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Abstract

Consider the following forest-fire model where the possible locations of trees are the sites
of a cubic lattice. Each site has two possible states: ‘vacant’ or ‘occupied’. Vacant sites
become occupied according to independent rate 1 Poisson processes. Independently, at each
site ignition (by lightning) occurs according to independent rate lambda Poisson processes.
When a site is ignited, its occupied cluster becomes vacant instantaneously.

If the lattice is one-dimensional or finite, then with probability one, at each time the state
of a given site only depends on finitely many Poisson events; a process with the above descrip-
tion can be constructed in a standard way. If the lattice is infinite and multi-dimensional,
in principle, the state of a given site can be influenced by infinitely many Poisson events in
finite time.

For all positive lambda, the existence of a multi-dimensional infinite volume forest-fire
process with parameter lambda is proven
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1 Introduction

Systems that exhibit self-organized criticality (SOC) have attracted much attention, since they
might explain part of the abundance of fractal structures in nature. SOC is based upon the idea
that complex behavior can develop spontaneously in certain many-body systems whose dynamics
vary abruptly. In [4] H.J. Jensen gives a general overview of and introduction to self-organized
criticality. Within the study of SOC, the Drossel-Schwabl forest-fire model has received much
attention in the physics literature. See e.g. [6] for current insights.

In contrast to the Drossel-Schwabl forest-fire model, in the forest-fire process studied in this
article the time is continuous, the space is infinite and the fire spreads with infinite speed.
Informally, it is described as follows: Let d > 1 and S be a subset of or equal to Z¢. Each
site of the set S is either vacant or occupied by a tree. Vacant sites become occupied according
to independent rate 1 Poisson processes, the growth processes. Independently, lightning strikes
at each site according to independent rate A Poisson processes, the ignition processes. When
an occupied site is ignited, its entire occupied cluster burns down, that is, becomes vacant
instantaneously. Here A > 0 is the parameter of the model.

In [2] J. van den Berg and A. A. Jarai study the asymptotic density in a forest-fire model on Z!.
They show that regardless of the initial configuration, already after time of order log(1/A) the
density of vacant sites is of order 1/log(1/A). In [1], J. van den Berg and R. Brouwer let forest-
fire processes on Z? start with all sites vacant and study, for positive but small \, the behavior
near the ‘critical time’ t.; that is, the time after which in the modified system without lightning
an infinite occupied cluster would emerge. They show that under a percolation-like assumption,
if for fixed t > t., they let simultaneously A tend to 0 and m to infinity, the probability that
some tree at distance smaller than m from 0 is burnt before time ¢, does not go to 1.

The subject of this article is the question posed in [3] and [2], whether the multi-dimensional
infinite volume forest-fire model is well defined for each parameter A > 0.

On a finite set S, with probability 1, the finitely many Poisson processes of growth and ignition
at the sites of S are discrete in time. That is, there a.s. exists an enumeration of the growth and
ignition events. Given this enumeration, a forest-fire process on .S can be constructed recursively.
The sketch of the construction of a forest-fire process on a finite set can be found in Section 3.1.

However, if the set S is infinite volume, then such an enumeration almost surely does not exist,
and thus a recursive construction is impossible. Only in the special case S = Z!, suppose that
we start with a configuration in which infinitely many sites on the negative and on the positive
half line are vacant. Then almost surely there are, at each time ¢ infinitely many sites (on both
half lines) that have remained vacant throughout the interval [0,¢]. These vacant sites divide
the infinite line into finite pieces, which enables a graphical representation; see e.g. [5].

To construct a forest-fire process on Z%, we use in Section 3.2 a sequence of forest-fire processes
on the finite sets BY := {y € Z4| ||ly|loo < n}, n > 1, tightness, a diagonal sequence argument
and Kolmogorov’s Extension Theorem. In Sections 3.3 up to 3.5 it is shown that in fact the
constructed process satisfies the definition of a forest-fire process on Z¢. That is, for all d € N
and all A > 0, there exists a forest-fire process on Z? with parameter A. Finally, it is shown that
in a forest-fire process on Z%, a.s. there does not exist an infinite cluster.

The formal definition of a forest-fire process and the main results are stated in Section 2.
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2 Definition of a forest-fire process and main results

2.1 Definition of a forest-fire process

Definition 1. For all F C Z% and all z,y € Z¢, the relation x < y holds, if x and y are
connected by a path in F, that is, if there exists a sequence x = xg,1,...,T, = y of distinct
sites in F s.t. for all 1 <i < n, the relation ||x; — x;—1||1 = 1 holds.

Definition 2. Let S C Z% and (Mt,2)t>0,zc5 be a process with values in {0, 1}° whose left limits
(limgy¢ 7s,2)¢50 = (M- 2)e>0, © € S, exist. For all t € RY, we define F- = {y € S’ M-y =1},
and for all x € S, the set

X <—>Fr y}

We consider the following forest-fire model where the possible locations of trees are the sites
of a subset of the lattice Z¢. Each site has two possible states: ‘vacant’ or ‘occupied’. Vacant
sites become occupied (growth of a tree) according to independent rate 1 Poisson processes.
Independently, at each site ignition (by lightning) occurs according to independent rate A Poisson
processes. When a site is hit by ignition, its entire occupied cluster burns down, that is, becomes

Ct_,x = {y S S

to be the left limit of the cluster at x at time t.

vacant instantaneously.

Definition 3 (Definition of a forest-fire process). Let S C Z? and A € RT. A forest-fire
process on S with parameter \ is a process Ty = (ﬁm)wes = (nt,x, G, Itvm)meS with values in
({0,1} x Ng x NO)S, t > 0, that has the following properties:

(a) The processes (Giz)i>0 and (It z)i>0, © € S, are independent Poisson processes with
parameter 1 and \, respectively;

) ) ) s LTy - 1 i
(b) For all x € S, the process (Ntz, Gtz Itz)t>0 is cadlag, i.e., right-continuous with left
limits;
c) For allt € R}, the increments of the growth and ignition processes after time t, (Gyqs.0 —
0 + 9y
Gtas Ltrsz — It o)s>00es, are independent of the forest-fire process (7s)o<s<t up to time t;
(d) For allx € S and all t > 0,
o limy Gs o =1 Gy, < Gio = Ma=1;
(Growth of a tree at the site x at time t = The site x is occupied at time t)

® Ni—x < Mtxe = Gt—,x < Gt,x;
(The site x gets occupied at time t = Growth of a tree at the site x at time t)

o limgy lsp =11, <Ltz =VyeCp y: ney=0;
(Ignition at the site x at time t = All sites of the cluster at x get vacant at time t)

® M-z > Mo = 3@/ € Ct—J : It—,y < It,y-
(The site x gets vacant at time t = The cluster at x must be hit by ignition at time

t)
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For all € S, we call (Gy,)i>0 the growth process, (I;;)¢>0 the ignition process and (1z)¢>0
the forest-fire process at the site x. We say that the site € S is occupied at time t, if 7y , = 1
holds, and vacant, if 7;, = 0 holds. For all ¢ € R, we define F; := {a: € S| Mew = 1}, ie.,
the set of sites that are occupied at time t. We say that the sites = and y are connected by an
occupied path at time ¢, if © <, y holds. Maximal connected sets of occupied sites are called
clusters. For all t € ]Rg and all z € S, we define the cluster at x at time ¢ by

Ciop = {y € S” T F y}
It is called right continuous if for all ¢ > 0, there exists an ¢; > 0 s.t. for all ¢’ € [t,t + ¢ ), the
equality C;, = Cy , holds.
The events
Gz = {Gt’,x < Gt,x} and Ty ¢, = {It/,x < It,z}
describe the growth of a tree and ignition at the site z in between time ¢’ and ¢ > t/, respectively.

¢ := (n0,z)zes is called the initial configuration of the process. We define F := {z € §: (; = 1},
and for all x € S,

Cewi={y€ S| T —F, y},

i.e., the cluster at x in the initial configuration (. We write

Ve e S:|Cesl < oo},

to denote the set off all initial configurations that do not contain an infinite cluster.

