
�d

∫
�d
g�rn� x1� x2�dx2X

n
0�dx1�

− e−λγrn
∫
�d

∫
�d
g�rn� x1� x2�dx2X0�dx1�

∣∣∣∣�
which converges to 0 as n → ∞, uniformly in r, for 0 ≤ r ≤ �λt1n�. This is a
consequence of the facts that ��1+�γn/n��−r−e−λγrn � → 0 as n → ∞, uniformly
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in r, for 0 ≤ r ≤ �λt1n� (easily seen by simple calculus arguments) and that∣∣∣∣ ∫
�d

∫
�d
g�rn� x1� x2�dx2X

n
0�dx1� −

∫
�d

∫
�d
g�rn� x1� x2�dx2X0�dx1�

∣∣∣∣ → 0

as n → ∞, uniformly in r, for 0 ≤ r ≤ �λt1n�. (This follows from Problem 2,
Chapter 3 in [11], since

∫
�d g�rn� x1� x2�dx2 is bounded for all r and n and

Lipschitz in x1 by Assumption I.) Next we take care of the left-hand side
of (3.2). Let �πn� be the subsequence along which Xn converges weakly to X.
By employing a Skorokhod representation and then using Proposition 3.2.1
and Problem 2, Chapter 3 in [11] we obtain that �Xπn�f1��Xπn�f2�� ⇒ �X�f1�,
X�f2�� in D�2�0�∞�. By Lemma A�3�9 in the Appendix, it follows that X�f1�
and X�f2� are continuous and so by the continuous mapping theorem we
obtain that �Xπn

t1
�f1��Xπn

t2
�f2�� ⇒ �Xt1

�f1��Xt2
�f2�� in �2 and so X

πn

t1
�f1�

X
πn

t2
�f2� ⇒ Xt1

�f1�Xt2
�f2� in �. By Lemma A.3.1 in the Appendix, we have

supn≥1E�Xn
t1
�1�Xn

t2
�1��p/2 < ∞ (recall that p > 2) and now applying the

Corollary to Theorem 25.12 in [3] provides uniform integrability and yields
that E�Xπn

t1
�f1�Xπn

t2
�f2�� → E�Xt1

�f1�Xt2
�f2��. Letting n → ∞ along the

subsequence �πn� in (3.2) yields the desired formula. ✷

Remark. By repeating analogous calculations on the same processes, but
without the presence of branching, it is straightforward to check that (3.4)
and (3.5) still hold, but now with λ = 0.

3.3. The mean and the spatial covariance measures and their densities. In
this section we consider two descriptive, macroscopic, quantities related to
flows and investigate them in the context of our model. Let X be a weak
limit point of the sequence Xn. Following [32], we define two deterministic
measures as follows:

1. The mean measure mt defined on ���d� by

mt�A� = E�Xt�A���(3.6)

2. The spatial covariance measure ct defined on ���d × �d� by

ct�A×B� = E�Xt�A�Xt�B���(3.7)

Note that Assumption I, made in the introduction of this section, is still
in effect and σ2 = 1. The main result of this subsection is contained in the
following proposition.

Proposition 3.3.1. For all t > 0 the measures mt and ct, defined by �3�6�
and �3�7�, have densities with respect to Lebesgue measure, which we denote
by ηt and ζt, respectively. The densities are

ηt�y� = exp�λγt�
∫
�d
p1
t �x�y�ν�dx�(3.8)
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for all y ∈ �d and

ζt�y1� y2� = exp�2λγt�
∫
�d

∫
�d
p2
t �x1� x2�y1� y2�ν�dx1�ν�dx2�

+λ exp�2λγt�
∫ t

0
exp�−λγs�

×
∫
�d

∫
�d
p1
s�u�x�p2

t−s�x� x�y1� y2�dxν�du�ds

(3.9)

for all y1� y2 ∈ �d.

Proof. We first show that EXt�f� = ∫
�d f�x�mt�dx� for all f ∈ Cb��d�.

But since this is true for all indicator functions f = IA, A ∈ ���d� by defini-
tion, a standard monotone convergence argument gives us that it is also true
for nonnegative f ∈ Cb��d� and so for all f ∈ Cb��d�. Clearly C2

K��d� sepa-
rates points and therefore from Proposition 4.5(a), Chapter 3 in [11] we see
that C2

K��d� is separating. The existence and the form of the density ηt of mt

now follow immediately from (3.4). Arguing in a similar fashion we obtain
that EXt�f1�Xt�f2� = ∫

�d

∫
�d f1�y1�f2�y2�ct�dy1� dy2� for all f1� f2 ∈ Cb��d�.

Moreover Proposition 4.5(a) and Proposition 4.6(a), Chapter 3 in [11] imply
that the collection �h� h�x1� x2� = f1�x1�f2�x2�� x1� x2 ∈ �d�wheref1� f2 ∈
C2
K��d�� is separating. Clearly the existence and the form of the density ζt

of ct now follow from (3.5) and the proof is complete. ✷

Remark. Using (3.8) and (3.9) one can calculate the covariance between
Xt�A� and Xt�B� where A�B are Borel subsets of �d since

Cov�Xt�A��Xt�B�� = ct�A×B� −mt�A�mt�B�

=
∫
A

∫
B
θt�y1� y2�dy1 dy2�

(3.10)

where

θt�y1� y2� = ζt�y1� y2� − ηt�y1�ηt�y2��(3.11)

We now turn to a special case, to get a better feel for what the formulas of
this section are telling us.

4. Application to a flow of Ornstein–Uhlenbeck type. In this section
we look at a very specific example, derive explicit formulas and show a few
graphs, so as to give a feel for what the general results of the previous section
are saying. Even though we have cut out a lot of details, the computations
are still long. Nevertheless, they are tractable, as they should be for most
cases. For more complicated examples, computer algebra and/or numerical
computation might be necessary.

The example that we shall treat is that in which the stochastic differ-
ential equations satisfied by the diffusions that describe the one-point and
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two-point motions [see (2.12)] are linear, of Ornstein–Uhlenbeck type (so that
Assumption I holds) and driven by an �m+d�-dimensional Brownian motion.
More specifically, we start with a flow of Ornstein–Uhlenbeck type. That is,
in the notation of Section 2, we assume b�x� = Ax + a, �cij�x�� = C� and
�ei�x�� = ε� where A is a d × d matrix, C is a d × m matrix and a� ε are
column vectors in �d. Set E = diag�ε� and � = �C�E� [a d × �m + d� matrix]
and assume that the matrix �E�AE� � � � �Ad−1E� has rank d.

Furthermore, assume that the initial measure ν has the Gaussian density

g�x� = �2π�−d/2�V0�−1/2 exp
{
−1
2

�x− µ0�TV−1
0 �x− µ0�

}
� x ∈ �d�(4.1)

where µ0 is a column vector in �d and V0 is a positive definite d× d matrix.
This is all we need to be able to compute.

4.1. Calculation of the density ηt. From the discussion in the introduction
of Section 5.6 and Problem 6.1 in [15] it follows that, for t > 0, we have

p1
t �x�y� = �2π�−d/2�Vt�−1/2 exp

{
−1
2

�y− �tx−Kt�TV−1
t �y− �tx−Kt�

}
�

where

�t = exp�tA� =
∞∑
n=0

tn

n!
An� Kt = �t

(∫ t

0
�−1

s ds

)
a�

Vt = �t�t�
T
t � and �t =

∫ t

0
�−1

u ���−1
u A�T du�

From the assumption that the matrix �E�AE� � � � �Ad−1E� has rank d it follows
that the matrix ���A�� � � � �Ad−1�� has rank d as well. Then, Propositions 6.4
and 6.5, Section 5.6 in [15] imply that the matrix Vt is positive definite and
so nonsingular. We now start computing the density ηt of the mean measure.
By (3.8) we obtain, for t > 0,

ηt�y� = exp�λγt��2π�−d�V0�−1/2�Vt�−1/2

×
∫
�d

exp
{
− 1

2

[
�x− µ0�TV−1

0 �x− µ0�

+ �y− �tx−Kt�TV−1
t �y− �tx−Kt�

]}
dx�

In order to be able to integrate with respect to x we simplify the expression
in the exponent. For this we set

l�t� x� y� = �x− µ0�TV−1
0 �x− µ0� + �y− �tx−Kt�TV−1

t �y− �tx−Kt�
= xT��T

t V
−1
t �t +V−1

0 �x− 2�y−Kt�TV−1
t �tx

+ �y−Kt�TV−1
t �y−Kt� − 2µT

0V
−1
0 x+ µT

0V
−1
0 µ0�



506 G. SKOULAKIS AND R. J. ADLER

Under our assumptions, �t and V0 are positive definite. Hence �−1
t + V−1

0 is
positive definite and so nonsingular. If we then let Ut = ��−1

t + V−1
0 �−1 we

trivially have that U−1
t = �T

t V
−1
t �t +V−1

0 � Therefore,

l�t� x� y� =
(
x− µt�y�

)T
Ut

−1
(
x− µt�y�

)
+ r�t� y��

where

µt�y� = Ut

(
�t

TV−1
t �y−Kt� +V−1

0 µ0

)
and

r�t� y� = −µt�y�TU−1
t µt�y� + �y−Kt�TV−1

t �y−Kt� + µ0
TV−1

0 µ0�

Furthermore,

r�t� y� = −
(
µT
0V

−1
0 + �y−Kt�T��−1

t �T�−1
t

)
Ut

(
�−1

t �−1
t �y−Kt� +V−1

0 µ0

)
+ �y−Kt�T��−1

t �T�−1
t �−1

t �y−Kt� + µT
0V

−1
0 µ0

= −�y−Kt�T��−1
t �T�−1

t Ut�
−1
t �−1

t �y−Kt� − µT
0V

−1
0 UtV

−1
0 µ0

−2µT
0V

−1
0 Ut�

−1
t �−1

t �y−Kt� + �y−Kt�T��−1
t �T�−1

t �−1
t �y−Kt�

+µT
0V

−1
0 µ0�

A few lines of calculations give us that B−1
t Ut�

−1
t = �−1

t − �Bt + V0�−1,
V−1

0 UtV
−1
0 = V−1

0 − ��t + V0�−1 and V−1
0 Ut�

−1
t = ��t + V0�−1 and by sub-

stitution we obtain

r�t� y� = �y− �tµ0 −Kt�T��−1
t �T��t +V0�−1�−1

t �y− �tµ0 −Kt��
Thus integrating out x yields

ηt�y� = exp�λγt��2π�−d/2�V0�−1/2�Vt�−1/2�Ut�1/2 exp
{− 1

2r�t� y�}
and since �V0��Vt��U−1

t � = ��t��t +V0��T
t � we finally conclude

ηt�y� = �2π�−d/2 exp�λγt��Vη
t �−1/2

× exp
{− 1

2�y− µ
η
t �T�Vη

t �−1�y− µ
η
t �}�(4.2)

where

µ
η
t = �tµ0 +Kt(4.3)

and

Vη
t = Vt + �tV0�

T
t �(4.4)
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Remark 1. The density ηt is a multiple of a Gaussian density withmean µη
t

and covariance matrixVη
t . The coefficient eλγt appearing in (4.2) represents the

rate of the mean mass creation in the case of supercritical branching �λγ > 0�.
It should be noted here that one could, in a straightforward fashion, extend
this result to the case in which ν is a pure atomic measure or a mixture of
pure atomic measures and Gaussian measures.

