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1 Introduction

A comprehensive theory of second order quasi-linear parabolic stochastic differential equations
in Bessel classes H;(Rd) was developed by N. V. Krylov in [1], [2]. This theory applies to a large
class of important equations, including equations of nonlinear filtering, stochastic heat equation
with nonlinear noise term, etc.. The main results of the theory are sharp in that they could not
be improved under the same assumptions.

In this paper we extend Krylov’s L,—theory to parabolic systems of quasilinear stochastic PDEs.
Specifically, we are considering the system of equations

ot = 9;(a (t, 2)0;u')+D' (u, t, )
oMt 2)oh 1 Q. t2)] W, (1)

ul(O,:c) :uf)(:c),l =1,....,d;z € R?

where W is a cylindrical Wiener process in a Hilbert space. In (1.1) and everywhere below the
summation with respect to the repeated indices is assumed.

Among other reasons this research was motivated by our interest in stochastic Fluid Mechanics
(see e.g. [6], [7] ). While the results below do not apply directly to stochastic Navier-Stokes
equations, they provide us with important estimates for solutions of suitable approximation to
the latter.

The structure of the paper is as follows.

In Section 2 we present a simple and straightforward construction of stochastic integrals for
Hj—valued integrands (for related results see [3], [4]). In this Section we also derive an Ito
formula for Lj-norms of Hy—valued semimartingales.

In Section 3 we present some auxiliary results about pointwise multipliers in H, needed for
the derivation of apriori estimates for (1.1) (see Lemma 8). We give a more precise version of
Krylov’s Lemma 5.2 in [2] with an estimate that gives a positive answer to Krylov’s question
raised in Remark 6.5 (see [2]).

In Section 4, following Krylov’s ideas, we derive the main results about the existence and unique-
ness of solutions to equation (1.1). The results of the last subsection, in particular those con-
cerning the regularity of solutions (Proposition 1, Corollary 3, Corollary 4) are new not only
for systems but also for the scalar equations considered in [1], [2]. In addition, in Section 4, we
obtain some new integrability properties of the solution (Proposition 2-3, Corollary 3-4).

To conclude the Introduction, we outline some notation which will be used throughout the paper.

R? denotes d-dimensional Euclidean space with elements z = (x1,...,xq);if z,y € R?, we write
d
(xay) = inyiv ‘x’ =V (.Cl?,.il?)
i=1

Let us fix a separable Hilbert space Y. The scalar product of z,y € Y will be denoted by x - .



If u is a function on R?, the following notational conventions will be used for its partial
derivatives: O;u = 8u/8xi,8l-2j = 0%u/0x;0zj, Ou = OufOt,NVu = du = (Oru,...,04u), and
0?u = (8fju) denotes the Hessian matrix of second derivatives. Let a@ = (v, ..., ) be a multi-
index, then 9% = II_, 0%

Let C5° = C°(R?) be the set of all infinitely differentiable functions on R? with compact
support.

) d 9 9 s/2
For s € (—o0,00), write A* = A3 = (1 — >0 /8%) .

For p € [1,00) and s € (—00,00), we define the space H, = H;(Rd) as the space of generalized
functions u with the finite norm

[ulsp = |Aulp,
where | - |, is the L, norm. Obviously, Hg = Lp. Note that if s > 0 is an integer, the space H,
coincides with the Sobolev space W = WS (R4).

If pe[l,00), and s € (—00,00), Hy(Y) = H;(Rd, Y') denotes the space of Y —valued functions

on RY so that the norm ||g||s, = | [A%g|y |, < co. We also write L,(Y) = L,(R%, Y) = H)(Y) =
0(Rd

HI(RY,Y).

Obviously, the spaces C§°, H, (R?), and H, (R%,Y) can be extended to vector functions (de-

noted with bold-faced letters). For example, the space of all vector functions u = (u!,...,u?)
such that Asu! € L,, 1 =1,...,d, with the finite norm

ulsp = Q_ lalZ,)"”
l

we denote by H = HS(R?). Similarly, we denote by H3(Y) = HE(R%Y) the space of all

vector functions g = (g')1<;<4, with Y-valued components ¢!, 1 < [ < d, so that ||g||s, =

(3,16 B )P < 0o. The set of all infinitely differentiable vector-functions u = (u',...,u?) on

R? with compact support will be denoted by Ge.

When s =0, H} (Y) = L,(Y) = L,(R%, Y). Also, in this case, the norm ||g||o,, is denoted more
briefly by ||g||,. To forcefully distinguish L,—norms in spaces of ¥ —valued functions, we write
|| - ||p, while in all other cases a norm is denoted by |-|.

The duality (,-), between Hy (R?), and H* (R?) where p > 2 and ¢ = p/ (p — 1) is defined
by

d
@8], = @0, = Y [ 0] @A (@) ded € By € By
=1

If f € Hy (Rd,Y) and ¢ € H* (Rd) where p > 2 and ¢ =p/ (p — 1), we write

)

d l —s 4l
(0. = (£.0h =3 | s @]ad @

Obviously, the function ¢ — (f, ¢) sy is a linear mapping from H,* into Y and I(f, @) ]y <
£l 5q 115 p -
Similar notation, (¢,¥), and (f, ®),y , will be used for scalar functions.



2 Stochastic integrals

Let (©2,F,P) be a probability space with a filtration F of right continuous o-algebras (F):>o.
All the o—algebras are assumed to be P—completed. Let W (¢) be an F-adapted cylindrical
Brownian motion in Y. In this section we will construct a natural stochastic integral with
respect to W (t) for F-adapted Hj(R?,Y)-valued integrands.

Let p > 2,5 € (—00,00) . Then Z; ;, denotes the set of all measurable F-adapted Hj (Y')-valued
functions such that for every t,

t
/ g2, dr < oo P —as.
0

If g €7, then for every and ¢p € H;™ where ¢ = p/ (p — 1), we can define a stochastic integral

t
M) = [ (80 @),y - DV (1),
Indeed, by Holder inequality,

Ji i) oy | dr < [l IR, 12, dr <
(2.1)

(-
o (flgre,ar) ™ PP <o P -as,

Owing to (2.1), the stochastic integral fg (8(1),P)gy -dW (r) is well defined (see e.g. [9] or [5]).

Of course the integral above is defined as a linear functional on H|,*. In fact, it can be charac-
terized more precisely. Specifically, the following result holds.

Theorem 1 If g € Z;,,p > 2, then there is a unique H (Y)-valued continuous martingale
= fgg (r) - dW (r) such that for all ¢ € H*,

</0tg(7”) LW (1), ¢’>S = /Ot (&(r), $)sy -dW (r) Vt>0,P —aus. (2.2)

Moreover, for each T > 0 there exists a constant C so that for each stopping time ™ < T,

E sup |M(r)? <CE/ l|lg(r ||

r<r S P
To prove the Theorem we will need the following technical result.

Lemma 1 Assume g €Zs,. Then there is a sequence of F-adapted H;(Rd)—valued processes
gn(r) = gn(r,x) such that P-a.s. g, (r,z) is smooth in x and for each n,

sup [gn (s, )|y < Cullg()llsps [18n()llsp < [l8(r)llsp:
x

and
/ l|gn(r) )H dr — 0, asn — oo.
P-a.s. for allt .