Given events (A;)1<i<n, We sometimes write {A;, A, ..., A} = Ni<i<nA; to denote the inter-
section of the events; we write A7 Cy As, if there exists a null set M s.t. A7 € Ay U M holds.
The complement of a set A is denoted by CA. Given a probability space (2, F, 1), we write F
to denote the completion of the o-field F.

2.2 Main results

Theorem 1. For all d € N, all real numbers A > 0 and all { € Z%mte, there exists a forest-fire
process on Z% with parameter \ and initial configuration .

Theorem 2. Let d € N and let (7;4);>0 zcze be a forest-fire process on Z% with parameter

A > 0 and initial configuration ( € Z le%‘m'te' Then a.s. there does not exist an infinite cluster in

the process (Mtx)¢>0.1ezd, that is, the set
{El:c €ZP I eRS : |Cryl = oo}

is a null set. Moreover a.s. the left limits of the clusters are finite, that is, the set
{El:c €ZIHEeRT: [Cf .| = oo}

is a null set.
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3 Construction of a multi-dimensional infinite volume forest-fire
process

The goal is to show that there exists a process that satisfies the definition of a forest-fire process
on Z%. Therefore in Section 3.1, we first sketch the construction of forest-fire processes on finite
sets. In Section 3.2 we use a sequence of forest-fire processes on finite boxes to construct a
process on Z%. Sections 3.3 up to 3.5 are used to show that the constructed process a.s. satisfies
the definition of a forest-fire process.

3.1 Construction of a forest-fire processes on finite sets

Let S C Z¢ be a finite set, and ¢ € {0,1}° be an initial configuration. The finitely many growth
and ignition times at the sites of S are a.s. discrete. That is, there a.s. exists an enumeration
(depending on w) of the growth and ignition events. Given this enumeration, we construct the
forest-fire process on S recursively.

To begin, let (Gt g)i>0, € S, be 1.i.d. Poisson processes with parameter 1, and independently
let (I;z2)i>0, * € S, be i.i.d. Poisson processes with parameter A > 0. For all z € S, we denote
the time of the n’th jump of the process (Gtgz)t>0 by gnz; that is, the random variable g, »
is the time of the n’th growth of a tree at the site . The n’th ignition at the site x, that is,
the n’th jump of the process (It )i>0 is denoted by iy .. To describe a growth attempt or an
ignition event, we write (¢, z,e): t denotes the point in time, x the site and e the type of the
event. In case of an ignition e = 0, otherwise e = 1.

A.s. the random variables (¢n z)neny and (inz)nen, @ € S, take discrete values in RT. For all
n € N, we write

(tnaxnaen) S U {(gk‘,max? 1)U(’Lk,$7l‘70)}a tl <t2 <t3)"'
(k,x)eENxS

to describe the n’th event. Given this enumeration of growth and ignition events, we construct
a ‘discrete in time’ version of the forest-fire process. For all x € S, we define

discr .__
Mz = Cfﬂ’
and recursively for all j € N|

1, ife; =1, 2 =uxj

di : _ .

diser . __ n]?f;ﬁ if € = 1’ T 7& Ly
BTN 0, e =0 :
, ife; =0,z «—p_, z;;

discr : - .
niey ifej =0, 4—p, x

To explain the construction, note that in the first case, there is the growth of a tree at the site x.
Thus the site 2 is occupied. In the second case, there is the growth of a tree at z; # x; the state
of the site x remains unchanged. In the third case, there is an ignition at a site that is connected
to x by an occupied path; the site x gets vacant. In the last case, the ignition occurs at a site
that is not connected to x by an occupied path; the state of the site x remains unchanged.
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For all j € Nyg and all z € S, we define (taking ¢y = 0)

. _discr
(Ut,x)tj§t<tj+1 =N -

Remark 1. Restricted to the complement of a null set, the process

(71t)t>0 := (N2, Groos Itz)west>0

is well defined and satisfies the definition of a forest-fire process on S with parameter A and
initial configuration (.

3.2 Construction of a process ij on Z?

Definition 4. For all v € Z¢, alln € N, Iet Bg}w = {y € Z% ||z — y|loo < n} be the hypercube
with center x and size 2n. In case of x = 0, we write B := ng

First a less formal overview of the construction: To construct a forest-fire process on Z%, we use
the sequence of forest-fire processes on the finite sets (B%),,>1. We embed these processes into Z¢
and realize them to be canonical processes on probability spaces (ER(TXZd,IB%(ERgXZd), 'u")neN’
E :={0,1} x Ny x Ng. If we restrict this sequence of embedded processes to a finite set of
time-space points S C @ar x Z%, then by tightness we get the existence of a weakly convergent
subsequence. Thus using an appropriate sequence of finite sets of time space-points S T Q(J{ x 7%,
tightness, a diagonal sequence argument and Kolmogorov’s Extension Theorem, we get the
existence of a process defined for all time-space points in Qar x Z%, which is closely related to
the forest-fire processes on the sets (Bg)nzl. Finally, restricted to the complement of a null set,
we define the forest-fire process on Z? to be the right limits of the latter process.

canonical

(ER(J)rXZd7B(ERarXZd)’Mn)n€N M ((ng;m ?,a:’It??:E)(t,z)eRa_XZd)neN

canonical
projektions

canonical
S S processes & k k
(E k B(E k)’M”vk)n,keN — ((nfm ,GZZ ,I:x )(t,a:)ESk)n,kEN

weak convergence
’VLl — 00

(EhglC ) B(Esk)a HE com})keN < ((ﬁﬁfomv Gﬁfoma Iﬁxcon’u)(t,x)esk)keN

Kolmogorov
Extension Theorem
canonical

o tod process Q Q 7Q
(B9 B(E® X2, ng) s (.2 G Leia) (1.0 <20
ofct)}r:ep(l’eiig;\ld l(nt@,Gt@,Itvz)::limslt(ngz,ng,fgz)
©.5.1) O p—

Figure 1: Construction of a forest-fire process on Z%

To begin the construction let A > 0 and ((;),cz4¢ € Z%the be an initial configuration that does
not contain an infinite cluster. Let (Gig)i>0 and (Lt z)i>0, © € Z¢, be independent Poisson
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processes with parameter 1 and A, respectively. For all n € N, let (ngz),Gt,x,Im)tzo,xeBg be
the forest-fire process on BZ with initial configuration (¢;),e pa and driving growth and ignition
processes (Gt,m)tzo,zeBg and (It,m)tzo@egeg-

We embed these processes into Z¢ and realize them to be canonical processes. For all n € N, let
1n be the distribution of the process defined by

('f]n ) — (nt(:}c)a Gt,zy It,a;)tzo ifx e Bg,
t,x)t>0,2€Z4 * (07 Gt,m It’w)tZO if ¢z € 74 \ B,ﬁf

We define the forest-fire process on BY embedded into 7%, i.e., (ﬁ?x) >0mczd =

n I to be the canonical process (identity map) on (ER(TXZGZ7 IBS(ERJXZC{), ,un).

(773507 t,wIt,x)tzo,erd’
Remark 2. For all n € N, the distribution of the process (7;';):>0 z¢ pa is the distribution of a
forest-fire process on B2 with parameter A and initial configuration ({;),c pd- The distribution
of the processes (G},)i>0 and (If';)i>0, T € Z%, is the distribution of independent Poisson
processes with parameter 1 and A, respectively.

Let (€,)nen be an enumeration of the countable set QF x Z¢, and set Sy, := {e;|1 < i < k}. For
all k € N, let (pink)n>1 be the canonical projection of the measures (fin)n>1 onto the set ESk.
Since |Sk| = k, we sometimes identify E% = EF,

Lemma 1. For all k € N, the sequence (pi 1), ~, on (E%,B(ES")) is tight.