Remark 2. If we make the simplifying assumption that the matrix A has
the special diagonal form A = diag�r1� r2� � � � � rd�, we can obtain, after some
lines of routine calculations, the following formulas:

µ
η
t =

(
µ0
1e

r1t + a1
er1t − 1

r1
� � � � � µ0

de
rdt + ad

erdt − 1
rd

)T

(4.5)

and

Vη
t =

(
e�ri+rj�tV0

ij + e�ri+rj�t − 1
ri + rj

( m∑
k=1

cikcjk + δijεiεj

))
i� j=1�����d

�(4.6)

where µ0 = �µ0
1� � � � � µ

0
d� and V0 = �V0

ij�i� j=1�����d. If ri = 0 for some i we replace
�erit − 1�/ri by t in (4.5). Similarly, if ri + rj = 0 for some i� j we replace
�e�ri+rj�t −1�/�ri +rj� by t in (4.6). Note that in this case our assumption that
the matrix �E�AE� � � � �Ad−1E� has rank d reduces to the assumption that
εi �= 0 for all i = 1�2� � � � � d.

In the case ri < 0 for all i = 1�2� � � � � d, which can be described as the
mean reverting flow case, we observe that the median µ

η
t of ηt tends, at a rate

depending on ri’s, to �−a1/r1� � � � �−ad/rd� as t increases. In other words, on
average, the mass moves to a region around �−a1/r1� � � � �−ad/rd� as times
evolves. In general, if we denote

lim
t→∞

µ
η
t = µη

∞ =
(
µη�1

∞ � µη�2
∞ � � � � � µη�d

∞
)
�

then we have

µη� i
∞ =


∞� if ri = 0, ai > 0 or ri > 0, µ0

i + ai/ri > 0�

−∞� if ri = 0, ai < 0 or ri > 0, µ0
i + ai/ri < 0�

−ai/ri� if µ0
i + ai/ri = 0 or ri < 0�

µ0
i � if ri = ai = 0�

(4.7)

The densities µ
η
t and µ

η
∞ describe the (mean) distribution of mass. Of inde-

pendent interest are the corresponding centers of mass, given by

m
η� i
t =

∫
�d
xiηt�x�dx and mη� i

∞ = lim
t→∞

m
η� i
t �

Then if we set mη
t = �mη�1

t � � � � �m
η�d
t � we have m

η
t = eλγtµ

η
t . To describe

the limiting behavior of mη
t we need to consider the set

� = �+ × � × � × � and its partition � = �1 ∪ �2 ∪ �3 ∪ �4 ∪ �5�
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where

�1 = {�θ�µ� r� a� ∈ �� µ = a = 0 or θ > 0� r < 0� a = 0� θ + r < 0
}
�

�2 = {�θ�µ� r� a� ∈ �� θ + r = 0� r ≤ 0� a = 0
}
�

�3 = {�θ�µ� r� a� ∈ �� θ = 0� r < 0 or θ = 0� r > 0� µ+ a/r = 0
}
�

�4 = {�θ�µ� r� a� ∈ �� r = 0� a > 0 or θ > 0� µ > 0� r = a = 0

or r > 0� µ+ a/r > 0 or θ > 0� µ > 0� r > 0� µ+ a/r = 0

or θ > 0� r > 0� a > 0 or θ > 0� µ > 0� r < 0� a = 0� θ + r > 0
}
�

�5 = {�θ�µ� r� a� ∈ �� r = 0� a < 0 or θ > 0� µ < 0� r = a = 0

or r > 0� µ+ a/r < 0 or θ > 0� µ < 0� r > 0� µ+ a/r = 0

or θ > 0� r > 0� a < 0 or θ > 0� µ < 0� r < 0� a = 0� θ + r > 0
}
�

Then we have that

mη� i
∞ =



0� if �λγ�µ0
i � ri� ai� ∈ �1�

µ0
i � if �λγ�µ0

i � ri� ai� ∈ �2�

−ai/ri� if �λγ�µ0
i � ri� ai� ∈ �3�

∞� if �λγ�µ0
i � ri� ai� ∈ �4�

−∞� if �λγ�µ0
i � ri� ai� ∈ �5�

4.2. Calculation of the density ζt. We first need to introduce some notation.
Let

ã =
[
a
a

]
� Ã =

[
A 0
0 A

]
� �̃ =

[
C E 0
C 0 E

]
and

µ̃ =
[
µ0
µ0

]
� Ṽ0 =

[
V0 0
0 V0

]
�

From the discussion in the introduction of Section 5.6 in [15] and Problem 6.1
there it follows that, for t > 0, we have

p2
t �x1� x2�y1� y2�

= �2π�−d�Ṽt�
−1/2

exp
{− 1

2�ỹ− �̃tx̃− K̃t�TṼ−1
t �ỹ− �̃tx̃− K̃t�

}
�

where

x̃ =
[
x1
x2

]
� ỹ =

[
y1
y2

]
� �̃t = exp�tÃ� =

∞∑
n=0

tn

n!
Ãn�

K̃t = �̃t

(∫ t

0
�̃

−1
s ds

)
ã� Ṽt = �̃tB̃t�̃

T

t and �t =
∫ t

0
�̃

−1
u �̃

(
�̃

−1
u �̃

)T
du�
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The assumption that the matrix �E�AE� � � � �Ad−1E� has rank d implies that
the matrix ��̃� Ã�̃� � � � � Ãd−1Ã� has rank 2d and therefore by Propositions 6.4
and 6.5, Section 5.6 in [15] it follows that the matrix Ṽt is positive definite
and so nonsingular. Thus, the first term in the right-hand side of (3.9) equals

exp�2λγt�
∫
�d

∫
�d
p2
t �x1� x2�y1� y2��2π�−d/2�V0�−1/2

× exp
{− 1

2�x1 − µ0�TV−1
0 �x1 − µ0�

}�2π�−d/2�V0�−1/2

× exp
{− 1

2�x2 − µ0�TV−1
0 �x2 − µ0�

}
dx1dx2

= exp�2λγt�
∫
�d

∫
�d

�2π�−d�Ṽt�
−1/2

× exp
{− 1

2�ỹ− �̃tx̃− K̃t�TṼ−1
t �ỹ− �̃tx̃− K̃t�

}
× �2π�−d�Ṽ0�

−1/2
exp

{− 1
2�x̃− µ̃0�TṼ−1

0 �x̃− µ̃0�
}
dx1dx2

= exp�2λγt��2π�−d�Vζ
t �−1/2 exp

{− 1
2�ỹ− µ

ζ
t �

T�Vζ
t �

−1�ỹ− µ
ζ
t �

}
�

where µζ
t = �̃tµ̃0+K̃t and V

ζ
t = Ṽt +�̃tṼ0�̃

T

t . The last equality follows from a
calculation almost identical to the calculation done in Section 4.1. After some
elementary matrix computations, we obtain

�̃t =
[
�t 0
0 �t

]
� K̃t =

[
Kt

Kt

]
� �̃t�̃

T

t =
[
A�T CCT

CCT ��
T

]
�

�̃
−1
t �̃tÃ

T
t ��̃−1

t �T =
[
�−1

t ��
T��−1

t �T �−1
t CCT��−1

t �T
�−1

t CCT��−1
t �T �−1

t ��
T��−1

t �T
]

and therefore

Ṽt =
[
Vt Nt

Nt Vt

]
(4.8)

where

Nt = �t

(∫ t

0
�−1

u CCT��−1
u �T du

)
�T

t �(4.9)

Consequently,

µ
ζ
t =

[
�tµ0

+Kt

�tµ0
+Kt

]
=

[
µ
η
t

µ
η
t

]
(4.10)

and

Vζ
t =

[
Vt + �tV0�

T
t Nt

Nt Vt + �tV0�
T
t

]
=

[
Vη
t Nt

Nt Vη
t

]
�(4.11)
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Next we take care of the second term in the right-hand side of �3�9�. To cal-
culate the integral appearing in this term we first integrate with respect to u
[exactly as we did in Section 4.1 where r is defined] to get∫

�d
p1
s�u�x�g�u�du = �2π�−d/2�Vη

s �−1/2 exp
{− 1

2r�s� x�}�
In order to continue an expression for the inverse of the matrix Ṽt is needed.
But, if we let

Mt = �t

( ∫ t

0
�−1

u EET��−1
u �T du

)
�T

t(4.12)

and

Xt = −�Vt +Nt�−1NtM
−1
t(4.13)

then it is easily verified that

Ṽ−1
t =

[
Xt +M−1

t Xt

Xt Xt +M−1
t

]
�(4.14)

The following two observations are necessary. First, the assumption that the
matrix has rank d implies that Mt is positive definite. Moreover, we observe
that Vt + Nt = �t

∫ t
0 �

−1
u �∗�

T
∗ ��−1

u �T du �T
t , where �∗ = �√2C�E�, and

so conclude that Vt + Nt is positive definite as well. This is true since rank
���∗�A�∗� � � � �Ad−1 �∗�� = d which follows from the assumption rank��E�
AE� � � � �Ad−1E�� = d. Therefore,

p2
t−s�x� x�y1� y2�

∫
�d
p1
s�u�x�g�u�du

= �2π�−3d/2�Ṽt−s�
−1/2�Vη

s �−1/2 exp
{
−1
2

(
q�t− s� x� y1� y2� + r�s� x�

)}
�

where

q�u�x�y1� y2� =
[
y1 − �ux−Ku

y2 − �ux−Ku

]T[
Xu +M−1

u Xu

Xu Xu +M−1
u

]

×
[
y1 − �ux−Ku

y2 − �ux−Ku

]
�

Hence

q�t− s� x� y1� y2� + r�s� x�
= �y1 − �t−sx−Kt−s�T�Xt−s +M−1

t−s��y1 − �t−sx−Kt−s�
+ �y1 − �t−sx−Kt−s�TXt−s�y2 − �t−sx−Kt−s�
+ �y2 − �t−sx−Kt−s�TXt−s�y1 − �t−sx−Kt−s�
+ �y2 − �t−sx−Kt−s�T�Xt−s +M−1

t−s��y2 − �t−sx−Kt−s� + r�s� x�
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= 2xT�T
t−s�Xt−s +M−1

t−s��t−sx+ 2xT�T
t−sXt−s�t−sx

−2�y1 −Kt−s�T�Xt−s +M−1
t−s��t−sx− 2�y2 −Kt−s�TXt−s�t−sx

−2�y1 −Kt−s�TXt−s�t−sx− 2�y2 −Kt−s�T�Xt−s +M−1
t−s��t−sx

+ �y1 −Kt−s�T�Xt−s +M−1
t−s��y1 −Kt−s� + 2�y1 −Kt−s�TXt−s�y2 −Kt−s�

+ �y2 −Kt−s�T�Xt−s +M−1
t−s��y2 −Kt−s�

+xT�Vη
s �−1x− 2�µη

s �T�Vη
s �−1x+ �µη

s �T�Vη
s �−1µη

s

= xTRs� tx− 2d�s� t� y1� y2�Tx+ z�s� t� y1� y2��

where

Rs� t = 2�T
t−s�Vt−s +Nt−s�−1�t−s + �Vη

s �−1�(4.15)

d�s� t� y1� y2� = �T
t−s�Vt−s +Nt−s�−1�y1 + y2 − 2Kt−s� + �Vη

s �−1µη
s(4.16)

and

z�s� t� y1� y2� = �y1 −Kt−s�T�Xt−s +M−1
t−s��y1 −Kt−s�

+2�y1 −Kt−s�TXt−s�y2 −Kt−s�
+ �y2 −Kt−s�T�Xt−s +M−1

t−s��y2 −Kt−s�
+ �µη

s �T�Vη
s �−1µη

s �

(4.17)