Proof If we have two Hj (Y')-valued continuous martingales M (t), Ma(t) satisfying (2.2), then
P-a.s. for all ¢t and ¢ € H*,

(M (t) — Ma(t), ¢), =0,
and the uniqueness follows. Let ¢ be a nonnegative function so that ¢ € C°(R%) and [ pdz =
1. For € > 0, write ¢-(x) = e~%p(x/¢). Set

ulra) = [ A% uale — p)Ag(r) dy
Note that g, is a smooth bounded Y -valued function. Moreover, by Holder inequality,

1/q
2y < 1y o [ 1080 d) " ( [ 1280t - y>|Qdy> <

< Cl/n,aHg(T)Hsvp’
It is readily checked that for all r,w, and p > 2, we have the following:

(a) llgn(r, )lsp < llg(r, )]s,
(0) |lgn(r) —g(r)|lsp — 0asn — oo .
Indeed,
llgn (r lsp = [[A° [ A0 (z — y)A°g(ry) dyl| =

| vz =) Ag(ry) dyl|, < [[A°&(r,)llp = [18(r, )]s

Analogously, one can prove (b). Now, the statement follows by Lebesgue’s dominated conver-
gence theorem. O

Proof of Theorem 1 Let g, be a sequence from Lemma 1. Since for every z and ¢,
fg lgn(r,z)|3dr < co P-a.s., the stochastic integral

M,,(t, ) = /0 g (r,a) - AW (r),

is well defined for each z (see e.g. [9] or [5]). It is not difficult to show that for every =,

t
ATM,(t,7) = / Aogo(r, ) - AW, (2.3)
0
P-a.s. By the Burkhoélder-Davis-Gundy and Minkowski’s inequality, for each stopping time
T<T

E sup [M,(r) |7

)y = Bp N0 < 2:4)

CE /0 ||A8gn<r>||§dr=cE / lgn(r)|[2,, dr

E sup [M., (r) — M,y (r) [2, < O / lgn(r) — gw (|2, dr

r<T



Firstly, we prove the existence of a continuous in ¢ Hj-valued modification of M, (¢, z). Let
8nk (1 2) = Ljaj<ky L{g(r)l1o.p <k} 8 (1 2)
Let 7 < T be a stopping time such that
-
B[ gl dr < .

Deﬁne tAT tAT
M, i(t,x) = / gfl’k.(r,x) - dW,, thk(t,x) = / Asgfhk(r,x) - dW,.
0 0

Then, for all u <t < T,

tAT
< Ck/E(/ |Asgf;7k(r,:c)|§/ dr)? dr < Cglt — ul?,

AT

and by Kolmogorov’s criterion, M; , has a continuous L,-valued modification. On the other
hand,

Esup, <, [My g (r;-) = M (r,-)[5p = Esup < M}, ;. (r,) = A*My (r, ), <

CE [ [1A°(g7, (r,7) = ga(r, DIlp dr — 0,

as k — 00. So, A°M,, has an L,-valued continuous modification or, equivalently, M,, has an
H p-valued continuous modification. By (2.3) we have that for all t > 0, ¢ € H*,

t
<Mn(t)7 ¢>s = /0 (gn(T), ¢>3,Y . dWr Yt > O,P — a.s.

for every t > 0, P-a.s.

Now, by (2.4), M,, is a Cauchy sequence. Making n T oo on both sides of the equality we
complete the proof. O

Remark 1 For p € [1,2), the stochastic integral with the properties above does not exist (see

[12]).

Lemma 2 Let p > 2. Let g €1y, and

t
[ Nl ar < oo vt > 0, P - as
0

6



Then for every t > 0, P-a.s. one has
//Ot g(r,x) - dW (r)dx = n}gnoo Om () (/Ot g(r,z) - dW (r)) dz
= [([ stryda) - aw ),

where ¢, € Cg° is any uniformly bounded sequence converging pointwise to 1.

Proof By Theorem 1,

2t) = [ 60(o) [ s)-aw o) o = [[([ atr.a)om (o)) aw

for every t > 0, P-a.s.
Let 7 be a stopping time such that

E/o g2 dr < oo.

Then ,
Esup|Z,(r) ~ Zon(r)[* < OB [ [1g(r)(0n — 6|} dr =0,
r<r 0
as n,m — 0o, and the statement follows. O

Now we can prove the Ito formula for the L,-norm of a semimartingale.

Lemma 3 Letp > 2 . Set

u(t,z) = ug(x) —l—/o a(r,x)dr —I—/O b(r,z) - dW (r) (2.5)

where b € 1y,, ug is an Fo-measurable L,-valued random wvariable, and a is an F-adapted
IH[g_l -valued process where n =0 or 1. If u(t) is continuous Ly, -valued process and

t
/0 (la(r)fy, + (), ) dr < oo

for allt >0, P-a.s., then

() = ol + p [ ()P 2u(r), a0 dr
t P=2(u(r, x r.x))dx r .
+p/0</ru<nx>\ (u(r, ), b(r,z)) dz W (r) (2.6)

+ g/o (/[(p — )|u(r, )P~ (r, ) (r, x)

+ |u(r, :c)|p725ij]bi(r, x) - bj(r, x)dx)dr
for allt >0, P-a.s..



Proof We remark that all the integrals in (2.6) are well defined. For example, let us prove
that the duality (Ju(r)[P~*u(r),a(r))1—, makes sense if n = 0. Since a(r) € H;', there exist
functions a;(r) € L, so that a(r) = Z?:o O;a; (r) where 9y = 1. Now it is not difficult to see
that

(u(r)P~2u(r),a(r) = S (lu(r)P~2u(r), da; (1)1 =
— 8 o(@slu(r)[P~2u(r), a; (r))o.

The right hand side of the equality is finite owing to the obvious equality

2.7)

di(JulP~2ul) = (p — 2)|ulP~*umdu™ut + |uP~20;ul).
Let ¢ € C§° be a non-negative function such that [ ¢dz = 1. For £ > 0, write

pe(x) = %p(x/e), uc(t,z) = /sos(fv —yu(t,y) dy = u(t) * p:(x).

Similarly, we write bo(t) = b(t) * p-(x), upe = up * p-(x). Let a-(t,z)
= (a(t), p-(x — -)) . For all z and ¢, we have

u.(t,z) = up(x) —I—/O a.(r,x)ds +/0 b.(r,x)-dW (r) P —a.s.

Let ¢ € C3°,¢ = 1 on {|z| < 1}, ¢ = 0 on {|z| > 2}. Then ¢, (x) = ¢(xz/m) is a uniformly
bounded sequence converging pointwise to 1. By Ito formula, we have

e (t, 2) [P om () = [0, ()" dm () + (2.8)

/0 plue(r, 2) P2 (e (1), ac (r, 2)) by () dr
+/ D) e (1, 2) P2 (ue(r, 2), b (1, 7)) - dWW (1)
0

5 [ on@lo =2ty tuirapd o)

+ ]ug(r,x)]pddij]bé(r,x) bl (r, ) ds..
Also,

sup |uc(r,x)| +sup u(r)|, <oo Vt >0, P —a.s.
r<t,x rst

and

/0 (lac(r) —a(r)f;_y, + [ue(r) —u(r)[f_, , + [be(r) = b(r)[}) dr — 0,

lup,e —uglh — 0,



as ¢ — 0. We complete the proof by taking integrals of both sides of (2.8) and passing to the
limit as € — 0, and then as m — oo . O

3 Pointwise multipliers in H
If ue Hy(Y) (resp. u € H)(Y)), then

[ulsp = [A%uly = |F (L + E7)*2Fullp,

(resp. |ulsp = [A%u], = |F[(1 + [¢?)*/2Fu]|,) where F is the Fourier transform and F~' is
the inverse Fourier transform:

FFE) = (2m) 2 / e () di, Ff(x) = (2m) 2 / e £(€) d.