Proof. Let k € N. We have to show that for every € > 0, there exists a compact set K, C E° s.t.
for all n € N, the relation umk(CKe) < € holds. Let € > 0. Since the set S}, is finite, we can choose
anatural number m, > 0s.t. for alln € Nand all (¢, z) € S, the relations py, i (G"(t, x) > mg) <
ﬁ and pu, 1 (I"(t, ) > me) < ﬁk‘ hold. The set K, := ({0,1} x {0,...,mc} x {0,...,mc})%
has the required property. ]

Lemma 2. There exist a strictly increasing sequence of natural numbers (n;);cn and probability
measures ({x conv)ken S-t. for all k& € N, the sequence (,um,k)leN converges weakly to fig cono-

Proof. By recursion we show that there exist probability measures (1 conv)ken, and for all k € N,

a subsequence (nl(k+1))leN - (nl(k))leN s.t. for all 1 < i < k + 1, the sequence (Mn(k+1) i)ZGN
l b

converges weakly to fi; cony. The result follows if we define (n;);en to be the diagonal sequence

taken from ((nl(k))leN)keN'

To begin the recursion, by Lemma 1 the sequence of probability measures (1 1)nen is tight.
The space E! is discrete and countable. We can choose a subsequence (nl(l))leN C (n)nen s.t.
the sequence (/,Ln(l) 1) converges weakly to a probability measure (1 cony-
(]
In the recursion step, let (1 conv)1<i<k be probability measures and (nl(k))leN be a strictly in-
creasing sequence of natural numbers s.t. for all 1 < i < k, the sequence (un(k) i)l c
]

leN

N converges

/Anl(k),kﬂ)leN is tight. The space ESk+1 is discrete

and countable. We can choose a subsequence (nl(kﬂ))leN - (nl(k))leN s.t. forall 1 <i<k+1,

converges weakly to a probability measure t; cone-

weakly to @ conv. By Lemma 1, the sequence (

the sequence (Mnl(k“> i)leN
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O]

In this article it is not studied, whether the probability measures (1 conv)ken are unique, that
is, whether they depend on the choice of the sequence (n;);cn. Therefore from now on, we choose
an arbitrary sequence (n;);en and probability measures (ik cony)ren that satisfy the property
from Lemma 2.

For all b € N, It (7E7) 1o, 1= (£, G, 1)
(Esk ) B(ESk)7 273 conv) .

Lemma 3. The sequence of measures (fix conv)pen 15 consistent.

(t,2)ESk be the canonical process on

Proof. Let k € N. The space E®F is discrete. By the weak convergence for all (wih<j<k € EF =
ESk | we have

Ph+1 conv({wl} X - X {wg ) X E) = llifélo#nl,kﬂ({wl} X - X {wg} X E)
= B g, g (for} x o< {wr})
= Mk conv({wl} X+ X {wk})

The space E°* is countable, the result follows. ]

For all £ € N, we write mg, to denote the canonical projection from EW X2 onto ES%. As a
direct result from Lemma 3 and Kolmogorov’s Extension Theorem, we get

Lemma 4. There exists a unique probability measure jg on (EQSFXZCI,IB(EQ(T XZd)) s.t. for all
k € N and all A;, € B(E®*), the equality

7o) (Wskl (Ak)> = ftk conv (Ak)

holds. (Uniqueness with respect to the measures (g conv)keN-)
Let (77@ ) = ( 2 G2 o ) be the canonical process on the probability space
tx)teQf ,xezd N Gtz Lo teQ ,wez? p p Y Sp
(BG X7 B(EUWXE") ).
By Remark 2 for all n € N, the distribution of the processes (Gi,)i>0 and (I}, )i>0, T €
7%, is the distribution of independent Poisson processes with parameter 1 and \, respectively.
Thus for all k € N, the distribution of the processes (Gf ™) mes, and (IF7™) ¢ nes, 1S
independent of the chosen subsequence (n;);en, and is equal to the distribution of the processes
(Gt2)twyes, and (I1,)¢)es,- Uniqueness provides that the distributions of (ng, Iga:)te@g w7
and (G%@, th),) teQt ez must be equal. Poisson processes are right continuous with values in
Np. We get

Lemma 5. Restricted to the complement of a null set, for all € Z?, the processes

(Gta) teRE T ( lslﬁl ng) teRY
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and

(Itvx)telkaf = ( l;?tl I )teR+’

are well defined. Their distribution is that of independent Poisson processes with parameter 1
and A, respectively.

To show that a.s. for all x € Z?, the process (nm)t@v:: (lim ¢ ng)temg is well defined, we
0 K
first show

Lemma 6. Almost surely if a given site is vacant at time ¢’ and occupied at time ¢ > ¢/, then
there must have been the growth of at least one tree a the site in the time between. More
formally, for all « € Z,

MQ <3t/’t c an t/ < t: 77:97:0 < nl(fij’ G;Qj"r = ng> =0.

Proof. Let z € Z% and t',t € QFf, ' < t. By Remark 2 for all n € N, the distribution of
the process (1;)¢>0,zcp¢ is the distribution of a forest-fire process on B2. The definition of a
forest-fire process implies that a vacant site can only have become occupied, if there has been
the growth of a tree at the site. That is, for all n € N, the set {nﬁm <Mz Gy, = ”x} is a
null set.

The relation Sy 1 Qg x Z% as k — oo holds; there must exist k € N s.t. (¢,2), (#,2) € Sg holds.
By the definition of the measure jq, the weak convergence and since the space ESk is discrete,
we get

1o (,,797 < 7715 o GQ G9m> = 11 conw (néﬂi conv - nf;om) Gk conv Gk conv>
= lim pi <77t, <k, G% =G} > = lim fip, (n;l <y Gy GZ;) =0.
500 l—o00 L

The result follows since ¢’ and ¢ run over the countable set Qa“ . O

Lemma 7. Almost surely for all z € Z% and all t € ]Rar, limg ¢ ngx exists, and limgp; ngm exists
for t > 0.

Proof. Let x € Z¢%. If there exists t € ]RSr s.t. limg), 7]91 does not exist, then there must exist a
strictly decreasing sequence (t,)nen of positive rational numbers with lim inf,, ng = 0 and
lim supn_>oo 778 , = 1. By Lemma 6, a.s. for all ¢,t € Q(T <t if 179 < 77;@35 holds, then

G . < G’ , must hold. Thus restricted to the complement of a null set, the relation GY =0

to,r

must hold. That is, a.s. there must exists to € QT s.t. Gto’x = oo holds, which is impossible. If
there exists ¢ € RT s.t. limgyy ngm does not exist, then a similar arguments yields to the same
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result. Formally we have for all z € Z¢,

{Elt eRJ: hm 175 ., does not ex1st} {Ht € Rt : hm 175 ~» does not ex1st}

2 .
sy ﬂ{ (tisti)i<i<n € (QF)"V1I<i<m: th<t; <ti_y, 779@ < ng’x}

th Q+ neN

cNu ﬂ{G@ >n}

t' €Q+ neN
with a null set N by Lemma 6. 0
Let N be a null set s.t. restricted to the complement of the set A/,

e Forall z € Z% and all t € Rg, limg ¢ ngz exists, and limgpy ngx exists for ¢ > 0;

e The processes (Gt ;)0 ::(limslt ng)teRg and (It z)t>0 ::(limslt Ii,@x) x € Z% are

teR}’
independent Poisson processes with parameter 1 and A, respectively. In particular, we

require for all x € Z%, the processes (Gta)e>0 and (Itz)i>0 to be cadlag, increasing with
values in Ny, and that the relations lim; .o, G, = 0o and limy_.o It = 0o hold.

By Lemma 5 and 7 such a null set A exists.

Definition 5. We define the forest-fire process on Z% by

<limsit (ngx, ng, I;Qw)> on CNV;
t>0,xcZ
(0,0,0) on N.

(ﬁt,x)tzojxezd = (nt717Gt,fE’It’z)t20,a}€Zd T

Let p be the measure ug associated to the completion of the o-field IB%(EQSLXZd).