In the last step we have used the fact 2Xt−s +M−1
t−s = �Vt−s + Nt−s�−1� Thus

by integrating out x we obtain∫
�d
p2
t−s�x� x�y1� y2�

∫
�d
p1
s�u�x�g�u�du dx

= �2π�−d�Vη
s �−1/2�Ṽt−s�−1/2�Rs� t�−1/2 exp

{− 1
2w�s� t� y1� y2�

}
where

w�s� t� y1� y2� = z�s� t� y1� y2� − d�s� t� y1� y2�TR−1
s� t d�s� t� y1� y2��(4.18)

Finally, by collecting all the terms in �3�9� together, we obtain

ζt�y1� y2�

= �2π�−d exp�2λγt��Vζ
t �−1/2 exp�− 1

2�ỹ− µ
ζ
t �

T�Vζ
t �

−1�ỹ− µ
ζ
t ��

+λ�2π�−d exp�2λγt�
∫ t

0
exp�−λγs��Vη

s �−1/2�Ṽt−s�−1/2�Rs� t�−1/2

× exp�− 1
2w�s� t� y1� y2��ds�

(4.19)
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Remark 3. If, as in Remark 2, we assume that the matrix A has the special
diagonal form A = diag�r1� r2� � � � � rd�, we obtain the following simplified
formula:

�t = diag�er1t� � � � � erdt��(4.20)

Kt =
(
a1

er1t − 1
r1

� � � � � ad
erdt − 1

rd

)T

�(4.21)

Vt =
(
e�ri+rj�t − 1
ri + rj

(
m∑
k=1

cikcjk + δijεiεj

))
i� j=1� ���� d

�(4.22)

Nt =
(
e�ri+rj�t − 1
ri + rj

(
m∑
k=1

cikcjk

))
i� j=1� ���� d

�(4.23)

Mt = diag

(
ε21
e2r1t − 1

2r1
� � � � � ε2d

e2rdt − 1
2rd

)
�(4.24)

If ri = 0 for some i we replace �erit−1�/ri by t in �4�21� and �e2rit−1�/�2ri� by t
in �4�24�. Similarly, if ri + rj = 0 for some i� j we replace �e�ri+rj�t − 1�/�ri +
rj� by t in �4�22� and �4�23�. These formulas, along with �4�5�, �4�6�, �4�8�,
�4�2�3�, �4�11�, �4�13�, �4�15�, �4�16�, �4�17� and �4�18� enable us to fairly easily
compute the covariance density ζt for certain choices of the model parameters.
The final calculation involves a numerical integration for the time integral in
�4�19�.

4.3. Graphs of the mean and the covariance densities. The time has come
to see what these formulas all mean and so here are some some graphs of
the mean density ηt and the function θt [see �3�8� and �3�11�] for d = 1,
and the mean density ηt for d = 2. We consider several choices for t and the
model parameters. The matrix A is taken to be diagonal, as in the simplifying
assumptions of Remarks 2 and 3.

In order to understand the graphs, one should first look at �4�3� and �4�4�.
Letting t increase in these two formulas we can see which area the mass moves
to and how spread out it becomes in average as time evolves. In addition we
could derive the rate at which this happens. Note that, as it follows from
(4.7), two types of behavior are possible: the mass might move toward a fixed,
finite region (i.e., mean reverting case) or move toward ±∞ and this might
happen in any dimension independently. As one would expect, the graphs of
the mean density differ between the three cases of no branching (λ = 0),
critical branching (γ = 0) and supercritical branching (λγ > 0), in the last
instance due to nontrivial mass creation. The same is true for the function θt.

We do not have any graphs for the non-flow scenario. These will look much
like those for the flow case, but without the motion towards the asymptotic
mean evident in all the figures.
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In Figure 1 we give six graphs of the mean density for d = 1. For all graphs,
λ = 1 and m = 3. Otherwise, the parameters are as follows:

Graph 1: γ = 0� µ0 = −4� V0 = 9� a = 5� r = −0�6�

C = �0�8 − 1�5 0�5�� ε = 2�

Graph 2: γ = 0� µ0 = 25� V0 = 12� a = −5� r = −0�25�

C = �−0�4 1�5 0�5�� ε = 5�

Graph 3: γ = 0�1� µ0 = −10� V0 = 3� a = 5� r = −1�

C = �1 − 0�5 0�� ε = 1�

Graph 4: γ = 0�01� µ0 = −5� V0 = 9� a = −6� r = −0�25�

C = �−0�4 1�5 2�5�� ε = 4�

Graph 5: γ = 0�02� µ0 = 5� V0 = 16� a = −5� r = −1�

C = �−1�5 2�5 3�5�� ε = 1�

Graph 6: γ = 0�05� µ0 = 0� V0 = 25� a = 9� r = −0�2�

C = �1 − 2 4�� ε = 1�

In all graphs in Figure 1 the flows are mean reverting; that is, the mass moves,
in expectation, toward the asymptotic mean as time evolves. In the first two
graphs the branching is either absent or critical. In the last four the branching
is supercritical. Observe that the system exhibits several patterns of behavior
depending on the parameters. In particular, the mass might move from the
left to the right (a > 0) or vice versa (a < 0) and the variance might increase
or decrease. Note also the crucial effect of the supercritical branching.

In Figure 2 we give eight graphs of the mean density for d = 2 at times
t = 0� t = 1� t = 4 and t = 10 in the case of supercritical branching. We use
the following values for the parameters: λ = 1� γ = 0�15� m = 3�

µ0 =
[
5
0

]
� V0 =

[
1 0�81

0�81 4

]
� a =

[ −0�5
1

]
� r =

[ −0�25
−0�125

]
�

C =
[

1�1 0�5 −1�4
−1�3 0�1 0�2

]
and ε =

[
0�3
0�2

]
�

The third column in Figure 2 contains the corresponding contour plots while
the first column contains the graphs as viewed from the lower left corner
of the contour plot and the second column contains the graphs as viewed from
the lower right corner of the contour plot. In this graph observe that the
mass moves, on average, towards to an area around �−2�8� as time evolves.
The mean total mass increases and is spread out as a result of supercritical
branching. If the branching were critical the mass would shrink to smaller
and smaller areas around �−2�8�.

In Figures 3 and 4 we present six graphs of the function θt for d = 1 at
times t = 0�5 and t = 2�5. The graphs include the cases of no branching
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Fig. 1. Graphs of the mean density ηt for d = 1.
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Fig. 2. Graphs of the mean density ηt for d = 2 and supercritical branching.
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Fig. 3. Graphs of the function θt for d = 1.
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Fig. 4. Graphs of the function θt for d = 1.
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�λ = 0�, of critical branching in which we take λ = 0�25 and γ = 0 and of
supercritical branching for which we use λ = 0�25 and γ = 0�2. In addition, in
all three cases, we use the following values for the rest of the parameters:

µ0 = 0� V0 = 1�5� a = 1� r = −0�5� C = 2� ε = 3�

The first row in each of Figures 3 and 4 contains the graphs of the function θt
that correspond to the case of no branching, the second row contains the graphs
of the function θt that correspond to the case of critical branching, and the
third row contains the graphs of the function θt that correspond to the case
of supercritical branching. The third column in each of these figures, which is
the easiest column to understand, contains the corresponding contour plots.
What is not evident from these plots is that there are regions over which θ
takes negative values. To see this, imagine walking along the axes in this
column, starting at �−15�15�, walking down to �−15�−15� and then along to
�−15�15�, all the time at the zero level of the function θ and looking towards
the function. What one sees appears in the first column. Doing the same, but
walking from �−15�15� → �15�15� → �15�−15� gives the second column.

Note that there is limited variability in the case of no branching compared
to the cases of branching, critical or supercritical. As expected, supercriti-
cal branching yields higher variability than critical branching. Furthermore,
disjoint intervals close to the center of mass have negative correlation in the
case of no branching. This is also observed in the case of branching for small t.
However, the negative correlation decreases as time evolves due to the effect
of branching.

5. On random environments. A natural way to think of the process
that we have been working with is to condition on the stochastic flow in the
equation (cf. 2.8) defining the one-point motions,

dYi�t� = bi�Y�t��dt+
m∑
l=1

cil�Y�t��dWl�t�

+ ei�Y�t��dBα
i �t�� i = 1�2� � � � � d�

that is, to condition on the Brownian motions Wl and then to think of the
resulting limit process as a superprocess built over the diffusion with drift
bi�Y�t��dt + ∑m

l=1 cil�Y�t��dWl�t�. In fact, when simulating the particle pic-
ture, so that time and space become discrete, this is exactly what one does.

Such a direct approach, is not, however, plausible, since the “drift term”
coming from the flow is not smooth enough (in t) to be acceptable as the drift
of a diffusion process.

One way around this would be to approximate the global Brownian motion
W by a smooth (differentiable in t) process Wε (which converges a.s. to W
as ε → 0) with time derivative denoted by Vε. Then, in the spirit of the
Wong–Zakai approximation, we could approximate the one-point motions by
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the solution of the SDE,

dYi�t� =
(
b̄i�Y�t�� +

m∑
l=1

Vε
l �t�cil�Y�t��

)
dt

+ ei�Y�t��dBα
i �t�� i = 1�2� � � � � d�

construct the corresponding (time-inhomogeneous) superprocess and then lift
the smoothness on the superprocess by sending ε → 0, taking care of the
Stratonovich–Itô correction term en passant. Results that would come out of
this approach would presumably hold for almost every flow W.

Since we are interested only in distributional results, there is also an aver-
aging over W to be done at some stage, which can be done either before we
send ε → 0, or after. We had little success either way, but it may be instructive
for the reader to sketch the argument and point out where the difficulties lie
in the more interesting of these approaches, that of sending ε → 0 and then
averaging over the flow. Details can be found in the thesis in [24].

For fixed ε > 0 one can apply the theory of nonstationary superprocesses
(cf. [10]) to construct a measure-valued diffusion whose function-valued dual
solves the SDE,

yr�x� = f�x� +
∫ r

0

[
d∑
i=1

b̄i�x�yi
v�x� + 1

2

d∑
i=1

e2i �x�yii
v �x� − y2

v�x�
]
dv

+
m∑
l=1

∫ r

0
Nl�yv��x�Vε

l �s+ t− v�dv�

for all x ∈ �d, where y0 ≡ f, b̄i = bi − 1
2

∑d
j=1

∑m
l=1 c

j
ilcjl and Nl�f� =∑d

i=1 cilf
i� l = 1� � � � �m.