Define the operators

g = A+, s >0,
ST A+ e Fu), ifs <0,

Au = FYEPFFu), s> 0.
Consider the norms on Hy (Y")

[ull-sp = [[ully +[[A*ullp, if p € [1,00],5 > 0.,
|u|~57p = |Asu|p7 p € (1700)7‘9 € (—O0,00).
Now we prove the equivalence of the norms |fls, |f]-s.p-

Lemma 4 The norms ||u|lsp, and ||ul|-s, are equivalent for p € (1,00), s € (—o0,0), and
llullsp, and ||u||-s, are equivalent for p € [1,00],s > 0.

Proof For each multiindex p and s > 0, we have

o 1+[¢°

€W| < Gl
(3.1)
1 2\s/2
or L < g,

Therefore, the equivalence of |ul|s, and ||ul|-s, for p € (1,00) follows from Theorem 6.1.6 in
[10].
The part of the statement regarding the case s > 0,p € [1, o] follows by Theorem 6.3.2 in [10]. O



Remark 2 For s € (0,2], f € C5°(Y), denote
0 (x) = —F Il FEE)) ().
It is well known (and easily seen) that there is a constant N = N(s) > 0 such that

0'8(@) = N(s) [+ 9) = 1) = (VR@).0) Ly Loy + Lr<ec) s

0*f(z) = Af(x),

i.e. 0° is the generator of s-stable stochastic process.

Indeed, for w = £/|£], we have

P16 +3) = £6) = (80 ) pen ooy + L1<oca)] 0]

. A , d
=ﬂ@/®ﬁw—1—uawawguusu+ukxm@%g

— 16 H©) [ 1= costw. )] = —leFHE)

where ¢(s) is a positive constant depending on s.

Lemma 5 Let 6 € (0,1). Then for each p € [1,00]| there is a constant C so that for all

uel(Y), zeR?

A O é é
lu(-+2) —u()llsp < ClIA%][sp|2]" < Cllul]s155]2]"

Proof Indeed, there is a constant N so that for any =,z € R%,u € Cr(Y)

u(z+2) —u(z)=N / k9 (z,)0%u(z — y) dy

(3.2)

where k) (z,9) = |y + 2|79t — |y| =%, One can easily see this by taking Fourier transform of
(3.2) (see [11], Chapter II, section 2). Also, it can be easily seen, that for some constant C

[ KOG )iy =P (33)
Using Minkowsky’s inequality we obtain from (3.2), (3.3) the desired estimate. O
Also, we will need some spaces of Y-valued continuous functions. For m = 1,2,3,..., we define

C™(Y) = {u : 8®u is uniformly continuous on R? for all |a| < m},

10



with the norm [[uf|cm = 375<;, [[0%u]|oo. For a non-integer s > 0, we define

0%u(z) — 0%
C(Y) = {ue C¥: [Julles = [Jullcea + D sup [0%u() W)y

< ooy,
|7y |z — y[is} J

lal=[s

where s = [s] + {s}, s is an integer and 0 < {s} < 1. For an integer s > 0, we denote

_ 0%u(x) — 0%u
C(Y)={ueC ' ulles = ||ul|cs—1 + Z sup| (2) 1%

< 00,
TH#Y |'T - y|

laf=([s]~

where s = [s]” + 1. If Y = R%, we write simply C™, C*.

Lemma 6 Let s > 0. Then
a) H3 (Y) CC5(Y), if s is not an integer;
b) C5TE(Y) C HE (Y) for each e > 0.

Proof For an non-integer s, C® is Zygmund’s space (see Theorem 2.5.7 and Corollary 2.5.12 in
[8]). Therefore the statement a) follows by Theorem 6.2.4 in [10].

Let s € (0,2],u € C5¢(Y). We can assume that s + € is not an integer and s < 2. By Remark
2,

|— Auly = |3 uly = N(s) +/ Sy
ly|<1 ly|>1

< Cllfulles+e + [[ulloo + [Vuloolfjaj>1y]-

So, the statement b) follows by Lemma 4. O

Define
HZ (Y), if s> 0 is not an integer,
B¥(Y)=«¢ C*(Y), ifs>0isan integer,
Loo(Y), ifs=0,

and denote the corresponding norms by |- |gs. If Y = RY, we write simply B®. The main
statement we need is the following Lemma.

Lemma 7 a) Let a € B¥I(Y), s € (—00,00),p € (1,00). Then there is a constant N so that

llaul], , < Nllal[ s uls,p

1

for all u € Hy, where au = (au ,...,aud);

b) Assume, p € (1,00),k >0 and

0c B*(Y), ifs>0,
BBsITR(Y), ifs <0,

11



Let as = |a|ps if s > 0 and as = |a|gsj+x if s < 0.

Then for every s there exist constants so < s and N such that

laull , < N(llalloo|uls,p + aslul,, ,)

for allu € H.

Moreover,

A*(au) = aA®u +Hg(a,u), if s#2m+1(m=0,1,...),

A Hau) = a(9;A° ) + Hy(a,u), if s=2m +1(m=0,1,...)

where ||Hg(a,u)||, < Caslulg p-

Proof Let s € (0,2), ueCy®,a € C;°(Y) (a and all its derivatives are bounded). Then, by
Remark 2,

dy

A(au) —ak®u + uk®a / (e -+ ) ~ u(e)(ale +y) ~ @) o (3.4)

By Minkowski’s inequality,

I / [u( - +y) — u())(a( +y) — a(-) ,y%np

dy

< [ () = uClyllaC+9) =~ aOllo

If s € (0,2) and s # 1, we have by Lemma 5 for each sp € ((s —1)",s)

/ (- +4) — u()lpllat +v) — a()lleo deﬂ

< el Ay | oy + ol | it
In the case s = 1, we have 9;(au) = ad;u + ud;a and
IV (au)llp < [lalloc [Vl + [[Val oo [ulp.
In the case s = 2, we have A(au) = aAu + ula + 2(Va)(Vu) and
1A(aa)ll, < flallo|Aul, + ||Adl|oo|Aul, + 2[[Val|o|Vul,,.

Therefore both parts of our statement hold for s € [0,2]. For an arbitrary s > 2, we can find a
positive integer m so that s = 2m +r,r € (0,2]. If r # 1,

A*(au) = ATA™ (qu) = A" (aA2™u) + A™h

12



where h is a linear combinations of the products in the form (0”u)(0"a), where v # 0, and
|v| + || = 2m According to the previous estimates, there is s € ((r — 1), 7) so that

IA™h]|, < Cllal|prei[ulzm-1.+5,-
On the other hand, by (3.4)
A" (aA?™u) = aA*u+A"aA?u + h
where [|h||, < C|lal|gsrt|A%T2™ul,. Tf s = 2m +1,m = 1,2,..., then
A’ (au) = ad; A*™u + H,

where [[H|l, < Cflal[ps[uls—1,p-

So, we found that for each s > 0, there is a constant C' so that
llaul]sp < Cllal|ps[ul, .