As a direct consequence of the choice of the null set N, we get

Lemma 8. For all z € Z%, the process (TZt,x, Gz, It,x)t>0 is cadlag.

Proof. Let € Z%. The choice of the set A/ in Definition 5 implies that it suffices to show that
the process (1:q)i>0 is cadlag. It is right continuous since formally, the relation

{Eit ERF Ve>03t €t,t+e€): mu 797%’,:6}
:{EtGRa' Ve>03t €t,t+e): hmnsz # l}ﬁlfns I}\N

C {Elt eERJ: 1i1ﬁ1 1, does not exist} W =10
S

N
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holds. The relation

{Et €eRT: h%l 1s, does not exist} _{Et €ERT: 11%1 lirln 779 , does not exist} \N
] sTt s'|s ’

C {Elt eRt: lirTn 7791 does not exist} W =10
st ’

CN
shows that the left limits of the process (14 )i>0 exist. O

Theorem 3. Restricted to the complement of a null set, the process (1.z)i>0 zez¢ satisties the

definition of a forest-fire process on Z¢ with parameter A\ and initial configuration ¢, Definition
3.

Proof. Sections 3.3 up to 3.5 are used to prove the Theorem. O

3.3 The relation of the process 77 to the forest-fire processes on the finite
boxes

Although we call the process defined in Definition 5, namely the process (7 x);>0 zezd, @ forest-
fire process, up to here it is not clear whether it satisfies the definition of a forest-fire process on
Y/

To define the process (7tx)i>0zez4, We used a sequence of finite volume forest-fire processes
which we embedded into Z¢, namely the processes (M2)t>02ez4, m € N There is a close
relation between these finite volume forest-fire processes and the process defined in Definition 5,
(7t,2)1>0 zeza- This relation is noted in the following Lemma and will be used several times to

show that the process (7t )>0 zeze Satisfies the definition of a forest-fire process on ze.

Lemma 9. Let A be an event which is described by the configuration of finitely many sites at
finitely many points in time. If there exists a natural number N such that for all n > N, the
event A is a.s. impossible in the finite volume forest-fire processes (7, );>0 »cz4, then the event A

is a.s. impossible in the process (7 s );>0 pczd- More formally let S C Z? be a finite set of m € N

sites, let h € N and A € B((E)"). If there exists N € Ns.t. forall ty <ty < -+ <t € Qf
and all n > N, the set

{(”Z,x)xes,1gz‘gh € A}

is a null set, then the set

{Htl,tg,...,th € Ra_ Dl <t < < g, (ﬁtivw)xes,lgigh S A}

is a null set.
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Proof. Let S, m, h and A be as in the statement of the lemma and assume that there is a
natural number N with the properties mentioned in the lemma. According to the definition of

the process (ﬁt7$)t207xezd, we get

{Htl,tz,...,th ERy : ty <to < <tn, (M) yegicicn € A}

Q{Eltl,tg,...,th ERS: t1 <ta<- - <tp, (iif{;ﬁgx)xe&lggh € A} UN
:{Htl,tg,...,th S Ra_ Dt <o < --- < g, (iiﬁﬁgx)xes,lgigh €A,
VI<i<h3e>0Vteltti+ea)NQ: (Lif?ﬁgx)xes = (ﬁg’m)mes} UN

g{at’l,tg,...,tg €Qp: ty <ty <---<ty, (ng,z)xes,lgigh S A} UN.

Let t) < th < --- <t € Qf. The relation S*¥ T Q} x Z¢ as k — oo holds. Thus there exists
k€ Ns.t. forall 1 <i < hand all x € S, the relation (¢}, ) € Sy, holds. By the construction of
the measure g, the weak convergence and since the set ESk is discrete, we obtain

,Q o _k
HaQ <(77t§,x)xes,1<z’<h € A) = Pk conv <(77t§7§0m)xes,1<i<h € A>

— 1 =ny,k _ =1 —
*llfgo Fny ((”t;,m )xes,1gz‘§h = A) = lliglo Hony ((”t;,a:)xesggigh = A) =0.

The last equality comes from the assumed property of N. The result follows since ¢},t5,...,t},
run over a countable set. O

Lemma 10. Almost surely a vacant site cannot get occupied, if there is not the growth of a
tree at the site. More formally, for all z € Z9, the set

{Elt € Rg M- < Mt EGt—,t,x}
is a null set.

Proof. Let x € Z¢. By Remark 2 for all n € N, the distribution of the process (M2)e>0,0cBd 18
that of a finite volume forest-fire process on BZ. We know (see Definition 3) that finite volume
forest-fire processes have the property that a vacant site can only have become occupied, if there
has been the growth of a tree at the site. Thus for all n € N and all ¢/,t € Qg, t' < t, the set
{nl}w < Ni'as EGZWE} must be a null set. Lemma 9 provides that the set

{Ht ERY : M- o < Tt BGt,t,:c} C {Ht/,t eRy : ' <t my < g, EGt’,t,w}
is a null set. O

Definition 6. The (countable) set of all finite and non-empty connected subsets of Z@ is

cl = {C’CZd

1<|Cl < o0, Ve,y e C: x<—>cy}.
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Lemma 11. Let S € C/ be a set of finitely many connected sites. Suppose that the occupied
set S is hit by ignition. Almost surely if a site of the set S is occupied after the ignition, then
there must have been the growth of a tree at the site. More formally, for all S € C¥, the set

{Ht/,t S RS_ : t/ < t, S Q Ft/, Hy S S : It’,t,ya dz € S : Ntz = 1, BGt',t,z}
is a null set.

Proof. Let S € Cf. By Remark 2 for all n € N, the distribution of the process (M2 e>0,0cBd 18

that of a finite volume forest-fire process on BZ. We know (see Definition 3) that finite volume
forest-fire processes have the property that if an occupied site is hit by ignition, then the site
and the cluster at the site must get vacant. Thus if the occupied and connected set S has been
hit by ignition, then a site of the set S must have become vacant. Furthermore finite volume
forest-fire processes have the property that if a site of the occupied and connected set S gets
vacant, then the whole set S must get vacant. Finally, in a finite volume forest-fire process a
vacant site remains vacant, if there is not the growth of a tree at the site. That is, for all n € N
and all ¥',t € Qf, t' < t, the set

{SQ v, eSS Iy, Iz€S: n, =1, EGﬁ7t7z}

is a null set. The result follows by Lemma 9. O

Lemma 12. Suppose that two sites are connected by an occupied path. If one of them has
become vacant and there has not been the growth of a tree at the other site, then a.s. the other
site must have become vacant, too. More formally, for all z,y € Z%, the set

{Eltlut € RS_ : t/ < tu € (_)Ft’ Y, 7It,y = 07 7It,:c = ]-7 EGt’,t,x}
is a null set.

Proof. Let z,y € Z. By Remark 2 for all n € N, the distribution of the process (ﬁgx)tzo,xeBg is

that of a finite volume forest-fire process on BY. We know (see Definition 3) that finite volume
forest-fire processes have the property that if an occupied site gets vacant, then the whole
occupied and connected set at the site must get vacant. Furthermore finite volume forest-fire
processes have the property that a vacant site must remain vacant, if there is not the growth of
a tree. That is, for all S € C/, for all n € N and all t/,t € @Sr, t' < t, the set

{x,y €S, SCE! nty=0,ny=1, UG?W}
is a null set. It follows by Lemma 9 that for all S € C/, the set
{Ht',t € RS’ ct <t z,ye S, SCFy, Nty =0, Nta =1, CGt/’m}

is a null set. For all ¢ € Rg, the relation z < p, y = {EIS ecf: zyes SC Ft/} holds.
Thus the result follows since the set C7 is countable. O
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Definition 7. For all S C Z%, we define
08 = {:U € Zd\S’Ely €S: |lz—yh= 1},

i.e., the set of sites next to S. A site can have at most 2d neighbors. Thus we have |0S| < 2d|S|,
provided that |S| < oo holds.