This is straightforward to do in a rigorous fashion. Now send ε → 0. Then,
using the usual Wong–Zakai correction term (see Section 3 in [25]) we expect
to find (after some work, some algebra and some convenient cancellations) a
corresponding limiting dual that satisfies

yr�x� =f�x� +
∫ r

0

(�Lyv��x� − y2
v�x�)dv

+
m∑
l=1

∫ r

0
�Nlyv��x�dW̃l

v� x ∈ �d�
(5.1)

where W̃ is anm-dimensional Brownian motion, and L is defined by (2.15). As
usual, this equation is linked to a martingale problem and finding a solution
of (5.1) and solving a martingale problem amount to more or less the same
thing. Either way, we would have established our “superprocess in a random
environment” for a fixed environment.

There are, however, two problems with the procedure we just described.
The first and probably more serious one is to rigorously establish the passage
to the Wong–Zakai limit above as ε → 0. The second problem lies in solving
(5.1). While it is reminiscent of similar equations in [5] and [23], it fits into
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none of these set-ups and we could go no further. The main reason for both
problems seems to be the quadratic term in the drift of (5.1). Had we been
able to proceed in the described fashion, then averaging over W would yield
the kind of results that we have in this paper.

Had this route been successful, we would also have an approach for estab-
lishing results for superprocesses over flows that would hold almost every
(fixed) flow, something which is beyond the tools of our current approach.

While this lack of progress on our part certainly does not imply that this
path is doomed (rather, it opens up an interesting challenge) it does indicate
that this seemingly more direct approach to superprocesses over flows is not
likely to be more “direct” than the one taken in this paper for the kind of
results we have proven.

APPENDIX

A. Proof of the weak convergence. The main result stated in Theorem
2.2.1 follows by combining Theorem A.1.1, which is about tightness and is
proved in the first subsection, with Theorem A.4.1 which is about uniqueness
and is the subject of the second subsection.

A.1. Tightness. In this subsection we will prove the following theorem, in
which Xn is as defined by �2�11� and L� � are defined by �2�15� and �2�18� at
the end of Section 2.1.

Theorem A.1.1. Assume thatXn
0 = 1

n
νn ⇒ ν inMF��d�. Then the sequence

�Xn� is tight in DMF��d��0�∞�, each weak limit point X is in CMF��d��0�∞�
and satisfies the following martingale problem:

For all f ∈ � �

Zt�f� = Xt�f� − ν�f� − ∫ t
0 Xs�Lf�ds− ξ

∫ t
0 Xs�f�ds

is a continuous square integrable �� X
t �-martingale such that

Z0�f� = 0 and
〈
Z�f�〉

t
= δ

∫ t
0 Xs�f2�ds+ ∫ t

0�Xs ×Xs���f�ds�

(A.1)

where ξ = λγ and δ = λσ2.

A.2. General tools. First we state two theorems that are the basic tools
used in the derivation of both Theorem A�1�1 and the analogous result to
Theorem A�1�1 in the regular superprocess case (see [20]).

The first theorem gives the construction of a continuous time martingale
from a sequence of discrete time martingales by passing to a limit and pro-
vides information regarding tightness and quadratic variation of the limiting
process.
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Theorem A.2.1 ([20], Lemma II.4.5). Let ��M�n�
k ��

�n�
k �� k ∈ ��� n = 1,

2� � � � be a sequence of discrete time square integrable martingales and �λn�
be a sequence of positive numbers such that λn ↑ ∞ as n → ∞. Define

X
�n�
t = M

�n�
�λnt�� t ≥ 0

and let

�X�n��t =
�λnt�∑
j=1

E
(
�M�n�

j −M
�n�
j−1�2�� �n�

j−1

)
+E

(
M

�n�
0

)2
� t ≥ 0�

(a) If {〈
X�n�〉� n = 1�2� � � �

}
is a C-tight sequence in D��0�∞�

and

sup
1≤k≤λnJ

�M�n�
k −M

�n�
k−1� −→ 0 in probability for all J ∈ �∗�

then {
X�n�� n = 1�2� � � �

}
is a C-tight sequence in D��0�∞��

(b) If, in addition to the assumptions in part (a) the family{
sup

1≤k≤λnJ
M

�n�
k � n = 1�2� � � �

}
is uniformly integrable, for all J ∈ �∗

and if

X�nk� ⇒ X
[
i�e��X is a limit point of �X�n��]�

then X is a continuous square integrable martingale and〈
X�nk�〉 ⇒ 〈

X
〉 +E�X0

2� as k → ∞�

The second theorem describes how the task of proving tightness for a
sequence of measure-valued processes can be reduced to the easier task of
proving tightness for sequences of real-valued processes. Let K be a compact
Polish space and �Xn� be a sequence of MF�K�-valued processes. Then, if
we can prove that the sequence of real-valued processes �Xn�f�� is tight for
all f in an appropriate class of functions, the tightness of the sequence �Xn�
generally follows. This idea is contained in the following theorem. We note
that versions of this theorem have been used by several authors in similar
settings. See, for example, Theorem 3.7.1 in [6] or Theorem 2.1 in [21].

Theorem A.2.2. Assume K is a compact Polish space. Let S be a countable
set dense in C�K� such that the constant function 1 ∈ S and let �Xn� be a
sequence of MF�K�-valued processes. Then �Xn� is tight in DMF�K��0�∞� and
all limit points are in CMF�K��0�∞� �i.e., �Xn� is C-tight� if and only if, for
each f ∈ S, the sequence of real-valued process �Xn�f�� is tight in D��0�∞�
and all limit points are in C��0�∞� �i.e., �Xn�f�� is C-tight�.
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A.3. Proof of Theorem A�1�1. The proof consists of several steps. First we
consider a sufficiently large class of functions and then we fix a member f of
this class. The objective, then, is to prove C-tightness of the sequence �Xn�f��
so we can use Theorem A�2�2 to obtain C-tightness of the sequence �Xn�.
For this, we provide a decomposition of �Xn�f�� and prove C-tightness by
proving C-tightness for the several terms in the decomposition and using
Theorem A�2�1 and standard results about tightness. Then we pass to the
limit, along converging subsequences of �Xn�, describe the limit points of
�Xn�f�� as semimartingales and give the quadratic variation of the mar-
tingale part. Finally, an application of Theorem A�2�2 yields the result of
C-tightness for �Xn�. In order to proceed we need some notation. We denote
by I�d the indicator function of �d, by ĝ the extension of g to �� such that
ĝ�"� = 0 and by ĥ the extension of h ∈ Cb��d × �d� to �� × �� such that
ĥ�x�y� = 0 if x = " or y = ". Let k be a nonnegative integer and f ∈ � . Then,
for α ∼n kn� by applying Itô’s formula to �2�8� we obtain, for t ∈ �kn� kn + an�,
that

f�Yα�n
t � = f�Yα�n

kn
� +

d∑
i=1

∫ t

kn

fi�Yα�n
u �bi�Yα�n

u �du

+
d∑
i=1

∫ t

kn

fi�Yα�n
u �ei�Yα�n

u �dBα�n
i �u�

+
d∑
i=1

m∑
l=1

∫ t

kn

fi�Yα�n
u �cil�Yα�n

u �dWn
l �u�

+ 1
2

d∑
i=1

∫ t

kn

fii�Yα�n
u �e2i �Yα�n

u �du

+ 1
2

d∑
i=1

d∑
j=1

m∑
l=1

∫ t

kn

fij�Yα�n
u �cil�Yα�n

u �cjl�Yα�n
u �du�

Thus f�Yα�n
t �−f�Yα�n

kn
�−∫ t

kn
�Lf��Yα�n

u �du is a martingale with respect to the
filtration �� n

t � in the interval �kn� kn + an� where L is the operator defined
by �2�15�. For t ∈ �kn� kn + an� and α ∼n kn we define

M
α�kn
t �f� =

f�Yα�n
t � − f�Yα�n

kn
� −

∫ t

kn

�Lf��Yα�n
u �du� if Xα�n

kn
�= ",

0� if Xα�n
kn

= "�

Then, clearly, we have that ��Mα�kn
t �f��� n

t �: t ∈ �kn� kn+an�� is a martingale
for each k ∈ � and α ∼n kn� Let r ∈ �. Then

Xn
rn+an�f� −Xn

rn
�f�

= n−1 ∑
α∼nrn

I�d�Xα�n
rn

�
(
f�Yα�n

rn+an�Nα�n − f�Yα�n
rn

�
)
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= n−1 ∑
α∼nrn

I�d�Xα�n
rn

�
(
f�Yα�n

rn+an� − f�Yα�n
rn

�
)
Nα�n

+n−1 ∑
α∼nrn

I�d�Xα�n
rn

�f�Yα�n
rn

��Nα�n − 1�

= n−1 ∑
α∼nrn

M
α�rn
rn+an�f�Nα�n + n−1 ∑

α∼nrn

[ ∫ rn+an

rn

�L̂f��Xα�n
u �du

]
Nα�n

+n−1 ∑
α∼nrn

f̂�Xα�n
rn

��Nα�n − βn� + �βn − 1�n−1 ∑
α∼nrn

f̂�Xα�n
rn

�

= n−1 ∑
α∼nrn

M
α�rn
rn+an�f��Nα�n − βn�

+n−1 ∑
α∼nrn

[ ∫ rn+an

rn

�L̂f��Xα�n
u �du

]
�Nα�n − βn�

+n−1 ∑
α∼nrn

[
f̂�Xα�n

rn
��Nα�n − βn� + βnM

α�rn
rn+an�f�

]
+βnn

−1 ∑
α∼nrn

∫ rn+an

rn

�L̂f��Xα�n
u �du+ �βn − 1�n−1 ∑

α∼nrn

f̂�Xα�n
rn

��

Moreover, if rn ≤ t < rn + an, then

Xn
t �f� −Xn

rn
�f� = n−1 ∑

α∼nrn

I�d�Xα�n
rn

�
(
f�Yα�n

t � − f�Yα�n
rn

�
)

= n−1 ∑
α∼nrn

M
α�rn
t �f� + n−1 ∑

α∼nrn

∫ t

rn

�L̂f��Xα�n
u �du�

Hence if, for t ∈ �kn� kn + an�� k = 0�1�2 � � �, we define

M
�n�
t �f� = n−1 ∑

r<k

∑
α∼nrn

M
α�rn
rn+an�f��Nα�n − βn��

J
�n�
t �f� = n−1 ∑

α∼nkn

M
α�kn
t �f� + �1 − βn�n−1 ∑

α∼nkn

∫ t

kn

�L̂f��Xα�n
u �du�

N
�n�
t �f� = n−1 ∑

r<k

∑
α∼nrn

[ ∫ rn+an

rn

�L̂f��Xα�n
u �du

]
�Nα�n − βn��

Z
�n�
t �f� = n−1 ∑

r<k

∑
α∼nrn

[
f̂�Xα�n

rn
��Nα�n − βn� + βnM

α�rn
rn+an�f�

]
�

C
�n�
t �f� =

∫ t

0
Xn

s �Lf�ds�

H
�n�
t �f� = n−2 ∑

r<k

∑
α∼nrn

f̂�Xα�n
rn

� = λ
∫ kn

0
Xn

�λns�n�f�ds�
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then we have

Xn
t �f� = Xn

0�f� +M
�n�
t �f� +J

�n�
t �f� +N

�n�
t �f�

+Z
�n�
t �f� + βnC

�n�
t �f� + γnH

�n�
t �f��

(A.3)

We will show that M
�n�
kn

�f�� N�n�
kn

�f� and Z
�n�
kn

�f� are �� n
kn

�-martingales.
M�n��f� and N�n��f� are related to the motion of the particles, and Z�n��f�
is related to the branching and the stochastic component of the flow. Note
that M�n��f�� N�n��f�� and Z�n��f� are merely cadlag extensions of discrete
time martingales considered at times k�λn�−1� k ∈ ��

The next lemma, which is related to the total mass process Xn�1�, will be
used extensively in the sequel in proving C-tightness for a number of pro-
cesses. Its proof follows by using, in a straightforward fashion, standard facts
from the theory of branching processes (see [13], Chapter 1, Sections 5 and 8)
and Theorem 21.1 in [4].