Since the multiplication by a is selfadjoint operation, by duality, obviously, follows that for each
s € (—00,00) we have for some C

llaul]s p < Cllal|pisiul,, (3.5)

If s=-2m <0,m=1,2,...,u € H, then u= (1 - A)"h,h € [,,. Then it is easy to check
that
au=(1—-A)"(ah) — H, (3.6)

and the function H is a linear combinations of the products in the form (0”h)(0"a), where
1 # 0, and || + || = 2m. Since 9"a € BlsIH#~I# using (3.5) we obtain
1(0"0)(0"a)lls p < [1(0"0) (0" @)l|s—ptjulp < CHO D)oy 10" ) gt

< Cllo"al| grot+r—1u [0 sy = p <

< CHaHB\S\‘F”’h‘—K,p < CHaHB‘SH”’u‘S—K,p-

So, by (3.6)
(1 -A)%(au) =a(l — A)’u— (1 - A)°H,

(1 = A)H|, = [H]ls, < Cllal| st [u]s—r.p, and
[laul]s < C([lallooluls + [lal] pis+n [u]s—r)-

If s < 0 is not an integer, then there is a positive integer m so that s = —2m —r,r € (0,2). Let
u €H. Then u=h+ A"A*"h, h € L,. Let h =A*"h. We have h € H,?™ and

aA™h = A"(ah) — (A"a)h—

J (B + 1) — B(a))(ale + 1) — (@), 5.7
ah = aA?™h :AQm(ah) - g,

13



where g is a linear combination of (9Vh)(0"a), |u| + |v| = 2m, u # 0. Since
1A7(0"h 8" a)llsp < 10”0 allssrp < (10”00 0l g s

< C| |aua| |B\S\*T*\#\+N |h|s+\u\+|u\+r7n,p

= CHauaHB\s\—T—WHH’h‘ —Rp > CHGHB\ —r+n B —K,p»

we have [|A7g]l.p < Cllall s [Bl_
Also by (3.5),

1A @)Rll, < O )R]y < ClIA"al|pmilBl gy, < ClIAal] 0,

Fix " € (0,x). Let 61 = max{r — 1,0} + k,e1 = 81 — K, £9 = min{1,7}. By Lemma 5 and (3.5)
and using Minkowsky’s inequality, we have

I / (B(- + ) — h()(al +) - a<~>>,ynyH||s,p

- -~ d
<c / IR+ 9) = ROl +) = a2

< / [B(- +y) — D) —2ms [la( +y) — ()| gomss, \y[dTZi

= ’B‘72m761+51 ||al| g2m+6;+es ‘y]51+52—d—v dy

lyl<1

- dy
+ / By, llal gy | ).
ly|>1 ly|

So,

dy
H/ (@) = h@))ale +9) —ale) Ty

< Clh| g llallpe+s < Cluls—wllal| pssn-

Thus, according to (3.7), 3 3
au =aA"*h = A"%(ah) + G,

where ||G||sp < Cllal|gisitx |-k p < Cllal| gisi+x |0|s—kp. Therefore,
A*(au) = ah + A°G = aA*u+A°G,
and [|A*Gl|, < C[|Gl|s < Cllal|gitsx 05— p- -
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4 Systems of SPDEs in Sobolev spaces

As in the previous Section, let (2, F,P) be a probability space with a filtration F of right
continuous o-algebras (F;)i>0. All the o—algebras are assumed to be P—completed. Let W (t) be
an F-adapted cylindrical Brownian motion in Y. Let s € (=00, 00). For v EEH§+1, let Q(v,t) =
Q(v,t,r) be a predictable Hf (Y')-valued function and D(v,t) = D(v,t,z) a predictable H;*L

valued function. Let a = a(t) = (a”(t,2))1<ij<a be a symmetric F-adapted matrix. Let
o =0(t) = (6*(t,2))1<p<a be F-adapted vector function with Y-valued components o*, and let
up= (u6)1<l<d be an Fy—measurable IP]I;+1_2/p —valued function so that E Huoﬂgﬂﬂ/pp < 00.
Everywhere in this section it is assumed that p > 2.
Consider the following nonlinear system of equations on [0, c0) :
opu(t,z) = 9;(a" (t,x)9;u) + D(u,t, x)+
[o*(t, 2)dpu(t, z) + Q(u,t,x)] - W, (4.1)

u(0, ) = up(z)

where u(t) = u(t,r) = (v*(t,2))1<r<a-
The following assumptions will be used in the future:
A.Forallt >0, z,\A €R?,

. 1 . . o
KN > [a"(t,2) = 5o'(t,2) - o (£, 2)]NN = 5]\,

where K, 0 are fixed strictly positive constants.
Al(s,p). For all t, z,y, P-a.s.

la"(t,z) — a” (t,y)| + o' (t,2) — o' (t, )|y < K|z —y|

and .
|a’ (t)|ps < K, if s >1,

la(t,z)| < K, if —1<s<1,
la¥ ()| g-st- < K, ifs < —1,

where € € (0,1).

The Y-valued function o(t, z) is P-a.s. continuously differentiable in = and for all 4,¢
loi(t)]|ps < K, ifs>1,
oi(t,a)ly <K,  ifse(-1,1),
ot @)l e < K, if5 <1,

where € € (0,1).
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A2(s,p) For v E]H];H, Q(v,t) = Q(v,t, ) is a predictable H (Y')-valued function and D(v,t) =
D(v,t,z) is a predictable H;fl-valued function, and P-a.s. for each t

t
/0 (ID(0,7)[;_1, +11Q(0,7)|[F,) dr < 0o ¥Vt > 0,P — a.s.

where 0 = (0,...,0).
A3(s,p). For every € > 0, there exists a constant K. such that for any u,v EH;H,

’D(uvtvx) - D(Vvtvx)‘s—lvp + HQ(uatvx) - Q(Vvtvx)HS,P S

elu—vlgp+ KJu—v|s_1p, P—as.
Given a stopping time 7, we consider a stochastic interval

([0, 7] :{ 0, 7(w)], if T(w) < oo,

[0, 00), otherwise.

Definition 1 Given a stopping time T, an H;(Rd)—valued F—adapted function u(t) on [0, 00) is
called an H -solution of equation (4.1) in [[0, 7] if it is strongly continuous in t with probability
1,

tAT
u(tAT) = u(t),/ lu(s)liyy,ds < oo Vt>0,P—a.s., (4.2)
0

and the equality
ut A1) =uo + [, [9;(a¥ (r)d;u) + D(u,r)] dr+
(4.3)

J3"o* (1o (r) + Q) - AW (r)
holds in ijl(Rd) for every t >0, P — a.s.
If T = oo, we simply say u is an H -solution of equation (4.1).

Sometimes, when the context is clear, instead of "Hj-solution” we will simply say ”solution”.

It is readily checked that all the integrals in 4.3 are well defined. For example, let us consider
the stochastic integral. Since &; is a bounded operator from H into H™' (see [8]), by Lemma
7 and Assumption Al(s,p), we have ||o"(r)dyu (r H < Cllu(r)|[s41, for r <7 P-as. By
assumptions A2(s,p),A3(s,p),

[z, <c [TTaR0n1E, ) i
Thus, [0 (r)0pu + Q(u, 7)<} € Zs p, and the integral is defined by Theorem 1.
Remark 3 It is not difficult to show that (4.3) can be replaced by the equality
(W AT),0'), = (b, 8'), + Jy"" = (@ (r)0'), 036", +
(A= DN (u,7), Adh)sdr + [T (o* (r)out + Q' (u,7), @'Yy - dW () (4.4)

Vi >0,P — a.s.
which holds for all ¢ = (qbl)lglgd such that ¢ € C°,1=1,...,d,.
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Indeed, owing to (4.3), we have

('t nT), @),y = (@), + fy"7(95(a¥ (r)dul) + Dla,r) @),
(4.5)
+ Jy T (H (O’ + QU u,r), ),y - dW (1) VE>0,P —as.

On the other hand, since u €Hp, ug E]HIZH*Q/p and P-a.s. forr <7, o (r )8ku—|—Ql(u,r)€H;,we
have that <ul(t), ¢l>s_1 = <ul(t), ¢l> <u0, ¢l>s 1 <u0, ¢l>s+1 2/p’ and,
k l l l _ k l l l
<0 (r)opu’ + Q' (u,r), ¢ >s—1,Y = <0 (r)opu’ + Q' (u,r), ¢ >s,Y
It is readily checked that dr x dP-a.s.

(0j(a® (r)ogul), ¢') = —(a” (r)0u!, 05¢") | =
— (A*(aV (r)0ul), A=50;¢1 ) = — ((a (r)Oiul), 0;")

Note that to prove the first equality one should first establish it for smooth functions and then

prove it in the general case by approximations. Thus, (4.5) implies (4.4). Now by reversing the
order of our arguments one could easily show that (4.3) follows from (4.4).