Lemma 13. Almost surely if there is no ignition at and not the growth of a tree next to a finite
cluster, then the cluster remains unchanged. More formally, for all S € Cf and all z € Z%, the
set

{Hto,tl,tg € Rg D tg < tp < to, Cto,x = S, Vy €s5: BItO,tQ,y, Vz € 9S : CGt07t27Z, Ctl,:p 7'5 S}

is a null set.

Proof. Let © € Z% and S € Cf. By Remark 2 for all n € N, the distribution of the process
(M'2)i>0,0cpe is that of a finite volume forest-fire process on B2, We know (see Definition 3)
that finite volume forest-fire processes have the property that if there is no ignition at and not
the growth of a tree next to a cluster, then the cluster remains unchanged. Thus for all n € Z¢
and all tg,t1,%t9 € Qar, to < t1 < tg, the set

{cg;,xzs, vyes: CI vzeds: CaGp,, .. Cg,ﬁés}

n
to,t2,y’

is a null set. The result follows by Lemma 9. O

Lemma 14. For all ¢t € Rg , the increments of the growth and ignition processes at the sites of
Z¢ after time t, (Gs+t7$ — Gt g Lot g — Im) are independent of the forest-fire process

on Z% up to time t, (77573[;)

$>0,x€Z’

0<s<tx€zd"

Proof. In the first step, we show that for all ¢t € Qf{ and all £ € N, the o-fields

ff = U{ﬂ'Sk ((ﬁga;)sgt,:cézd) }

and
k
Zt = O-{ﬂ-sk ((Ggrs,x - G(gaﬂ Igs,m - Igz)s>0,z€Zd)}

are independent.

Let t € Qf and k € N. By Remark 2 for all n € N, the distribution of the process (M2)t>0,2 BY

is that of a finite volume forest-fire process on BY. We know (see Definition 3) that finite volume
forest-fire processes have the property that the increments of the growth and ignition processes
after time ¢ are independent of the forest-fire process up to time t. That is, for all A € FF,
B € ZF and all n € N, the relation

Hon,k (ﬂ—Sk (A N B)) = Hnk (T‘-Sk (A)) *Hnk (ﬂ-sk (B))
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holds. By the definition of the measure pg, the weak convergence and since the space ESk is
discrete, we get

}UQ(A N B) = Kk conv (Wsk(A N B)) = lliglo Hny k (WSk (A N B))
= llif& My k (ﬂ-Sk (A)) : lliglo My ke (7"'5’;€ (B)) = Kk conv (ﬂ'Sk (A)) * Kk conv (71'51C (B))
= ng(A) - po(B).

That is, for all ¢ € Qg , the o-fields FF and ZF are independent. It follows by a Dynkin argument
that for all ¢ € @ar, the o-fields

# ol [t} ana 28 = o{ | 21

keN keN

are independent.

The definition of the process (7 ) cz4, Definition 5, implies that for all ¢ € R,

tE]RaL,m

Fi ::a{ﬁs,xzogsgt,xEZd} - ﬂﬁ;@

s>t

Again a Dynkin argument shows that the o-field O'{U3>tZéQ} is independent of F;.

The processes of growth and ignition are right continuous with values in Ny. For all sets of
finitely many sites S C Z9, |S| < oo, the relation

U{GHW — Gy liyse —Liw: 5> 0,1 € 5} C 6{Us=: 22}
holds, and by a Dynkin argument we obtain
2= U{GHM — G Iysa—Lip:8>0,2 € Zd} C 6{Us=: 22}
That is, for all t € ]Rar, the o-fields F; and Z; are independent. ]

3.4 Infinite clusters in the process 7

Intuitively, if there exists an infinite cluster, then a.s. it must immediately get hit by ignition;
a.s. the sites of an infinite cluster must immediately get vacant. By Lemma 8 for all z € Z7,
the forest-fire process at the site x, (¢ 4)t>0, is right continuous. This is a contradiction.

Lemma 15. For any fixed time, almost surely if a site is part of an infinite cluster, then the
site immediately gets vacant. More formally, for all £ € Rar and all 2 € Z%, the set

is a null set.
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Proof. Let x € Z% and t € Rg . The proof uses that if the cluster at z is infinite, then for all
n € N, there must exist an occupied path that connects the site x to a site in 832@.

For all T C Z4, for all S € {0,1}7, we define Fg := {2 € T: S, = 1}, and write for all n € N,

S = {S € {0,1} P10

dy € aBg’z DX ey y}
to denote the set of all configurations of BZ 41, n which there exists an occupied path that

connects the site x to a site in 8B7€f733. By Lemma 8, the growth process at the site x is right
continuous with values in Ny. Thus we have

{|Ct,x’ =00, >0Vt € [t,t+€): ny, = 1}

:{|Cm] =00, >0V €ft,t+e): p,=1, EGM/@}

< U ﬂ Z {(777572)ZGB§+1’$ =5, M+ to = 1, EGt,tJr,lc,x}'

keNneN SeXy, o

::AS,k,n,x

Here Zie[ B; denotes the union of the disjoint sets (B;)icr. For alln € N and all S € 3, ,, we
define

CS,n,z = {y € Bg-{-l,x

T < Fg 9}7

i.e., the set of sites in Bg,-i-l,x that are connected to x by an occupied path in Bg+l,x' Note that
for all n € N and all S € X, ;,the set Cg,, , must contain at least n + 1 sites.

Let n,k € Nand S € ¥,, ;. In Lemma 11 we showed that if a finite connected set of occupied
sites is hit by ignition, and a site of the set is occupied after the ignition, then a.s. there must
have been the growth of a tree at the site. Thus the relation

AS,k,n,x gN {(nt7z)Z€Bi+1,I = S, Vy S Cs,n,x : EIt,tJri,y}

holds. (Recall the definition of Cy at the end of Section 2.1.) By Lemma 14, the increments of
the ignition processes after time t are independent of the forest-fire process up to time t. We get

,u( Z AS,k,n,m) < Z M((nt,z)ZeBg+lz = S7 Vy S CS,n,a: : [‘:It,t-l—,lg,y)

SeEn,z Sezn,z
= Z M((ntz)zeBg_H’x = S> M(Vg/ S OS,n,g: : BIt,tJr,lc,y)
SEYn
‘CS,n,z‘ )\l n+l
= Z M<(nth)Z€Bﬁ+1,m = S) M(B IO,i,I) < (e k) :
SE€Yn o«

That is, for all £ € N, the relation

0< liminf< Z As,k,n,x) < limsup( Z ASJg,n,m) < lim (e_’\%) )

n—00 n—00
S€Zne R IS S
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holds. Thus the set

{\Ct,xl =00, >0V €[tit+e): ny, = 1} cUN > Askna

keENneN SES, 4
is a null set. O

Lemma 16. Almost surely if a site is part of an infinite cluster, then the site immediately gets
vacant. More formally, for all z € Z%, the set

{3t ERY : |Crul =00, Ie> 0V €[t,t+6): nyy= 1}
is a null set.

Proof. Let x € Z%. There are two possibilities if the cluster at  is infinite. The cluster at 2 can
immediately get finite (1), or remain infinite (2). If the infinite cluster at = immediately gets
finite, then immediately a site of the cluster at  must get vacant. Formally we have

{Elt ERJ : |Crpl =00, Je>0Vt €t,t+e€): my= 1}
Q{Elt ERJ : |Crul =00, Ie>0V €ft,t+e€): =1,
V6>03yeCrp It eft,t+6): npry= 0} (1)
U{HteRg 36 >0Vt € [t,t +6): th/7$|:oo}. (2)

Intuitively, if immediately a site of the cluster at z gets vacant, then the whole cluster, in
particular, the site £ must get vacant immediately. Formally since the growth process at the
site x is right continuous with values in Ny, the event (1) is a subset of or equal to

{Elt ERI Fe>0vt eft,t+e): mpe=1,0Gps EC, H Et,it+6): ey = 0}
Q{Ht, t* e R(T Ely € Zd i< t*a TR Y, e = 17 CGt,t*,xa Tty = 0},

which is a null set by Lemma 12.