Lemma A.3.1. For each T > 0,

C′
T = sup

n≥1
E sup

0≤t≤T
�Xn

t �1��p < ∞

and therefore

CT = sup
n≥1

E sup
0≤t≤T

�Xn
t �1��2 < ∞�

where p is the number satisfying �2�5�.

Using the previous lemma and the fact that the motion of the particles
between time points kn and kn + an is a diffusion, we can prove the following
lemma.

Lemma A.3.2. For all f ∈ � , ��M�n�
kn

�f��� n
kn

�:k = 0�1� � � �� and ��N�n�
kn

�f�,
� n
kn

�� k = 0�1� � � �� are martingales, and for all T > 0�

lim
n→∞E sup

0≤t≤T
�M�n�

t �f��2 = 0 and lim
n→∞E sup

0≤t≤T
�N�n�

t �f��2 = 0�

In addition, for all f ∈ � and T > 0�

lim
n→∞E sup

0≤t≤T
�J�n�

t �f��2 = 0�(A.4)

Proof. We only provide the proof of the last equality. First we note that,
for kn ≤ t < kn + an� k = 0�1� � � � , we have(

J
�n�
t �f�

)2
≤ 2

(
n−1 ∑

α∼nkn

M
α�kn
t �f�

)2
+ 2

(
γnn

−1�λn�−1BfX
n
t �1�

)2
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and

n−2E sup
0≤t≤T

(
Xn

t �1�)2 ≤ n−2CT → 0 as n → ∞�

Hence, if we let r�n� = �λnT� and
Q

n�k
t �f� = n−1 ∑

α∼nkn

M
α�kn
t �f�(A.5)

for kn ≤ t ≤ kn + an� k = 0�1� � � �, it suffices to show

lim
n→∞E max

0≤k≤r�n�
sup

kn≤t≤kn+an
�Qn�k

t �f��p = 0�

where p is the number satisfying (2.5). It follows that ��Qn�k
t �f��� n

t �: t ∈
�kn� kn + an�� is a martingale, and a simple computation yields that

�Qn�k�f��t = n−1
∫ t

kn

Xn
u�6f�du

+
∫ t

kn

�Xn
u ×Xn

u���f�du− n−1
∫ t

kn

∫
�d

��f��x� x�Xn
u�dx�du

for kn ≤ t ≤ kn + an and thus

�Qn�k�f��kn+an ≤ 2Bf�λn�−1
[
n−1 sup

0≤t≤T+1
Xn

t �1� + sup
0≤t≤T+1

�Xn
t �1��2

]
for all k = 0�1� � � � � r�n�. Hence, by Theorem 42.1 in [22] and Minkowski’s
inequality, we have

E max
0≤k≤r�n�

sup
kn≤t≤kn+an

�Qn�k
t �f��p

≤
r�n�∑
k=0

E sup
kn≤t≤kn+an

�Qn�k
t �f��p

≤
r�n�∑
k=0

cpE
(
�Qn�k�f��kn+an

)p/2
≤ �r�n� + 1�cp�2Bf�λn�−1�p/2

×
[
n−1

(
E sup

0≤t≤T+1
�Xn

t �1��p/2
)2/p

+
(
E sup

0≤t≤T+1
�Xn

t �1��p
)2/p]p/2

≤ r�n� + 1
np/2

cp�2Bfλ
−1�p/2

[
n−1�C′

T+1�1/p + �C′
T+1�2/p

]p/2
�

which converges to 0 as n → ∞, since p > 2. Here cp is a positive constant
depending on p. The proof of the last equality is then complete. The martingale
property of the two sequences follows in a straightforward fashion from the
structure of the model. Moreover, using the Markov property of the motion of
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the particles, the strong continuity of the semigroup Tt (see 2.13) and Lemma
A.3.1 we can derive the first and the second equality. ✷

From Lemma A�3�2 we can immediately obtain, using standard facts about
tightness and convergence, the following.

Lemma A.3.3. For all f ∈ � , the sequences �M�n��f�:n ∈ �∗�� �N�n��f��
n ∈ �∗�� and �J�n��f�:n ∈ �∗� are tight in D��0�∞� and M�n��f� ⇒ 0,
N�n��f� ⇒ 0� and J�n��f� ⇒ 0� where 0 is the zero process in D��0�∞��

Lemma A.3.4. For all f ∈ � , the sequences �C�n��f�: n = 1�2� � � �� and
�H�n��f�: n = 1�2� � � �� are C-tight in D��0�∞��

Proof. Only the proof for the second sequence is given since the proof
for the first one follows in a similar, and actually easier, fashion. We will use
Proposition 3.26 of Chapter VI in [14]. Let N ∈ �∗� ε > 0� and η > 0� First
note that

sup
0≤t≤N

∣∣H�n�
t �f�∣∣ ≤ λNBf sup

0≤t≤N
Xn

t �1�

and so

P

(
sup

0≤t≤N

∣∣H�n�
t �f�∣∣ > K

)
≤ P

(
λ2N2B2

f sup
0≤t≤N

�Xn
t �1��2 > K2

)
≤ ε

for all n ≥ 1 and K ≥ λNBf

√
CN/ε by Chebyshev’s inequality and

Lemma A�3�1. Now let 0 ≤ u ≤ s ≤ t ≤ u+ θ ≤ N where θ is to be determined
and define k = �λns�, l = �λnt�. Then∣∣∣H�n�

t �f� −H
�n�
s �f�

∣∣∣ ≤ n−1Bf

∑
k≤r<l

Xn
rn

�1� ≤ n−1Bf�l− k� sup
0≤u≤t

Xn
u�1��

Next we observe that n−1�l−k� = λ�ln −kn� ≤ λ�θ+an� = λθ+n−1 and so
for any choice of θ we can find n0�θ� ∈ �∗ such that n−1�l − k� ≤ 2λθ for all
n ≥ n0�θ�� Then, using the notation in Proposition 3.26 of Chapter VI in [14],
we have

wN�H�n��f�� θ� ≤ 2λθBf sup
0≤t≤N

Xn
t �1�

for all n ≥ n0�θ�, from we which we conclude

P
(
wN�H�n��f�� θ� > η

) ≤ ε

for all θ > 0 such that θBf ≤ �2λ�−1η
√
ε/CN and n ≥ n0�θ� again by

Chebyshev’s inequality and Lemma A�3�1. Applying Proposition 3.26 of
Chapter VI in [14] yields the conclusion. ✷
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The next lemma is the most important in this proof since it explains where
the second term in the quadratic variation in Theorem A�1�1 comes from and
also describes the difference between our model and the regular superprocess.
For this reason we give a detailed proof.

Lemma A.3.5. For all f ∈ � and for all n = 1�2� � � � � ��Z�n�
kn

�f��� n
kn

�:k =
0�1�2� � � � � � is a square integrable discrete time martingale with quadratic
variation

�Z�n��f��kn =λσ2
n

∫ kn

0
Xn

�λns�n�f
2�ds

+β2
n

∫ kn

0

∫
�d×�d

(
a−1
n

∫ an

0
�Su��f���x�y�du

)
×Xn

�λns�n�dx�Xn
�λns�n�dy�ds

+n−1β2
n

∫ kn

0

∫
�d

(
a−1
n

∫ an

0

[
�Tu�6f���x�

− �Su��f���x� x�
]
du

)
Xn

�λns�n�dx�ds�

(A.6)

where Tt, St are the semigroup operators defined by �2�13� and �2�14�, and �
and 6 are the operators defined by �2�18� and �2�19�.

Proof. Let k ∈ �. Then

E
(
Z

�n�
kn+an�f� −Z

�n�
kn

�f� ∣∣� n
kn

)
= n−1 ∑

α∼nkn

E
([
f̂�Xα�n

kn
��Nα�n − βn� + βnM

α�kn
kn+an�f�

] ∣∣∣� n
kn

)
= n−1 ∑

α∼nkn

[
f̂�Xα�n

kn
�E�Nα�n − βn�� n

kn
� + βnE�Mα�kn

kn+an�f��� n
kn

�
]
�

which equals 0, since E�Nα�n − βn

∣∣� n
kn

� = E�Nα�n − βn� = 0 and ��Mα�kn
t �f��

� n
t �: t ∈ �kn� kn + an�� is a martingale for each k = 0�1�2� � � � and α ∼n kn.

Thus ��Z�n�
kn

�f��� n
kn

�: k = 0�1�2� � � �� is a martingale. Next we calculate its
quadratic variation,

�Z�n��f��kn = ∑
r<k

E
((
Z

�n�
rn+an�f� −Z

�n�
rn �f�

)2∣∣∣� n
rn

)
� k = 0�1�2� � � � �
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First we note that for r = 0�1�2� � � � �(
Z

�n�
rn+an�f� −Z

�n�
rn �f�

)2

=
[
n−1 ∑

α∼nrn

[
f̂�Xα�n

rn
��Nα�n − βn� + βnM

α�rn
rn+an�f�

]]2

= n−2 ∑
α∼nrn

(
f̂�Xα�n

rn
��Nα�n − βn�

)2
+ n−2β2

n

∑
α∼nrn

(
M

α�rn
rn+an�f�

)2

+n−2βn

∑
α�β∼nrn

f̂�Xα�n
rn

��Nα�n − βn�Mβ�rn
rn+an�f�

+n−2β2
n

∑
α �=β∼nrn

M
α�rn
rn+an�f�Mβ�rn

rn+an�f�

+n−2 ∑
α �=β∼nrn

f̂�Xα�n
rn

��Nα�n − βn�f̂�Xβ�n
rn

��Nβ�n − βn�

�= ∑
1

�r� + ∑
2

�r� + ∑
3

�r� + ∑
4

�r� + ∑
5

�r��

For α ∼n rn and β ∼n rn we have that

E
(
f̂�Xα�n

rn
��Nα�n − βn�Mβ�rn

rn+an�f��� n
rn

)
= f̂�Xα�n

rn
�E�Nα�n − βn�� n

rn
�E�Mβ�rn

rn+an�f��� n
rn

� = 0

and so, for r = 0�1�2� � � � we have E�∑3�r��� n
rn

� = 0� Similarly for α ∼n

rn� β ∼n rn� α �= β we have

E
(
f̂�Xα�n

rn
��Nα�n − βn�f̂�Xβ�n

rn
��Nβ�n − βn�

∣∣∣� n
rn

)
= 0�

and so, for r = 0�1�2� � � � we have E�∑5�r��� n
rn

� = 0� On the other hand,

E
((
f̂�Xα�n

rn
��Nα�n − βn�

)2 ∣∣∣� n
rn

)
= (

f̂�Xα�n
rn

�)2σ2
n�

and so, for r = 0�1�2� � � � we have

E

( ∑
1

�r��� n
rn

�
)