The basic result of this Section is given in the following

Theorem 2 Let s € (—00,00),p > 2. Let A, A1(s,p)-A3(s,p) be satisfied and [uy|?, , , < 00
P-a.s. Then for each stopping time T the Cauchy problem (1.1) has a unique HE -solution in
[[0,7]]. Moreover, for each T > 0, there is a constant C such that for each stopping time
T<TAT,

Efsup [u(r) /\82 P ds] < CElJugl

r<7 s+1-2/p,p

77
+ [ (DO, +11Q(.0)2,) ]
The Theorem will be proved in several steps. We begin with a simple particular case.

Theorem 3 (cf Theorem 4.10 in [2]). Let s € (—o00,00),p > 2. Assume A, A1(s,p)-A3(s,p).
Suppose that D and Q are independent of u, a¥ and o* are independent of x, and uy= 0.

Then for each stopping time T there is a unique Hj —solution u of equation (4.1) in [[0,7]].
Moreover,

(i) for each stopping time T < T,

T )
E/O [07u(r)[;_ 1pdT<NE/ (D)1, + 11QMIE,) dr, (4.6)

where N = N(d,p,d, K) does not depend on T,7;
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(ii) for each finite T and each stopping time T <T AT

Esup [u(r)[f, < GTCE/O (D51, + 1QMIIE,) drl, (4.7)

r<7

where C'= C(d,p, 6, K) does not depend on T and T,T.

Proof The statement is a straightforward corollary of the results of [2]. Indeed, owing to our
assumptions one can treat each component u' of u separately. The the statement regarding
the existence follows directly by Theorem 4.10 in [2] considering D(r) = D(r)1jjo(r), and
Q(r) = Q(r) 10,7 (7). According to Lemma 4.7 in [2], the uniqueness is an obvious consequence
of the deterministic heat equation result. In particular, we obtain (4.7) by taking A = 1/p in
(4.26) in [2]. O

To prove Theorem 3 in the general case, we will rely on the two fundamental techniques: partition
of unity and the method of continuity. The same technology was used in [2] for scalar equations.

The next step is to derive a priori L,-estimates for a solution of (4.1).

Lemma 8 Assume A, A1(s,p)-A3(s,p). Suppose that u is an Hj — solution of equation (4.1)
in [[0, 7]] with up= 0.

Then for each T there is a constant C' = C(d,p,d, K,T) such that for each stopping time T <
TAT,

E[sup,<; [u(r)[5, + fof |0%u(r) 5,1@ dr] <

_ (4.8)
CE [7(ID(0,7)[7_; , + [|Q(0,7)|[%,) dr.

s—1,p

Proof In order to use Theorem 8 we start with a standard partition of unity. Let ¢ € C§°(R),
be [0, 1]-valued and such that ¢ (s) = 1, if |s| < 5/8, and 9(s) = 0, if |s| > 6/8. For an arbitrary
but fixed £ > 0 there we choose m such that £ < 2=™. Consider a grid in R? consisting of
= k27" k= (k1,...,kq) € Z%, where Z is the set of all integers. Given k € Z¢, we define a
function on R? :

Y((a — a})2™).

]
ES
—
8
N—
I
—=

Notice that 0 < 7 < 1,7 = 1 in the cube v, = {x : |2! — :1:2] < (5/8)27™,1 =1,...,d}, and
7k = 0 outside the cube Vj, = {z : [2! — 2{| < (6/8)27™,1 =1,...,d}. Obviously,

1. Ugvg = R? and
1<) 1y <24
k

2. For all multiindices ~
07| < N(d. y))2"7 < N(d)s~P1.
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Denote
- "7k Z "7k 7 = 17 ERE
Obviously, >, nr =1 in R? and for all k and multiindices s,
|0 nie| < N(d, |}
and for each p > 1, u

> (@) < N(p,d), Y |0"mklP < N(p.d, |p|)s . (4.9)
k k

So, by Lemma 6.7 in [2], for any n there exist constants ¢ = ¢(d, p, k), C = C(d, p, k) such that

for all f €M}, g € H (Y)
clfln, < Z Intl, , < CIEL s (4.10)

cllglly, < lenkgllnp < Cllgllr,

Multiplying (4.1) by 7, we obtain
O(ung) = 8i(aij(t,xk)8j(77ku)) + Dy (u,t,z)+ (4.11)

+ [Ui(t, xk)az(nku) + Qk(U, t, x)] : W,

where
Dy (u,t,z) = ng[D(u,t,x) + 8Z~(aij(t, x) — aij(t, xp)0;u)]
— 9;(a" (t, 21)0ympu) —a" (t, 21,)OmiO;u,
Qk(u7 ta JJ) = nk[Q(uv ta JJ) + (O—i (ta x) - Ji(ta xk))a’lu]
- O-i(ta xk)alnku
We have

S i (1) — a¥ ()0,
k
< 201N C{Omi(a¥ (t) — o™ (¢, 2))05u(t)
k

+ 2071 10ilmk(a” (1) — 0¥ (t, ) )OOl
k
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where 7y, () = 7 (52/6) (notice fjx(z) = 1 in Vi, and 7j(z) = 0 if there is [ such that |z! — z!| >
0.9 -27™). According to Lemma 7, there is a constant C' and sp < s such that

> 10i[mk(a () — o™ (¢, zp))idu(t)]E_y ,
k
< Ink(a (8) — a¥ (¢, p))idu(t) [},
!

< CZ SU]E)‘T/k Z]( ) (t xk))’p’au( )sp
P

+ |77k:a u( )|so lp]

Similarly, by Lemma 7 there is sg < s so that

D (et (t) = o' (t 2)da(t)]| 2,
k
=D lli(o'(t) = o' (t,xx)ymdyu(t)[ 2,
k
< C) [supllik(o’(t) — o' (t, 1)) |Plmdpa(D) 2,
L T

+ [moa(t)[5, L.

It follows by the assumptions, (4.10), Lemma 7 and interpolation theorem (see Lemma 6.7 in
[2]) that for each ¢ there is £ > 0 and a constant C' = C/(e, K, d, p,d, K) such that

Z|Dkut Ss— 1p<5|82 ()s 1p+C(|U( )571p+|D(0 t)s lp)

D lIQu(u,t, )R, < eld®u()l_y, + Clu)fi_y, +11Q0,1)[2,).
k

Choosing ¢ sufficiently small, applying (4.10) and Theorem 3 to mgu (it is a solution to the
equation (4.11), we obtain that

(i) for each stopping time 7 < 7

B[0P0t < NB [ (@, + IDOOE, + Q.0 d

where N = N(p,d,d, K) does not depend on 7.
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(ii) for each T > 0 and each stopping time 7 < T A T

-
Esup la(®)fs, < NGTE/O (a1, + DO, , +11Q(0,1)I[F,) dt
ST

Fix an arbitrary 7 < T A 7 such that

Elsup ()2, + [ (a0, + IDO.0F, + Q.2 di] < .
ST 0

Then for each ¢t < T

t
E sup [u(r)ff, < NeTE/ sup |u(7)[f, dr
r<tAF ’ 0 7<rAT ’

-
+E [1IDO.02,, + Q.0

and the statement follows by Gronwall’s inequality. O

Now we can prove the uniqueness of a solution to equation (4.1).

Corollary 1 Assume A, A1(s,p)-A3(s,p). Then for each stopping time T there is at most
one HY —solution to (4.1) in [[0, T]].