The set (2) is a subset of or equal to
{Ht S QS_ : |Ct,:1:‘ = 00, de > OVt’ € [t,t+e) PNy e = 1}7

which is a null set by Lemma 15 and since the set Qg is countable. O

As direct result of Lemma 16, we get
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Lemma 17. Almost surely there exists no infinite cluster. More formally, the set
{ax €2 RS : [Crul = oo}
is a null set.

Proof. Let x € VA By Lemma 8, the forest-fire process at the site x, (7 5 )¢>0, is right continuous
with values in Ny. Thus we have

{Elt ERT: |Gl = oo} = {Elt ERS : |Crpl =00, Ie>0V €ft,t+e€): = 1}.

The result follows by Lemma 16. ]

3.5 The process 7 is a forest-fire process on Z?

To show the remaining properties of a forest-fire process, we first show that with probability 1,
the left limits of the clusters are finite: We give an upper bound C' < 1 for the probability that
a given finite cluster grows before it gets hit by ignition. Then we show that the probability
that a given cluster grows n times without being hit by ignition, is smaller than C™. That is, a
cluster a.s. can not grow infinitely often without being hit by ignition. It follows that the left
limits of the clusters must be finite.

Lemma 18. The probability that there is the growth of a tree next to a finite set S, before

there has been an ignition at the set S, is smaller than or equal to

C:=1- < 1.

2d + A
More formally, for all ¢ € R{f and all S ¢ Z4, 1 < |S| < oo,

,U(E't/ S RS_ Yy € S BIt,t’,ya dz €05 : Gt,t’,z) <.

Proof. Let S be a finite non-empty subset of Z¢. The distribution of the processes (Gt.z)t>0
and (I;4)i>0, * € S UOS, is that of independent Poisson processes with parameter 1 and A,
respectively. Thus the total ignition rate on S is A|\S|; the total growth rate on 95 is |0S]. Hence
the probability that there is a growth on 9.5 before there is an ignition on S is |0S|/(|0S]|+ A|S]),
which is at most 1 — \/(2d + \). O

Lemma 19. For all t € R(}L, let F; = a{ﬁs,x s <txé€ Zd} be the o-field generated by the
process (7s)s<t zezd- Let 7 be a finite F.-stopping time. Then the increments of the growth
and ignition processes after time 7 are independent of the forest-fire process on Z% up to time
7. The distribution of the increments after time 7 equals the distribution after time 0.

More formally, the o-fields F, := U{A‘Vt ER: An{r<t}e .7-",5} and Z, 1= U{Inch} are
independent. Furthermore for all A € B((No x NO)R(T XZd), the relation

p(Incr, € A) = p(Incrg € A) (*)
holds. Here we write Incr, := {GTJrM —Grolryse —Irp @ € Z4 s > 0} to denote the

increments of the growth and ignition processes after time 7.
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Proof. In the first step, let € > 0 and 7. be a F.-stopping time with values in eNg. Let A € 2,
and B € F;.. By the definition of Z;,, there exists A € B ((No x NO)ZdXRJ) s.t. A= {Incr, € fl}
holds. Forallt € R(J{ , the distribution of the process Incr; is that of the increments of independent
Poisson processes after time ¢. This provides that for all k,n € Ny, the relation

,u(Increk € fl) = M(Incrm € fl)

must hold. In Lemma 14 we showed that for all £ € Ny, the o-field F,; is independent of the
o-field Z,. It follows that for all n € N, the relations

1(A) =p(Incr,, € A)= Z p({Incre, € A} N {7 = ek})

keNo EZck EFer

= Z ,u(Incrm € fl) -,u(T€ = ek‘) = ,u(Incrm € fl)
keNy

and

(AN B) = p({Incr,, € A} N B) = Z p({Incre, € AynBN{r. = en})
n€Ng

Gzen e-ren

=" u(A) - w(B{re = en}) = u(A) - u(B)

n€eNp

must hold. That is, the o-fields .. and Z, are independent.

In the second step, let 7 be a finite F.-stopping time with values in Ra' . For all n € N, we define
a stopping time with values in %NQ, by 7, = %min{k‘ € Ng: k> r7-n}. Forall n €N, the
first step shows that the o-fields F,, and Z, are independent. Moreover for all n € N, the
relation 7, > 7 holds, and thus we have N,enFr, 2 Fr. That is, for all n € N, the o-field Z;,
is independent of the o-field F.

Let S be finite subset of Z¢, and let Incr, g := {GTH,I —Gralryse— Iz 2 €S,5> 0} be
the increments of the growth and ignition processes at the sites of the finite set S after time 7.
Let Ag € 25 := U{Inch’s}, and Ag € B((NO X NO)R0+XS) s.t. the relation Ag = {Incrﬂs € 1215}
holds. The finitely many growth and ignition processes at the sites of S are right continuous
with values in Ny. By the previous step, for all B € F;, the relations

,u(AS N B) = u({Inch,S € Ag}n B) = nhﬂnrolO ,u,({Inchms € Ag} ﬁ\Bf/)
eF,

€z,
= lim ,u(InchmS € AS) ~,u(B) = H(As) -M(B)

n—oo

and

N(Incrﬁg S ;15) = nh_)rgo ,u(Inchmg S /ng) = ,u(Incro,S € AS)

:u(lncro,segs)

must hold. That is, the o-fields Z° and F, are independent. Thus a Dynkin argument shows
that the o-fields Z, = U{USch,\SKoo Zf} and F, are independent, and that the relation ()
holds. O
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Lemma 20. If a cluster is finite, then it is right continuous. Formally for all 2 € Z% and all
te R(T , the relation

{\Cm[ < oo} = {\Ct,x] <00, >0Vt €ft,t+€): Crp = CM}
holds.

Proof. Let x € Z%. Suppose that the cluster at x at time t € R{ is finite and non-empty. By
Lemma 8, the finitely many processes (1) terfs Y € Ct o U OCy, are right continuous with

values in {0,1}. Thus there exists an € > 0 s.t. the cluster at = cannot change within the time
between t and ¢ + €. Formally for all ¢ € Rg , the relation

{1 <|Crgl < OO} = U {Cm =S, VyeSUdSTe, >0Vt €[t,t+ey): Ny = Ut’,y}
sect

= U {Ct@« =5, >0 vt e [t,t—i— 6) : Ct,:z: = Ct’,m}
Secf

= {1 <|Cizl <00, Ie>0VH €ft,t+e): Crp = Ct/@}

holds. If the site x is vacant at time ¢, then the result follows since the forest-fire process at the
site x, that is, the process (1) LeRS is right continuous with values in {0, 1}. O

Lemma 21. Almost surely a cluster can not grow infinitely often without being hit by ignition.
More formally, for all z € Z¢, the set

N .
{El(ti)iENo S (Ra_) 0 V/I’ S NO : t’L < ti-i-].) ‘Cti,:c| < ‘Cti+1,1‘|7 \V/t/ S [tiati-i-l) : nt/,af = 1}
is a null set.

Proof. Let € Z*. In Lemma 17, we showed that there a.s. cannot exist an infinite cluster.
Lemma 20 provides that if the cluster at x is finite, then it is right continuous. Thus we get

No .
{H(ti)ieNO € (Ry) *VieNy: t; <tiy1, |Chal < |Chiprwl, Y € [tistiz1) : my = 1}
N .
Cn U {H(ti)ieN € (RT)"VieNg: t; <tip1, |Crel <[Criprals Y € [titig1) s my o = 1}-

tOEQ(T ~"
=:At0

Let tg € QF. (Recall the definition of Cy at the end of Section 2.1.) We define a sequence of
finite F.-stopping times by 7y := tg, and recursively for all n > 1,
Jy e C;

Tp 1= min{t > Tho1 vz Loty or 32 €90, | 4 Grnl,t,z},

if 0 < |C7,_, 2| < oo holds, and 7, := 7,1 otherwise. That is, the time 7, is the first time after
Tn—1 at which there is an ignition at or the growth of a tree next to the cluster at x, if the cluster
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at x at time 7,_1 is finite and non-empty. For all n € N, the time 7, is finite, since we defined for
all y € Z%, the processes (Gty)i>0 and (I y)e>0 s.t. the relations limy_.oo Gy = limy o0 Ity = 00
hold.