= n−2σ2
n

∑
α∼nrn

(
f̂�Xα�n

rn
�)2 = n−1σ2

nX
α�n
rn

�f2��

Moreover, from the martingale structure ofMα�rn�f�, we have that for α ∼n rn
and rn ≤ t ≤ rn + an�〈

Mα�rn�f�〉
t
=

m∑
l=1

∫ t

rn

[ d∑
i=1

ĉil�Xα�n
u �f̂i�Xα�n

u �
]2

du

+
d∑
i=1

∫ t

rn

[
êi�Xα�n

u �f̂i�Xα�n
u �]2 du
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and so

E
(�Mα�rn

rn+an�f��2�� n
rn

) = E
(〈
Mα�rn�f�〉

rn+an

∣∣∣� n
rn

)
=

∫ rn+an

rn

E
(
�6̂f��Xα�n

u �
∣∣∣� n

rn

)
du

=
∫ rn+an

rn

I�d�Xα�n
rn

�E
(
�6f��Yα�n

u �
∣∣∣� n

rn

)
du

= I�d�Xα�n
rn

�
∫ rn+an

rn

Tu−rn�6f��Yα�n
rn

�du

= I�d�Xα�n
rn

�
∫ an

0
Tu�6f��Yα�n

rn
�du

which, in turn, implies that

E
(
�Mα�rn

rn+an�f��2
∣∣∣� n

rn

)
=

∫ an

0

̂Tu�6f��Xα�n
rn

�du�(A.7)

Hence, for r = 0�1�2� � � � we have

E

( ∑
2

�r�
∣∣∣� n

rn

)
= n−2β2

n

∑
α∼nrn

∫ an

0

̂Tu�6f��Xα�n
rn

�du

= n−1β2
n

∫ an

0
Xn

rn
�Tu�6f��du�

Finally, for α ∼n rn� β ∼n rn� α �= β and rn ≤ t ≤ rn + an,〈
Mα�rn�f��Mβ�rn�f�〉

t
=

d∑
i=1

d∑
j=1

m∑
l=1

∫ t

rn

f̂i�Xα�n
u �ĉil�Xα�n

u �f̂j�Xβ�n
u �ĉjl�Xβ�n

u �du

and so

E
(
M

α�rn
rn+an�f�Mβ�rn

rn+an�f� ∣∣� n
rn

)
= E

(〈
Mα�rn�f��Mβ�rn�f�〉

rn+an
∣∣� n

rn

)
=

∫ rn+an

rn

E
(
��̂f��Xα�n

u �Xβ�n
u � ∣∣� n

rn

)
du

=
∫ rn+an

rn

I�d�Xα�n
rn

�I�d�Xβ�n
rn

�E
(
��f��Yα�n

u �Yβ�n
u � ∣∣� n

rn

)
du

= I�d�Xα�n
rn

�I�d�Xβ�n
rn

�
∫ rn+an

rn

(
Su−rn��f�)�Yα�n

rn
�Yβ�n

rn
�du

= I�d�Xα�n
rn

�I�d�Xβ�n
rn

�
∫ an

0

(
Su��f�)�Yα�n

rn
�Yβ�n

rn
�du�

which, in turn, implies

E
(
M

α�rn
rn+an�f�Mβ�rn

rn+an�f� ∣∣� n
rn

)
=

∫ an

0

̂Su��f��Xα�n
rn

�Xβ�n
rn

�du�(A.8)
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Hence, for r = 0�1�2� � � � � we have

E

( ∑
4

�r�
∣∣∣� n

rn

)
= n−2β2

n

∑
α �=β∼nrn

∫ an

0

̂Su��f��Xα�n
rn

�Xβ�n
rn

�du

= n−2β2
n

∑
α�β∼nrn

∫ an

0

̂Su��f��Xα�n
rn

�Xβ�n
rn

�du

−n−2β2
n

∑
α∼nrn

∫ an

0

̂Su��f��Xα�n
rn

�Xα�n
rn

�du

= β2
n

∫ an

0

( ∫
�d×�d

�Su��f���x�y�Xn
rn

�dx�Xn
rn

�dy�
)
du

−n−1β2
n

∫ an

0

( ∫
�d

�Su��f���x� x�Xn
rn

�dx�
)
du�

Therefore, by collecting all the terms together, we obtain〈
Z�n��f�〉

kn

= ∑
r<k

(
E

(∑
1

�r��� n
rn

)
+E

(∑
2

�r��� n
rn

)
+E

(∑
4

�r��� n
rn

))

= σ2
nn

−1 ∑
r<k

Xn
rn

�f2� + β2
nn

−1 ∑
r<k

∫
�d

[ ∫ an

0
�Tu�6f���x�du

]
Xn

rn
�dx�

+β2
nn

−2 ∑
r<k

{ ∑
α�β∼nrn

∫ an

0

̂Su��f��Xα�n
rn

�Xβ�n
rn

�du

− ∑
α∼nrn

∫ an

0

̂Su��f��Xα�n
rn

�Xα�n
rn

�du
}

= σ2
nλ

∫ kn

0
Xn

�λns�n�f
2�ds

+β2
n

∫ kn

0

∫
�d×�d

(
a−1
n

∫ an

0
�Su��f���x�y�du

)
Xn

�λns�n �dx�Xn
�λns�n �dy�ds

+n−1β2
n

∫ kn

0

∫
�d

(
a−1
n

∫ an

0

[
�Tu�6f���x� − �Su��f���x� x�

]
du

)
×Xn

�λns�n�dx�ds
which completes the proof. ✷

Next we consider the cadlag extensions of the discrete time processes〈
Z�n��f�〉

kn
� k = 0�1� � � � , for f ∈ � and n = 1�2� � � � , by defining

〈
Z�n��f�〉

t
=〈

Z�n��f�〉
kn

for kn ≤ t < kn + an and k = 0�1�2� � � � . Then, proceeding as in
the proof of Lemma A.3.4 and using Chebyshev’s inequality, Lemma A�3�1 and
Proposition 3.26 of Chapter VI in [14] we can prove the following.
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Lemma A.3.6. For all f ∈ � , �〈
Z�n��f�〉: n ≥ 1� is a C-tight sequence of

processes in D��0�∞��

The following lemma will be used in proving C-tightness of the sequence
�Z�n��f�: n ≥ 1��

Lemma A.3.7. For all f ∈ � and J ∈ �∗,

lim
n→∞E sup

0≤k≤λnJ

(
Z

�n�
�k+1�n�f� −Z

�n�
kn

�f�
)2

= 0�

Proof. First we note that, for k = 0�1� � � � , we have(
Z

�n�
�k+1�n�f� −Z

�n�
kn

�f�
)2

≤ 2
(
n−1 ∑

α∼nkn

I�d�Xα�n
kn

�f�Yα�n
kn

��Nα�n − βn�
)2

+2β2
n

(
n−1 ∑

α∼nkn

M
α�kn
kn+an�f�

)2

�

Let r�n� = �λnT�. Then, as in the treatment of (A.4), the last term can be seen
to tend to 0 as n → ∞. Thus, it suffices to prove that

lim
n→∞E max

0≤k≤r�n�

∣∣∣∣n−1 ∑
α∼nkn

I�d�Xα�n
kn

�f�Yα�n
kn

��Nα�n − βn�
∣∣∣∣p = 0�

where p is the number satisfying �2�5�. But

E max
0≤k≤r�n�

∣∣∣∣n−1 ∑
α∼nkn

I�d�Xα�n
kn

�f�Yα�n
kn

��Nα�n − βn�
∣∣∣∣p

≤
r�n�∑
k=0

EE

(∣∣∣∣n−1 ∑
α∼nkn

I�d�Xα�n
kn

�f�Yα�n
kn

��Nα�n − βn�
∣∣∣∣p

∣∣∣∣� n
kn

)
�

Now let n ≥ 1 and k ≥ 0 be fixed. Then

E

(∣∣∣∣n−1 ∑
α∼nkn

I�d�Xα�n
kn

�f�Yα�n
kn

��Nα�n − βn�
∣∣∣∣p

∣∣∣∣� n
kn

)

= E

∣∣∣∣n−1
N∑
i=1

f�Yαi�n
kn

��Nαi�n − βn�
∣∣∣∣p�

where α1� � � � � αN are the labels of the particles alive at time kn. Clearly N =
nXn

kn
�1�. Next let, for i = 1�2� � � � , αi ∼n kn such that αi �= αj when i �= j and

define

Mm�f� = n−1
m∑
i=1

f�Yαi�n
kn

��Nαi�n − βn��

�m = σ�Nαi�n�Y
αi� n
kn

� i = 1� � � � �m�
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for m = 1�2� � � � . Then, it follows that ��Mm�f���m�� m = 1�2� � � �� is a mar-
tingale and a simple computation yields �M�f��m ≤ mB2

fσ
2
n/n

2. Hence, by
Theorem 21.1 in [4] we obtain

E�Mm�f��p ≤ c1E��M�f��m�p/2 + c1E max
1≤i≤m

∣∣n−1f�Yαi�n
kn

��Nαi�n − βn�
∣∣p

≤ c1

(√
m

n
Bfσn

)p

+ c2
m

np
B

p
f

≤ c3

(√
m

n

)p

�

where c1� c2� and c3 are positive constants that depend only on p, M and f.
Therefore,

E max
0≤k≤r�n�

∣∣∣n−1 ∑
α∼nkn

I�d�Xα�n
kn

�f�Yα�n
kn

��Nα�n − βn�
∣∣∣p

≤ �r�n� + 1�c3
(
n−1

√
n−1 sup

0≤t≤J
Xn

t �1�
)p

≤ c3

√
C′
J

r�n� + 1
np/2

→ 0 as n → ∞

since p > 2 and r�n� ∼ n. ✷

Next we consider the cadlag extensions of the discrete time processes
Z

�n�
kn

�f�� k ≥ 0, for f ∈ � and n ≥ 1, by defining Z
�n�
t �f� = Z

�n�
kn

�f� for
kn ≤ t < kn + an and k ≥ 0. The following lemma, which is an immediate
consequence of Lemmas A�3�6, A�3�7 and Theorem A�2�1�a�, will be the final
step in proving C-tightness of the sequence �X�n��f�� n = 1�2� � � ��.

Lemma A.3.8. For all f ∈ � , �Z�n��f�� n ≥ 1� is a C-tight sequence of
processes in D��0�∞�.

From the decomposition in �A�3�, using Lemmas A�3�3, A�3�4 and A�3�8 and
Corollary 3.33 of Chapter VI in [14], we have

Lemma A.3.9. For all f ∈ � , �Xn�f�� n ≥ 1� is a C-tight sequence of
processes in D��0�∞�.

In what follows, we denote by h̄ the extension of h ∈ Cl��d� to �� such
that h̄�"� = lim�x�→∞ h�x�. Then clearly h̄ ∈ C����. Now we can establish
C-tightness of the sequence �Xn�.