Proof If u; up are solutions to (4.1), then v = uy — u; satisfies on [[0, 7]] the equation

ov(t,x) = 8i(a’j(t, x)0;jv) + D(v +uy,t,x) — D(uy,t, x)
+ [Uk(tv .Q?)akV(t, x) + Q(V + uy, ta JJ) - Q(uh t7 .CI?)] : W?

v(0,z) = 0.

Applying Lemma 8 to this equation we get v =0 P-a.s. (|

Remark 4 In fact the uniqueness of the solution can be proved in a larger functional class,
sitmilar to the one of Theorem 5.1 in [2]. For the sake of simplicity we will not address this
problem in the present paper.

To complete the proof of Theorem 2 we apply the standard method of continuity (cf. Theorem

5.1 in [2]).
Proof of Theorem 2.
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(Existence) Without any loss of generality we can assume ug = 0 (see Proof of Theorem 5.1 in
[2]) and 7 = co. Now, let us take A\ € [0,1] and consider the equation

ou(t,z) = 9;[Adij + (1 — A\)ad;u] + (1 — \) D(u, t,x)+
(4.12)
+(1 = N)[e*0pu+ Q(u,t,z)] - W
with zero initial condition. By Lemma 8 the a priori estimate (4.8) holds with the same constant

C for all A. Assume that for A = A\g and any D, Q satisfying A3(n,p), equation (4.12) has a
unique solution.

For other A € [0,1] we rewrite (4.12) as follows:
dpu(t, z) = 9;[(Modij + (1 — Ao)a)d;u]+ (1 — Ao) D(u, t, )
+(A = Xo) (8i(0ij — a¥)0ju] — D(u,t,2))
+(1 = Xo)[o*0u + Q(u, t,z)] - W
~ (A= Xo) [0*Ou + Q(u,t,2)] - W

This equation can be solved by iterations. Specifically, take ug = 0 and write
Orugy1(t, ) = 0i[(Aodij + (1 — )\o)aij)ajukﬂ]—l— (1 —Xo) D(ug41,t, )
+(A = Xo) (&-[(5@-]- — aij)ﬁjuk] — D(u,, t,x))
' ' (4.13)
+(1 — Xo)[o"Oiug+1 + Q(ugy1, t,z)] - W
— (A= o) [0*0uy, + Q(ug, t,z)] - W
So, for k > 1, tig11 = ugy1 — U is a solution of the equation
Optg11(t, ) = 8;[(Modij + (1 — No)a)djtgr1]+ (1 — o) [D(ug + Tgs1,t,2)—
D(ug,t,z)] + (A — Xo)(8:[(6;5 — a¥)9;tx] — [D(ug, t,x) — D(ug_1,t,)])
+(1 = X)[0"OTips1 + Q(uy + Tppr,t, 2) — Qug, t,z)] - W

— (A= Xo) [00say, + Quy, t, z) — Q(ug_y,t,z)] - W

By Lemma 8, for each T' > 0 there is a constant C' = C(d, p,d, K,T') such that for all stopping
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times 7 < T

Bl sup| s (12, /‘w%%ﬂ<>u1pd1

r<r

sduiww/kwm> 0Py dr
0

< C|A— )\olpE[sup]uk / 0%y, (r) I 1pdr].
Fix an arbitrary stopping time 7 < T' such that

I(1) = E[sup |uy (r) f;p—k/o 0%y (r e 1pdr] < oo,

r<t

Notice u; and 7 do not depend on A (only on \g). Let |\ — X\g| < C~'/?/2. Then

E[sup [Gy1(r)[2, + /0 ]82ﬁk+1(7“)\§_17pd?”]1/p < (1/2)F1(r)V/P.

r<r1

and (uy) is a Cauchy sequence on [0, 7]. Therefore, there is a continuous in ¢ and Hj-valued
process u such hat

B[ sup uy(r) /|Wuk )= u(r)_y, dr] =0,

r<rt

as k — oo. Obviously u is a solution to (4.12) on [0, 7]. Since 7 is any stopping time such that
I(7) is finite, it follows that we have a solution for any |X — Ag| < C~/P/2 (assuming we have
one for \g). For A = 1 it does exist by Theorem 3. So, in finite number of steps starting with
A =1, we get to A = 0. This proves the statement.

Corollary 2 (¢f. Corollary 5.11 in [2]) Assume A, Al1(s,p)-A3(s,p). Assume further
A1(s,q)-A3(s,q) for ¢ > 2, and suppose that [Wg|s11—2/pp+W0ls41-2/q,9 < 00 P-a.s. Then the
Hp —solution u of equation (4.1) is also an Hj —solution of the equation.

Moreover, for each T > 0, there is a constant C' such that for each stopping time T < T,

E[sup|u Sl+/ 0%u(r)|}_y  dr] (4.14)

SCHW%H4W+A(DWWM1ﬁWQ&ﬂ%ﬂWL

l=p,q.
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Proof We follow the lines of the proof of the Theorem 2 by introducing the parameter A € [0, 1]
and considering the equation (4.12). We can assume that ug = 0. The statement holds true
for A =1 by Lemma 5.11 in [2] applied to each component of u. If it is true for Ao, then (4.13)
defines a sequence uy, of H-valued continuous processes that are Hp-valued and continuous as
well, and

t
[ (@l < o0 =g

P-a.s. for all ¢.

For each T' > 0, there are constants C; = C(d,[,0, K,T),l = p,q such that for all stopping times
T <T,

E[sup |Gg41(r sl+/ |5 Up1 (7 )|s 1ld7“]

r<rt

SC'\/\—Ao\pE/OT((’ﬁk( ), + 1078 (r)[i_ ) dr

-
< CA = MoPEsup [an(r)lty + [ 0Pl

r<T 0

l = p.q. Fix an arbitrary stopping time 7 < T such that

1(r) = E[sup(uy (N[, + (]2, + /0 (0P (PP, + P (] ) dr] < oo

r<t

Let C = max{C,, C,},|\ — Xo| < C~/?/2. Then

E[Sup!ﬁkﬂ("“)li,ﬁ/o (0% (1) g dr]V/7 < (1/2)71(7) P,

r<r1

[ = p,q. Therefore, there is a continuous in ¢ and H;, N Hj-valued process u such hat

E[sup [ug (r) — Sz+/ 102 (ug(r) — (). dr] — 0,

r<rt

[ = p, q, and the statement follows. O

4.1 Some estimates

Unfortunately, if s is positive, Assumption A3(s,p) is rarely satisfied for equations of Mathe-
matical Physics even in the scalar case (see Example 1 below). The following Proposition as
well Corollary 4 below help to circumvent this problem in many important cases.
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Proposition 1 Assume that for each v G]H];H, Q(v,t) is a predictable ]HIZ‘H -valued process and
D(v,t) is a predictable H -valued process. Let A, A1(s+1,p), A2(s+1,p), A3(s,p) be satisfied,
|uglst2,p < 00 with probability one, and for allt > 0,v EHZH,

QW D)l s+1.p < 1Q0, )] |st1p + Vi -

‘D(Vat)‘syp < ‘D(Ovt)‘svp + C‘V’erl,p‘

Suppose also that
t
[ 11ROy, + DO, dr <

P-a.s. for allt. Then (4.1) has a unique continuous HZH— solution.

Moreover, for each T > 0 there is a constant C such that for each stopping time T < T,

.
Ela[supu(r)[g;,, +/O [0%u(r)[Z, dr] < CE14[luol?,,

r<t

+AUD&ﬂ&ﬁHMQM&MMﬂ

Proof Since the assumptions A, Al(s,p)-A3(s,p) are satisfied, the existence and uniqueness
of Hy- solution is guaranteed by Theorem 2 By the same Theorem, the linear equation

OE(t,x) = 0;(a (t,2)0;€(t, ) + D(u,t, )+
(0% (t, 2)0k(t, 2) + Q(u, t, z)] - W,

6(07x) = uO(x)a

has a unique ]H];H—solution. Thus, £ = u P-a.s.. Moreover, for each T there is a constant C'
such that for all stopping times 7 < T,

tAT

tAT
Bl sup [u(n)fl,+ [ (0Pl drl < CElluolles, + [ (00,
r<tAT 0 0

+[D(0,7)[, +11Q (0,77, ,) drl.