By induction we show that for all n € N, if there exist ¢, > t,,_1 > --- > t1 > tg s.t. the relation
|Cto.2] <|Ctzl <...<|Ch, | holds, then a.s. the relation 7, < ¢, must hold. In other words,
if the cluster at = has grown n times, then there a.s. must have been n times an ignition at the
cluster of x or the growth of a tree next to this cluster.

For all t; > to, if the relation 1 < |Cy) | < |Cy, | holds, then a site next to C, , must have
become occupied at time ¢;. Lemma 10 shows that if a vacant site has become occupied, then
there a.s. must have been the growth of a tree at the site. Thus the relation 7 < ¢; must
hold. Formally the definition of 7 implies that if the relation 7 > tg holds, then the relation
0 < |Gty 2| < 00, that is, the relation C,, € C/ must hold. It follows by Lemma 10, that the
set

Bto,l ::{Htl S Rar Dt <t < 711, |Ct0,x| < |Ct1,x|}

{Htl S Rg_ 3S e to < t1, Cipe = S, |Ct07x| < |Ct1,x|,vfy €05 CGtoﬂfl,y}

Q{Eltl ER Iy eZ: 0y =0, CCiytrys Ny = 1}

is a null set.

As induction hypothesis, suppose that the set
Bto,n = {H(ti)lgign S (Ra_)n Vi<i<n: tic1 <t tn < Thn, ‘Ctl-_17m‘ < ’Ctl7m‘}

is a null set. By the definition of (7,,)n>0 for all n € Ny, if the relation 7,, < 7,41 holds, then the
relation 1 < |C,, .| < oo, that is, the relation C,, , € C/ must hold. Lemma 13 implies that a
finite cluster a.s. remains unchanged, if there is no ignition at it and not the growth of a tree
next to it; almost surely for all 7, <t <t < 7,41, the relation C,, , = C;, = Cy » must hold.
Formally if the induction hypothesis holds, then the set

Bto,nJrl CnN {Eltnathrl S Rg T Sty < tn+1 < Tnt1, |Ctn,x| < |Ctn+1,x|}

= U {th,tn+1 S RS_ T <ty < tn+1 < Tn4+1, C‘rn,x = S, ‘Otn,:c‘ < ’Ctn+1,1:|}

SeCf
} )

Recall the set Ay, which has been defined in the beginning of the proof. The induction provides

L.1:
QN s U {atnatn—H S RS_ Dty < tn+17 Ctn,m = Ctn+1,ac = S, |Ctn,:p| < |Ctn+1,a:
Sec/f

is a null set.
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for each tg, that the relation

Ay S () {Eltn ERT 7, <ty V' € [to,tn] : Ny = 1}
neN

C ﬂ{VOSiSn: nmle}
neN
must hold.

For all n € Ny, the definition of 7,41 implies that there is no ignition at and not the growth of
a tree next to the cluster at x in the time between 7, and 7,41. Thus it follows by Lemma 13
that a.s. the cluster at x cannot change in the time between 7,, and 7,,41. If there is an ignition
at time 7,41, then there a.s. cannot be the growth of a tree at the same time.

Formally we have for all n € N and all S € C7,
{CT'ruI =5, U 1, yes: IT;+1,Tn+1,y}

gN{CTn,Z' =9, Nryre = 1, CG,- yes: ITn+1’T"+1’y}

To 1 Tt 1,0
Q%M{Vt €M) Cra=35, Mo =1, UGT;HMH@, Jyes: ITn+1,Tn+1,y}
Q{Ht,t' ERJ:t<t, Co=8mw.=1,CGip, Jyes: It7t’,y}»
which is a null set by Lemma 11. That is, the relation
{cw A — 1} Cn {Cfn,m =S5, Vyes: UITW,TM,@,}
:{Cm@ =35, dte Qg VyesS: EIrn,t,y, dz €95 : Grn,t,z}

must hold. Lemma 17 shows that a.s. the cluster at  must be finite. Together with Lemma 18
and 19, we get for all n € Ny,

u<v0§z'3n+1: i = 1) =0Ty u(vo <i<n—1:npa=1,Cru=25 0= 1>
Secf

< Z u(V() <i<n—1:n,,=1Cr =5, 3te Qar Yy e S: EITn,t,y, dz € 0S: GTn,t,z>
Sect Py

EFrn €Z,

=L.19 Z M(VO <i<n—1:n,,=1 Cr o= S) -u(ﬂt €eQfvyeS: Clysy, I2€0S: G07t72>
Secf

<HEoL Ny M<V0§i§n—1: Nrow =1, szs) :C-p<VO§i§n: %,x=1>7
SeCf

with C < 1 as in Lemma 18. We obtain

0 < lim M<V0§i§n: 777¢,x21>§ lim C" =0.

n—oo n—oo
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That is, the set Ay, Cn ﬂneN{VO <i<n: Ny = 1} is a null set. The result follows since tg
runs over the countable set Qg . O

Lemma 22. Almost surely the left limits of the clusters are finite. Formally the set
{Eix €Z'3teRY: |Cp 4| = oo}
is a null set.

Proof. Let « € Z%. Note that for all ¢t € RY, if the left limit of the cluster at z is infinite at
time ¢, then it is impossible that the cluster at x has been bounded before time ¢t. By Lemma
17 a.s. the cluster at & cannot be infinite. It follows that a.s. the cluster at x must have grown
infinitely often without being hit by ignition. Formally we have

{at eER': |G- .| = oo}
:{Ht ERY: |Cp- 4| =00, V§>0VN eN3t €[t —6,t): N< |Ct,,x|}

QN{Ht ERY: o] =1, V0>0VYN NI €t —6,t): N<|Cpyl< oo}

No .
Q{ﬂ(ti)ieNo € (Ry) "VieNy: t; <tis1, |Cral <|Chipral, V' € [tistizr) : my e = 1}-

The result follows by Lemma 21. O

Lemma 23. Almost surely if a site gets vacant, then the cluster at the site must be hit by
ignition. Formally for all = € Z¢, the set

{E!t eRT: M=z = Mt Yy € Ct*,a: : BIt,t,y}
is a null set.

Proof. Let € Z%. By Lemma 22, a.s. the left limits of the cluster at x are finite. Thus the
relation

{Elt eRT: M=z > Mt Vy € Ct—,x : EIt—,t,y}

gN U {Elt € R+ : Ct*,:c = S? nt*,ac > nt,xv Vy € S: EIt,t,y}

Sect
- U {Elt eRT: z eS8, M-z > News VY € 08 M- =0, Vy e S EIt_7t7y}
Sect g

:3DS,t,x

holds. Intuitively, the event Dg; . describes the following situation: The sites next to the set S
have been vacant before time ¢, there is not an ignition at the set S at time ¢, and the occupied
site x € S gets vacant at time t. There are two possibilities. In the first case, suppose that there
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is not the growth of a tree next to the set S. Then all sites next to the set S remain vacant and
no fire can pass from outside the set S and reach the site z. Furthermore the set S is not hit
by ignition, and thus the site  cannot get vacant. This is a contradiction. In the other case, if
there is the growth of a tree at a site next to the set .S, then there a.s. will not be an ignition
at the same time. Provided this, the site x cannot get vacant. This is a contradiction, too.

Let S € Cf. Formally we have

{Elt eRT: Dsm} = {Elt €ERT: Dgty, V2 €0S: CGt_M} U {Elt €ER": Dgypy I2 €09 : Gt_w} .