Proposition A.3.10. �Xn� n ≥ 1� is a C-tight sequence of processes in
DMF�����0�∞�.
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Proof. Let h ∈ Cl��d�. Since Xn does not charge " we see that Xn�h̄� =
Xn�h�. An application of the Stone-Weierstrass theorem gives the existence
of a countable subset � of � which is dense in C0��d�. We can assume that
0 ∈ �. Thus if we let S = �f̄� f = g + c� g ∈ �� c rational�, then it is easily
seen that S is countable and dense in C���� and 1 ∈ S. Furthermore, for g ∈ � ,
c rational and f = g + c we have that Xn�f̄� = Xn�f� = Xn�g� + cXn�1� is
a C-tight sequence of processes in D��0�∞�, by Lemma A�3�9 and Corollary
VI.3.33 in [14]. Finally the conclusion follows from Theorem A�2�2. ✷

The following lemma will be used in identifying the quadratic variation of
martingales that are weak limit points of �Z�n��f��.

Lemma A.3.11. For all f ∈ � and J ∈ �∗, the family �sup1≤k≤λnJ Z
�n�
kn

�f��
n ≥ 1� is uniformly integrable.

Proof. By the corollary to Proposition 6.3.3 in [17] we see that it suffices
to show that supn E�sup1≤kn≤J Z

�n�
kn

�f��2 < ∞. First, by Lemma A�3�5 and
Doob’s inequality, we obtain

E

(
sup

1≤kn≤J
Z

�n�
kn

�f�
)2

≤ 4E
(
Z

�n�
J �f�)2�

Let q ∈ �∗. For l ≤ r < q and α ∼n ln� β ∼n rn such that α �= β� it is then
easily deduced that

E
(
f�Xα�n

ln
��Nα�n − βn�f�Xβ�n

rn
��Nβ�n − βn�

)
= 0�

E
(
M

α�n
ln+an�f�f�Xβ�n

rn
��Nβ�n − βn�

)
= 0�

E
(
f�Xα�n

ln
��Nα�n − βn�Mβ�n

rn+an�f�
)

= 0�

Similarly, for l < r < q and α ∼n ln� β ∼n rn we have

E
(
M

α�n
ln+an�f�Mβ�n

rn+an�f�
)

= 0�

and for r < q and α ∼n rn

E
(
f�Xα�n

rn
��Nα�n − βn�Mα�n

rn+an�f�
)

= 0�

Hence,

E
(
Z

�n�
qn �f�

)2
= n−2 ∑

r<q

∑
α∼nrn

E
(
�f�Xα�n

rn
��2�Nα�n − βn�2

)
+ n−2β2

n

∑
r<q

∑
α�β∼nrn

E
(
M

α�n
rn+an�f�Mβ�n

rn+an�f�
)
�
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Now note that

E
(
�f�Xα�n

rn
��2�Nα�n − βn�2

)
= E

(
E

(
�f�Xα�n

rn
��2�Nα�n − βn�2�� n

rn

))
≤ σ2

nBf
2E�I�d�Xα�n

rn
���

Furthermore by using expressions �A�7� and �A�8� in the proof of Lemma A�3�5
we can obtain that for r < q and α ∼n rn� β ∼n rn

E
(
M

α�n
rn+an�f�Mβ�n

rn+an�f��� n
rn

)
≤ anBfI�d�Xα�n

rn
�I�d�Xβ�n

rn
�

which now implies

E
(
Z

�n�
qn �f�

)2
≤ n−1σ2

nBf
2 ∑
r<q

E�Xn
rn

�1�� + anβ
2
nBf

∑
r<q

E�Xn
rn

�1��2�

Taking q = �λnJ� and using Lemma A�3�1 yields

E
(
Z

�n�
J �f�)2 ≤ n−1σ2

nBf
2�λnJ�

√
CJ + anβ

2
nBf�λnJ�CJ

→ σ2Bf
2λJ

√
CJ +JBfCJ as n → ∞

completing the proof. ✷

The following proposition and lemma provide the last steps in the proof of
Theorem A�1�1.

Proposition A.3.12. Let X ∈ CMF�����0�∞� be a weak limit point of �Xn�.
Then, for all f ∈ � ,

Zt�f� = Xt�f̄� − ν�f� −
∫ t

0
Xs�Lf�ds− ξ

∫ t

0
Xs�f̄�ds

is a continuous square integrable �� X
t �-martingale such that Z0�f� = 0 and

�Z�f��t = δ
∫ t

0
Xs�f̄2�ds+

m∑
l=1

∫ t

0

(
d∑
i=1

Xs

(
cilf

i
))2

ds�

where ξ = λγ and δ = λσ2.

Proof. Let f ∈ � be fixed and �Xπn� be a subsequence of �Xn� such that
Xπn ⇒ X. Then �A�3� can be rewritten as

Xn
t �f̄� = Xn

0�f� +M
�n�
t �f� +J

�n�
t �f� +N

�n�
t �f�

+Z
�n�
t �f� + βnC

�n�
t �f� + γnH

�n�
t �f��

(A.9)

where

C
�n�
t �f� =

∫ t

0
Xn

s �Lf�ds and H
�n�
t �f� = λ

∫ kn

0
Xn

�λns�n�f̄�ds�
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By Lemmas A�3�3, A�3�4, A�3�8 all sequences of processes appearing in �A�9�
are C-tight, and by Lemma A�3�6 ��Z�n��f��� is C-tight as well. Therefore it
can be assumed that the subsequences indexed by �πn� of all processes appear-
ing in �A�9� along with ��Z�πn��f��� and �Xπn� converge weakly jointly on the
appropriate Skorokhod product space. This can always be done by taking fur-
ther subsequences if necessary. Let Z�f� denote the weak limit of �Z�πn��f��.
Then by Theorem A�2�1(b) and Lemma A�3�11, we obtain thatZ�f� is a contin-
uous square integrable �� X

t �-martingale and that �Z�πn��f�� ⇒ �Z�f��. The
joint convergence just mentioned can be assumed to be almost sure Skorokhod
convergence on the Skorokhod product space by using a Skorokhod represen-
tation. Now taking limits as n → ∞ in A�9, along subsequences indexed by
�πn�, we obtain, by using Lemma A�3�3 again to see which terms disappear in
the limit, that

Xt�f̄� = ν�f� +Zt�f� +
∫ t

0
Xs�Lf�ds+ ξ

∫ t

0
Xs�f�ds�

Finally, the conclusion follows by taking limits as n → ∞ in �A�6� of Lemma
A�3�5, using the fact s- limt↓0 t−1

∫ t
0 Suhdu = h for h ∈ Cl��d ×�d� and notic-

ing that the last term in �A�6� vanishes in the limit. ✷

Lemma A.3.13. Let X ∈ CMF�����0�∞� be a weak limit point of �Xn�. Then,
with probability 1, Xt��"�� = 0 for all t ≥ 0.

Proof. First we define a sequence of functions on �d as follows. For n =
1�2� � � � , let

gn�x� =
 exp

{
− 1

�x�2 − n2

}
� if �x� > n,

0� if �x� ≤ n.

Then one can easily check, using the linear growth assumption on b, c and e,
that gn ∈ � , lim�x�→∞ gn�x� = 1, lim�x�→∞ Lgn�x� = 0, lim�x�→∞ cil�x�gi

n�x� =
0, gn → I�"� b.p., as n → ∞, Lgn → 0 b.p., as n → ∞ and cilg

i
n → 0 b.p., as

n → ∞, where “b.p.” stands for bounded pointwise. Moreover, by Proposition
A.3.12 we have

Xt�gn� = ν�gn� +Zt�gn� +
∫ t

0
Xs�Lgn�ds+ ξ

∫ t

0
Xs�gn�ds�(A.10)

Let T > 0 and gn�r = gn−gr for n� r = 1�2� � � � . Then, using Doob’s inequality
and Proposition A.3.12, we obtain

E sup
0≤t≤T

�Zt�gn� −Zt�gr��2 = E sup
0≤t≤T

�Zt�gn�r��2 ≤ 4E�ZT�gn�r��2

= 4E�Z�gn�r��T = 4δE
∫ T

0
Xs

(
gn�r

2
)
ds

+4
m∑
l=1

E
∫ T

0

(
Xs

(
d∑
i=1

cilg
i
n� r

))2

ds�
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Therefore, by bounded pointwise convergence,Esup0≤t≤T�Zt�gn�−Zt�gr��2→
∞ as n� r → ∞ and so Zt�gn� converges in mean square as n → ∞ to a limit
that we denote by Z"

t and with probability 1 along an appropriate subse-
quence. Here Z"

t is a continuous square integrable martingale with Z"
0 = 0.

Then from �A�10� we deduce that

Xt��"�� = Z"
t + ξ

∫ t

0
Xs��"��ds

and thus Xt��"�� is a continuous process. Taking expectations in the last
equality and using Gronwall’s inequality yields EXt��"�� = 0, for all t ≥ 0.
Hence Xt��"�� = 0 with probability one, for all t ≥ 0 and now the conclusion
follows from the continuity of Xt��"��. ✷

Finally, Theorem A�1�1 follows from Proposition A�3�10, Proposition A�3�12
and Lemma A�3�13. ✷

A.4. Uniqueness. In this subsection we will prove that uniqueness holds
for solutions of the martingale problem �A�1� using the duality technique
developed by Dawson and Kurtz in [7]. We will first show that every solution of
the martingale problem �A�1� solves the �	 � δν�-martingale problem where 	
is the second-order differential operator defined by

	 F�µ� =
∫
��
�L+ ξ�

(
δF�µ�
δµ�x�

)
µ�dx� + 1

2
δ

∫
��
δ2F�µ�
δµ�x�2 µ�dx�

+1
2

d∑
i=1

d∑
j=1

∫
��

∫
��
a

�m�
ij �x�y� ∂2

∂xi∂yj

(
δ2F�µ�

δµ�x�δµ�y�
)
µ�dx�µ�dy�

for F in some appropriate domain � �	 � ⊂ C�MF�����, where the so-called
variational derivatives are defined by

δF�µ�
δµ�x� �= lim

h↓0
F�µ+ hδx� −F�µ�

h
= ∂

∂h
F�µ+ hδx��h=0� x ∈ ��

and

δ2F�µ�
δµ�x�δµ�y� �= ∂2

∂h1∂h2
F�µ+ h1δx + h2δy��h1=h2=0� x� y ∈ ���

The notation δx stands for the measure with unit mass at x. Then, employ-
ing the duality method, we will prove the well-posedness for the martingale
problem for �	 � δν�, which in turn will imply the uniqueness for solutions of
the martingale problem �A�1�.