Now the estimate of the statement follows by Gronwall’s inequality. O

Example 1 Let us consider the following scalar equation:

du = Au+ D(u)+u-W,
u(0,2) =0
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where W (t) is a one-dimensional Wiener process, D(u) = 0[f(u(z))](= 0f (u(z))0u(z)) and f
is a scalar Lipschitz function on R'. Then A3(1,p) would require the following estimate:

|D(u) — D(v)|p, = |V f(u(z))ou(x)) — V f(v(z))ov(x)l,

<élu— U|2,p + Ke|u — U|pv

which s false in general even if V f is Lipschitz.

On the other hand, the assumptions of the Proposition are satisfied for n = 0. Indeed,
[D(u)lp = [V f(w)dul, < Cloul,

where C' is the Lipcshitz constant of f.
Now,since 0 is a bounded operator from Hj into ]H];‘H, we have

[D(u) = D(v)|-1p = |0[f (w)] = OLf (v)]|-1p <
Clf () = f(0)lp < C'lu—wvlp <

elu —vlip + Kelu — |1,

(The latter inequality follows from Remark 5.5 in [2].) Thus assumption A3(0,p) is verified and
we are done.

Proposition 2 Let s € (—00,00), p > 2. Assume A, A1(s,2)-A3(s,2). Suppose |ug|s412 < 00
P-a.s. Assume further that

Aummvlfwmwmu>w<m

P-a.s. for allt.
Then for each T > 0, there is a constant C such that for each stopping time ™ < T,

Blsup [u(r)f+ [ )LVl Badr < CBwoly+ [ (DO

+11Q(0,7)| £ 2) dr].

Proof Since the assumptions of Theorem 2 are satisfied, there is a unique Hj- solution u (¢, x)
of equation (4.1). Let s # 2m + 1, m = 0,1,.... Then @ = A®u is Ly-valued continuous and
satisfies the equation

da(t,x) = A*[9;(a" (t,2)d;u) + D(u, t, z)]+
Aok (t, z)Opu(t, z) + Q(u, t,z)] - W,
a(0,z) = tp(z),
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where 1y = ASug. On the other hand, by Lemma 7,

A58i(aij (t, x)ﬁju) = ai/is(aij (t, x)ﬁju)
= 8Z~(aij(t, x)ﬁjﬁsu) + 8iHS(aij, oju),

As[o®(t, x)Opu(t, x)] = 0" (t, )0 A%u(t, z) + H(c®, Opu),

and
[H(a”, 05u)|2 + [H(c", 0pu)l, < C|Vu(t)]s, 2,

(so < s). By interpolation theorem, for each ¢ there is a constant C. so that

H, (', 9;u)]y + [H(o®, 0pu)], < e|Vu(t)]s.s + Co| Vu(t)|s_1.a-

Applying Ito formula, we obtain

08 = OR +p [ 808 @0, A D). )z ds
, /0 e / a9 ()0, (r)) 9yt (r) dae dr
, /0 e / Oyt (r) HL (a¥ (1), yu(r)) da dr
w0 H R ) -aw,
+2 [ [50) 56 dras
+ g(p ~9) /Ot a(r)E /f/(r)l;l(r) dz|3- dr,

where 0F (1) = o (r)0;i" (r) + H.(0%, Opu)+A*QF (u,r). Notice

A*(D(u(r),r)) € Hq_l,[XSQk(u,r) € Ly,
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and, by A3(s,2), for each € there is a constant C. so that
[A*(D(u(r),r))|-12 < CID(u(r),r)[s-1,2

< elu(r)]s41,2 + Ce(Ju(r)|s—1,2 + [D(0,7)|5-1,2), (4.17)
IA*QF(u, 7)||2 < C||Q"(u,7)||s 2

<elu(r)lssr2 + Ce(fu(r)]s—1.2 + [1Q0,7)[[5.2),

So, y(t) = |u(t)| is a semimartingale:

@ (r)b'(r) dely < elu(r)spr2lu(r)lsz + Co(fu(r)2s + [a(r)]s2/|Q0,r)]]s 2

—

y(t) = y(0) + / W(r)dr + / g(r) - W (r),

where h(r), g(r) are measurable F-adapted (g is Y-valued). Let ¢(r) = [a(r)[5~> [va(r)]? dx.
Since

N(@a(r) = —[a(r)f / o’ (r)0;a! (r)0;1' (r) da

a(r) / oH(r) - o (r) Oyt (r) i (r)

N =

+

< 3l [ V()P do = ~clr),
using (4.15)-(4.17), we find easily that for each e there is a constant C; so that

h(r) < (=8 +)e(r) + Ce(y(r) + f(r)), (4.18)
9(r)ly < elu(r)25 ul, o + Ce(y(r) +y(r) 7 PU(r)P),
95 < a(r)| 5 2 [ul2, ) o + Ce(y(r)? +y(r)>~2/P1(r)*/P)

< E2y(r)e(r) + Ce(y(r)® + y(r)*~2/PU(r)*7),

where
f(r) =1D(0,7)[_ 5, 1(r) = [1Q(0,7)] [ 2.
Let v <t <T,t—v <1/4, and 7 be a stopping time such that sup,; y(r) is bounded and

E/O (F(r) + 1(r)) dr < oo,
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Fix an arbitrary stopping time 7. Let 7 = 7 A 7. Then by Burkholder’s inequality and (4.18)

E sup y(r AT) <Ey(vAT)+ C.E[sup y(r AT)(t —v)+
v<r<t v<r<t

- / G—e)elrydr+ [ fr)dr

NT VA

+ (/ [E2yr)e(r) + Cely(r)? + y(r) 20D dr) ).

AT

For each ¢ there is a constant C. independent of T" such that

tAT tAT
( / y(r 2P YPY )2 < sup y(r A ) / )2/ dr) /2
v VAT

AT v<r<t

tAT
<e sup y(rAT)+ CE(/ 1(r)?/? dr)P/?

v<r<t AT

AT
<esup y(r A7)+ CE/ I(r)dr.
VAT

v<r<t

Also,

(f "2y (r)er) dr)? < & sup y(r)Y2( / " e(r) dr)'?

AT v<r<t AT

< 2¢[ sup y(r) +/ 7-c(r) dr].

v<r<t AT

So, there is a constant C' such that

E sup y(r A7) < CE[y(v AT) + sup y(r/\i’)(t—v)l/2 +/ T(f(r)+l(r))dr],

v<r<t v<r<t AT

and we can find gy such that for |t — v| < g

E sup y(r AT) gC’E[y(v/\T)—F/ T(f(r)+l(r))dr].

v<r<t AT

Now, the estimate easily follows.

Now we derive similar estimates for |u(t)| 4, ¢ > 2.
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Proposition 3 Let s € {0,1,...},q > 2,|ug|s11-2/¢q < o0 P-a.s., and A, A1(s,q)-A3(s,q)
hold. Assume further that p > q, a” € B%V2, if s > 1, and

QMW D) ]s.q <[1Q0,8)]ls,q + ClVl, 4

ID(v,8)]s-1,4 < [D(0,8)]s-1,4 + Clv|

S?q’

t
/O (DO, +11Q(O, )| [,) dr < o0

P-a.s. for allt.