~~

=:A5,gc ::BS,x

We first show that for all S’ € Cf, the set Agr , is a null set, and then that the relation
Bgs, Cn UgrecrAsr » must hold. Provided this, the set Bg, is a null set, and the result follows
since S runs over the countable set C.

Let S’ € C/. For all y € S"U DY, the process (11, Gty I1y)i>0 is a process with values in
({0,1} x Ng x Ng) whose left limits exist. Thus since the set S’ U S’ is finite, the relation

Agr o, C {Elt',t eERT: <t ze s, x> M, Vy €S : CIt/,Ly, VzedS : ny, =0, EGtgt,Z},

holds. By Remark 2 for all n € N, the distribution of the process (7;';)¢>0zcpa is that of a
finite volume forest-fire process on BZ. We know (see Definition 3) that finite volume forest-fire
processes have the property that if a site is vacant and there is not the growth of a tree at the
site, then the site must remain vacant. Provided this it follows that all sites next to the set S’
must remain vacant, and that the cluster at the site x € S’ must be a subset of S’. That is,
the cluster at x cannot be hit by ignition, if the set S’ is not hit by ignition. Finally, in a finite
volume forest-fire process an occupied site x cannot get vacant, if the cluster at x is not hit by
ignition. Formally for all n € N and all ¢',t € Qf, ' < t, the set

{x €S ny,>ni., Yye S Elﬁyt’y, VzedS : mp, =0, BG?t’Z}

is a null set. It follows by Lemma 9 that the set Ag , is a null set.

It remains to show that the relation Bg, Cn srecf Asr oz holds. In the situation described by
Bg , there is the growth of a tree at a site z € 9S. We define S’ to be the union of the set S,
the site z and the left limits of the clusters next to z. In Lemma 22, we showed that a.s. the
left limits of the clusters at the 2d sites next to z are finite. This provides that a.s. the relation
S" € ¢ must hold. Formally the relation

BS,CL‘ gN{Ht € R+ . DS,t,:E? E]Z € aS Gt*,t,zv EIS/ € Cf . S/ - SU {Z} U U Ct,Z/}
2'ed{z}
- U {Elt eERY: z el n-p>na VW edS: -,y =0 328 Gt’tz}
S'ect
CN U AS’,x
S'ect

must hold. We used that if there is the growth of a tree at a given site, then a.s. there cannot
be an ignition, nor the growth of a tree at another site, at the same time. O
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Lemma 24. Almost surely if there is the growth of a tree at a site, then the site is occupied.
More formally, for all z € Z¢, the set

{Elt cR*: Gt Mo = 0}
is a null set.
Proof. Let z € Z®. If there is the growth of a tree at the site x, then a.s. there will neither be
an ignition nor the growth of another tree at the same time. Lemma 10 provides that a.s. a
vacant site must remain vacant, if there is not the growth of a tree at the site. By Lemma 23,
if an occupied site gets vacant, then a.s. the cluster at the site must be hit by ignition. That
is, if there is no ignition, then a.s. all occupied sites must remain occupied. It follows that if

there is the growth of a tree at the site x, then a.s. the sites next to x must remain unchanged.
Formally we have

{Elt €ERT: G-t Mtz = 0}
QN{EH ERT: Gy OLi—pp mie =0, Yy € Z9\ {a}: LGy, EIt,t,y}
CN{Elt S R+ . th,tﬂ., EItf,t,:ln Nt,x = 07 Vy S 8{:6} . ﬁtf,y = ﬁt,y}
g{ﬂt',t S R+ . Gt’7t,x7 BIt’,t,xa ’I’]t@ = O, Vy € 5{x} . ﬁt’,y = ’I’_]t’y}.
By Remark 2 for all n € N, the distribution of the process (ﬁtrfx)tzo,me B is that of a finite volume
forest-fire process on BY. We know (see Definition 3) that finite volume forest-fire processes have
the property that if there is the growth of a tree at a given site, then the site gets occupied. The

site only gets vacant again, if the site is hit by ignition or if a neighbor of the site burns down.
That is, for all n > ||z||e and all ¢',t € Qf, ¢’ < t, the set

{ ?’,t,x? CI?’,t,x? 77390 = 07 Vy € a{ZC} : ﬁ?,y = ﬁZy}

is a null set. The result follows by Lemma 9. 0

Lemma 25. Almost surely if a site is hit by ignition, then all sites of the cluster at the site get
vacant. More formally, for all = € Z%, the set

{Ht eR": It*7t7z7 dy € Ct*,a: Nty = 1}
is a null set.

Proof. Let x € Z. By Lemma 22, a.s. the left limits of the cluster at x are finite. If there is an
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ignition, then there a.s. will not be the growth of a tree at the same time. Thus we have
{Elt S R+ : Itf,t,$7 Ely € Ct7733 : T]t7y = 1}
CN{Elt S R+ : Itf,t,:r? Ely S th’x . nt,y = 1, BGt,t,y}

Cn U {Elt eRJ: Cr e =8, Ltz WES: My =1, EGt—,tyy}

Secf
- U {Ht/,t S Ra— : Ct/@ =5, It’,t,xy dy € S : Nty = 1, BGt/ﬂg’y},
Sect
which is a null set by Lemma 11 and since the set C/ is countable. ]

Lemma 26. Almost surely for all 2 € Z¢, the relation Mo,z = G holds. That is, a.s. the initial
configuration of the process is (.

Proof. Remember that we chose ¢ € Z(;mite. That is, for all z € Z4, the set C¢, is finite. Let
x € Z%. The finitely many growth and ignition processes at and next to the set C¢ o are right
continuous with values in Ny, the relation

{nO,x #* Ca:} = {Uo,x # G, HERY VY € Cry UOC, , U{a}: Gry =1y = O}

holds. By Remark 2 for all n € N, the distribution of the process (7;';);>0 z¢ pa is that of a finite
volume forest-fire process on B¢ with initial configuration ()¢ pd- We know (see Definition 3)
that finite volume forest-fire processes have the property that a vacant site remains vacant, if
there is not the growth of a tree at the site. Furthermore in a finite volume forest-fire process,
if an occupied site gets vacant, then the cluster at the site must be hit by ignition. It follows
that for all n > ||z|s and all .t € QF , t' < t, the set

{77?5’m #(py Yy € CQx U 8(3(@ U {$} : G?,y = Igy = 0}
is a null set. The result follows by Lemma 9. O

Altogether, Lemma 5, 7, 8, 10, 14, 23, 24, 25 and 26 show that restricted to the complement of a
null set, the process (ﬁt,x)x czd rer+ defined in Definition 5, satisfies the definition of a forest-fire
) 0

process on Z% with parameter A\ and initial configuration ¢, as formalized in Definition 3. This
shows Theorem 3; we obtain Theorem 1.

From now on, let d € N and let (7;z)¢>0,ez¢ be an arbitrary forest-fire process on 7% with

parameter A\ > 0 and initial configuration ( € Z C];imte.

Proof of Theorem 2. Note that the definition of a forest-fire process, that is, Definition 3 implies
that the process (ﬁt7x)t>0,xezd satisfies the properties that are shown in Lemma 8, 10, 11, 12, 13
and 14. Thus the proofs and results of Lemma 15, 16, 18, 19, 20, 21 and in particular Lemma
17 and 22, can be taken over directly. This proves the assertion of Theorem 2 . O
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Open Problems.

There are several natural questions: Is the infinite volume forest-fire process (7is)i>0 ez
adapted to the filtration generated by its driving growth and ignition processes (Gt’x)t;owezd
and (1t,2);>0 zeze? Related to this question is the question whether the infinite volume forest-fire
process (771;_ $)t>07xezd is uniquely determined by its driving growth and ignition processes and its
initial configuration Or, whether the convergence of the finite-volume forest-fire processes which
we used to construct a infinite-volume forest-fire process holds in a stronger sense.
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