Let us start with some preliminary notation and definitions. By ��N we
denote theN-fold Cartesian product of �� (the one-point compactification of E)
and define

C �=
∞⋃

N=0

C���N� (disjoint union) where C���0� �= ��



SUPERPROCESSES OVER A STOCHASTIC FLOW 537

For f ∈ C we define N�f� �= N if f ∈ C���N�. Similarly we define

D �=
∞⋃

N=0

D���N��

where for each N� D���N� is assumed to be a dense subspace of C���N�. We
will specify the spaces D���N� later. For every function f ∈ C we define the
function Ff on MF���� by

Ff�µ� =
∫
��

· · ·
∫
��
f�x1� � � � � xN�f��µ�dx1� · · ·µ�dxN�f���

which is said to be a monomial on MF����. Then it is easy to see that the
variational derivatives of a monomial Ff are given by

δFf�µ�
δµ�x� =

N�f�∑
p=1

∫
��

· · ·
∫
��
f�x1� � � � � xp−1� x� xp+1� � � � � xN�f��µ�N�f�/p��dx�

and

δ2Ff�µ�
δµ�x�δµ�y� =

N�f�∑
p�q=1
p �=q

∫
��
···

∫
��
f

(
x1�����xp−1�x�xp+1�����xq−1�y�xq+1xN�f�

)
×µ�N�f�/pq��dx��

where

µ�N/p��dx� =
N∏
l=1
l�=p

µ�dxl� and µ�N/pq��dx� =
N∏
l=1

l�=p�q

µ�dxl��

Now we restrict ourselves to a specific choice of f. LetN ≥ 1 and fi ∈ � for i =
1�2� � � � �N and define the function f on ��N by f�x1� x2� � � � � xN� = ∏N

i=1 fi�xi�.
Then, for this specific choice of f, we have Ff�µ� = µ�f1� · · ·µ�fN�,

δFf�µ�
δµ�x� =

N∑
p=1

 N∏
l=1
l�=p

µ�fl�

fp�x�� x ∈ ��

and

δ2Ff�µ�
δµ�x�δµ�y� =

N∑
p�q=1
p �=q

 N∏
l=1

l�=p�q

µ�fl�

fp�x�fq�y�� x� y ∈ ���
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Let X be a solution to the martingale problem �A�1�. Then by applying Itô’s
formula we obtain

Ff�Xt� = Xt�f1� · · ·Xt�fN� = Ff�X0� +
N∑
p=1

∫ t

0

 N∏
l=1
l�=p

Xs�fl�

 dZs�fp�

+
N∑
p=1

∫ t

0

 N∏
l=1
l�=p

Xs�fl�

Xs��L+ ξ�fp�ds

+ 1
2

N∑
p�q=1
p �=q

∫ t

0

 N∏
l=1

l�=p�q

Xs�fl�

d�Z�fp��Z�fq��s�

Also from �A�1� it follows that

�Z�fp��Z�fq��t = δ
∫ t

0
Xs�fpfq�ds+

∫ t

0
�Xs ×Xs���fp�fq

�ds�

where

�g�h�x�y� =
d∑
i=1

d∑
j=1

a
�m�
ij �x�y�gi�x�hj�y�� x� y ∈ E

for g�h ∈ C1�E�. Hence we see that, for all t ≥ 0,

Ff�Xt� −
∫ t

0

∫
��
�L+ ξ�

(
δFf�Xs�
δXs�x�

)
Xs�dx�ds

−1
2
δ

∫ t

0

∫
��

δ2Ff�Xs�
δXs�x�2 Xs�dx�ds

−1
2

d∑
i=1

d∑
j=1

∫ t

0

∫
��

∫
��
a

�m�
ij �x�y� ∂2

∂xi∂yj

(
δ2Ff�Xs�

δXs�x�δXs�y�
)

×Xs�dx�Xs�dy�ds
is an �� X

t �-martingale, or, more compactly,

Ff�Xt� −
∫ t

0
�	 Ff��Xs�ds is an �� X

t �-martingale�(A.20)

At this point we have to introduce the following spaces. For N ≥ 1 and α ≥ 0
we define

C
2� α
l �EN� �= {

f+ c� c ∈ �� f ∈ C2�EN�� φαD
kf ∈ C0�EN�� 0 ≤ �k� ≤ 2

}
and

D���N� �= {
ḡ� g ∈ C

2� α
l �EN�}�
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where ḡ stands for the continuous extension to ��N of g ∈ Cl�EN� and φα�x� =
�1 + �x��α. In the uniformly elliptic case we take α = 0, when in the linear
case we take α = 1. Furthermore, we define M�EN� �= �f� ∃ n ≥ 1� fij ∈
C

2� α
l �E�� i = 1� � � � � n� j = 1� � � � �N such that f�x1� x2� � � � � xN� = ∑n

i=1 fi1×
�x1�fi2�x2� · · ·fiN�xN��. Since Ff is linear in f ∈ C���N� and 	 is a linear
operator, we see that (3.8) holds for all f̄ with f ∈ M�EN��C2�α

l �E� ⊂ � �.
By the Stone–Weierstrass theorem, it follows that M�EN� is dense in Cl�EN�
[and as a consequence D���N� is dense in C���N�]. Hence, by an approxi-
mating procedure, we can obtain that (3.8) holds for all f ∈ D���N� which
leads us to the conclusion that X is a solution of the martingale problem for
���Ff�	 Ff�� f ∈ D�� δν�.

Theorem A.4.1. Assume that Assumption U is in effect, let λ ≥ 0�
σ > 0� ξ = λγ and δ = λσ2 and define for all monomials F on MF����,

	 F�µ� =
∫
��
�L+ ξ�

(
δF�µ�
δµ�x�

)
µ�dx� + 1

2
δ

∫
��
δ2F�µ�
δµ�x�2 µ�dx�

+ 1
2

d∑
i=1

d∑
j=1

∫
��

∫
��
a

�m�
ij �x�y� ∂2

∂xi∂yj

(
δ2F�µ�

δµ�x�δµ�y�
)
µ�dx�µ�dy��

where L and a
�m�
ij are defined by (2.15) and (2.17), respectively. Then the mar-

tingale problem for ���Ff�	 Ff�� f ∈ D�� δν� is well posed.

We will apply Theorem 4.4 in [7] under their Hypotheses 4.3. In order to
do that, we will need two lemmas which we first state and prove. Then we
return to the proof of the theorem.

Lemma A.4.2. For any N ≥ 1 and f ∈ C2
b�EN� define

GNf�x1� � � � � xN�

=
N∑
p=1

d∑
i=1

bi�xp� ∂f

∂xp� i
�x1� x2� � � � � xN�

+ 1
2

N∑
p=1

d∑
i�j=1

dij�xp� ∂2f

∂xp�i∂xp�j
�x1� x2� � � � � xN�

+ 1
2

N∑
p�q=1
p �=q

d∑
i� j=1

a
�m�
ij �xp� xq�

∂2f

∂xp� i∂xq�j
�x1� x2� � � � � xN��

where dij and a
�m�
ij are defined by (2.16) and (2.17), respectively. Then, under

Assumption U, we have that

(a) The closure of �f�GNf�� f ∈ C∞
K�EN�� is single-valued and generates a

Feller semigroup SN
t on C0�EN�.
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(b) Define, for f ∈ Cl�EN�,

�GNf̄�x� =
{
GNf�x�� if x ∈ EN,
0� otherwise,

(A.21)

where f̄ ∈ C���N� is the continuous extension to ��N of f. Then the closure of
��f̄� �GNf̄�� f ∈ C∞

K�EN�� is single-valued and generates a strongly continuous
semigroup �SN

t on C���N�. The space D���N� is contained in the domain of the
generator just mentioned and also is invariant under �SN

t .

Proof. Part (a) follows directly from by Theorem 8.2.5, [11], since all the
conditions there are easily seen to follow from our Assumption U. The first
conclusion in part (b) follows trivially if we just define, for f ∈ Cl�EN�,

�SN
t f̄�x� =

{
f�∞� +SN

t f0�x�� if x ∈ EN,
f�∞�� otherwise,

where f�∞� = lim�x�→∞ f�x� and f0 is defined by f0�x� = f�x� − f�∞�. It
follows by Assumption U that the semigroup SN

t has a transition density (see
the Appendix in [8] for the uniformly elliptic case and Section 5.6 in [15] for
the linear case). Then one can use the estimates for the transition density
stated in 0�24�C2 in Section 6 in the Appendix in [8] to prove that D���N� is
invariant under �SN

t in the uniformly elliptic case. We have, by direct calcula-
tion, the same conclusion in the linear case, since in this case the transition
density is Gaussian and has an explicit form (see Section 5.6 in [15]). ✷

Lemma A.4.3. Let X be a solution of the martingale problem for ���Ff,
	 Ff�� f ∈ D�� δν�. Then the moment problem for Xt�1� is well posed for t ≥ 0.

Proof. The total mass process Xt�1� is a Feller diffusion, that is, a con-
tinuous state branching process. By the corresponding theory it follows (see
equations (2.3) and (2.14) in [19]) that the Laplace transform of its transition
distribution function Pt�x� ·� can be written in the form∫ ∞

0
e−ρyPt�x�dy� = exp�−x6t�ρ�� for ρ ≥ 0�

where

6t�ρ� = ρeλγt

1 + �λσ2ρ/2�c�t� λγ�
and

c�t� a� =
{
t� if a = 0,
�eat − 1�/a� if a > 0.

Since the complex variable function g�z� = exp�−�κ1z/�1+κ2z��, (where κ1� κ2
are real constants and κ2 > 0) defined on an appropriate neighborhood of 0 is
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analytic, we have that exp�−x6t�ρ�� has derivatives of any order with respect
to ρ at 0. Therefore, Xt�1� has moments of any order given by

mk = E�Xt�1��k = �−1�k ∂k

∂ρk
exp�−x6t�ρ���ρ=0� k = 1�2� � � � �

where x = X0�1� = ν�1� and by the Taylor series expansion we have

∞∑
k=1

mk

rk

k!
= exp�−x6t�−r�� < ∞ for �r� < r0� for some r0 > 0�

Finally, application of Theorem 30.1 in [3] completes the proof. ✷

Proof of theorem. Let f ∈ D and µ ∈ MF����. A few lines of calculations
show that ∫

��

δFf�µ�
δµ�x� µ�dx� = N�f�Ff�µ��

1
2
δ

∫
��

δ2Ff�µ�
δµ�x�2 µ�dx� = 1

2

N�f�∑
p�q=1
p �=q

(
FB

pq
0 f�µ� −Ff�µ�

)

+1
2
N�f��N�f� − 1�Ff�µ��

whereB0�D���2� *→ D���� is defined byB0g�x�y� = δg�x� x� andBpq
0 f denotes

the action ofB0 acting on f as a function of the pth and qth variables and

∫
��
L

(
δFf�µ�
δµ�x�

)
µ�dx� + 1

2

d∑
i=1

d∑
j=1

∫
��

∫
��
a

�m�
ij �x�y� ∂2

∂xi∂yj

(
δ2Ff�µ�

δµ�x�δµ�y�
)

× µ�dx�µ�dy� = F�GN�f�f�µ��

where �GN are the operators defined by (3.9). Therefore the operator 	 can be
written in the form

	 Ff�µ� = F�GN�f�f�µ� + 1
2

∑
p�q=1
p �=q

(
FB

pq
0 f�µ� −Ff�µ�

)
+V�N�f��Ff�µ�

for f ∈ D, where V�n� = ξn+ 1
2n�n− 1�. Note that for every N ≥ 1, 1�N� (the

function of N variables which assumes the constant value 1) is in D���N�,
�GN1�N� = 0 and 	 F1�N� �µ� = N�µ�1��N−1�ξµ�1� + 1

2δ�N − 1�� ≥ 0 for all

µ ∈ MF����. Finally, we see, using Lemmas A.4.2 and A.4.3, that the Hypothe-
ses 4.3 in Theorem 4.4 in [7] is satisfied. Therefore we conclude that the mar-
tingale problem for ���Ff�	 Ff�� f ∈ D�� δν� has a unique solution. ✷
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