Then Theorem 2 holds. Moreover, for each T > 0, there is a constant C such that for each
stopping time 7 < T,

Esup [u(r)[f, < CE[luoff, +/0 (DO, 7)1 4+ 11Q0, M) [£ ;) dr]. (4.19)

r<rt

Proof Since the assumptions of Theorem 2 are satisfied, there is a unique Hj- solution of
equation (4.1). Let o be a multiindex such that |a| < s. Then u, = 0“u is L;-valued continuous
and satisfies the equation

dpug(t,z) = 0%[0;(a" (¢, x)0;u) + D(u,t, )]+
O™ (t, x)Opu(t, z) + Qu,t,z)] - W,

u,(0,2) = ugq(x),

where ug o = 0%ug. Define

Go= Y 9d(t)o;0"u(t),
v+pu=a,|v|>1

Go= ) o) ().
v+p=a,|v|>1

Differentiating the product, we obtain

0°0,(a" (1)0;u(t)) = 0i(a (t)9;ua(t))+0;Ga(t) (4.20)

0*[o"()dpu(t)] = o* (1) Fpua(t) + Galt).

and _
Hao(t)lg + [[Ha(Dl, < Clu(®)]s—1,q (4.21)
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Let bf(r) = o' (r) 0k (r) + G, (r)+0*(Q*(u,r)),1 < k < d. Applying Ito formula, we obtain
that ya(t) = [ua(t)[; is a semimartingale:

Ya(t) = ya(0) +/O ha(r)dr —l—/o go(r) - dW (1),

where
() = pluta (1) ()] 2ua (), 8 (D(u(r), 1o
- / 07 (1)1t ([10 () 120l (1)) Oyl (r) i
= [ o ()12 ()G )
+s / (g — 2l ()74, (), () + e ()|=26,516 () - B (1) dr)
+ 2 )] / o ()22, (7B (r) 2.
and
00 () = plua(r) 5 [ o)1 ()01 (r)
Notice

9*(D(u(r),r)) € Ho,q,0%(Q"(u, 1)) € Ly,

and, by our assumptions, there is a constant C so that
[0%(D(u(r),r))l-14 < CD((r), 7)s-1,4
< C(lu(r)]s.qg + D(0,7)s-1,9);

(4.22)
10°Q% (u,7)[|q < ClIQ"(w.r)lls.q < C(lu(r)lsq + [1Q0,7)]]sq),

[ Faa) 2l (8 1) daly < C(lulz, + )12, 1QEO)
We have hy(r) = plua(r)|h~ 2Rk (r) + h2(r), where
Phr) = = [ a0 aalr) 2l )0yl () de + 5 [ 1(a = Dl ui (1)
+ |[ua (r)|9726;5]0" (1) Opuly (r) - o' (r) Oy, (r) da.

31



Let

() = a(r) — 5o'(r) - 03 (r).
Then
ha(r /AZ] ) [0suty (1) Djug, (r) wa (r) |72
+4(qqg 2)8i(\ua(’r)]q/Q)aj(\ua(?”)’qm)] dz < _5/ [ug (r)|972|Vu(r) | de,

and for each ¢ > 0 there is a constant C. such that
| ()| S5/\ua(r)\q_2\Vu(?”)!2dw+Ce(\u( g+ D0, 77y )

So, we obtain that

= S ) =00)+ [ e+ [ go)-aw,

|a|<s

and
= 3" halr) < Cly(r) + £(r)), (4.23)
lo|<s
)y < Z l9a(M)y < C(y(r) + y(r) =P1r) /P,
|a|<s
where

f(r) = D0, r)[{_ 4 1(r) = [1Q0, P)[ £ 4-
Let v <t <T,t—v < 1/4, and 7 be a stopping time such that sup,; y(r) is bounded and

s
E/ (f(r)+1(r))dr < 0.
0
Fix an arbitrary stopping time 7. Let 7 = 7 A 7. Then by Burkholder’s inequality and (4.18)
tAT
E sup y(r A7) <Ey(vAT)+CE[sup y(r AT)(t —v)+ flr)ydr
vsrst v<r<t AT

+ (/MT[y(T)2 +y(r)2 VDU dr) ).

AT
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For each e there is a constant C. independent of T" such that

AT AT
( / y(r 2O PY )2 < sup y(r A )P / )2/ dr) V2
v VAT

AT v<r<t

A
<e sup y(rAT)+ CE(/ 1(r)/P dryP/?

v<r<t AT

tAT
<e sup y(rAT)+ CE/ I(r)dr.
VAT

v<r<t

So, there is a constant C' such that

AT
E sup y(r A7) < CE[y(v AT) + sup y(r/\i’)(t—v)l/2 —l—//\ (f(r)+1(r))dr],
v<r<t v<r<t VAT

and we can find g such that for [t — v| < g

E sup y(rAT) gC’E[y(v/\T)—F/ T(f(r)+l(r))dr].

v<r<t

AT

Now, the estimate easily follows. O

In the following two corollaries we combine Propositions 1 and 2, 3.

Corollary 3 Let s € (—o0,00),p > 2. Assume that for each v GHZ'H, Q(v,t) is a predictable
H5 ™ -valued process and D(v,t) is a predictable HS-valued process. Let A, A1(s+1,2), A2(s+
1,2), A3(s,2) be satisfied, |ug|s+1,2 < 0o with probability one, and for all t > 0,v GHEH,

QMW D)l ls+1.2 <[1Q0, )] |s41,2 + ClV]ipy o

‘D(Vat)‘s,Q S ‘D(Ovt)‘&? + C‘V’s+1,2'

Suppose also that,
t
[ 11RO+ DO dr < o

P-a.s. for allt. Then (4.1) has a unique continuous ]I-]I§+1- solution. Moreover, for each T > 0,
there is a constant C' such that for each stopping time 7 < T and set A € Fy,

;
Elasup [u(r)[gy 5 < CElafluolgy 5 +/0 (ID(0,7)[ 2 + 11Q0,7)[ 311 5) dr].

r<T
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Proof Since all the assumptions of Proposition lare satisfied, there is a unique H§+L solution
u for which the estimate of Proposition 1 holds. Then applying again Proposition 2 to s+ 1 and
the linear equation

O (t,z) = 9 (a (t, x)0;€) + D(u,t,x)+
0" (t, 2)0k&(t, ) + Q(u, t,2)] - W,

£(0,z) = h(z),

and using the fact that £ = u we obtain the statement. (|

Corollary 4 Let s € {0,1,...},p > q > 2. Assume that for each v EH;;“, Q(v,t) is a pre-
dictable HZ‘H -valued process and D(v,t) is a predictable Hy -valued process. Let A, A1(s+1,q),
A2(s + 1,q), A3(s,q) be satisfied, [Uols42-2/qq < 00 with probability one, and for all t >
0,v EHZ‘H,

QMW D541, < Q0 D) [s41,4 + ClViy1 4

DV, 8)ls,g <D0, 8)]s.4 + ClV]gyy g

Suppose also that,
t
[ 110071, + DOz, dr < o

P-a.s. for allt. Then (4.1) has a unique continuous HZH- solution. Moreover, for each T > 0,
there is a constant N such that for each stopping time 7 < T and set A € Fy,

,
Elysup [u(r)gy, < NELa[luofgy , + /0 (D0, r)[Z 4 + [1Q0,7)[[T41,4) dr].

r<t

Proof Since all the assumptions of Proposition lare satisfied, there is a unique HZ*L solution
u for which the estimate of Proposition 1 holds. Then applying again Proposition 3 to s+ 1 and
the linear equation

iE(t,x) = 0;(a (¢, x)0;¢) + D(u,t,z)+
[0 (t, 2)0k&(t, ) + Q(u, t,2)] - W,
5(0,:1:) - h(x),

and using the fact that £ = u we obtain the statement. (|
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