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Abstract

We consider a symmetric simple random walk {Wi} on Zd, d = 1, 2, in which the
walker may choose to stand still for a limited time. The time horizon is n, the maxi-
mum consecutive time steps which can be spent standing still is mn and the goal is
to maximize P (Wn = 0). We show that for d = 1, if mn � (logn)2+γ for some γ > 0,
there is a strategy for each n yielding P (Wn = 0) → 1. For d = 2, if mn � nε for
some ε > 0 then there are strategies yielding lim infn P (Wn = 0) > 0.
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1 Introduction.

We consider a process {Wi, 0 ≤ i ≤ n} on Zd (d = 1 or 2) in which W0 = 0 and each
stepWi−Wi−1 either is 0 (i.e. standing still) or is a step±ei of symmetric simple random
walk (SSRW), with ei being the ith unit coordinate vector. The choice between standing
still and SSRW step is determined by a strategy. Formally, a strategy (or n-strategy) is
a mapping δn : Tn → {0, 1} defined on the space

Tn =
{
{(i, wi), 0 ≤ i ≤ j} : 0 ≤ j ≤ n− 1, |wi − wi−1| ≤ 1 for all i

}
of all space-time trajectories of length less than n; here the values 0 and 1 for δn corre-
spond to standing still and taking a SSRW step, respectively. Thus the choice of whether
to take a step at a time i depends on the trajectory up to time i − 1. Letting {Yi, i ≥ 1}
be SSRW, we then construct the controlled random walk process iteratively from the
strategy by

W0 = 0, Wi −Wi−1 = ∆i(Yi − Yi−1) i ≤ n,

where

∆i = δn

(
{(k,Wk) : 0 ≤ k ≤ i− 1}

)
.

We define the time since the last SSRW step to be

Ji = min{j ∈ [0, i− 1] : Wi−j 6= Wi−j−1},

with Ji = i if the set in this definition is empty. We designate a maximum number mn−1

of consecutive steps standing still and say that a strategy is admissible if Ji ≤ mn − 1
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a.s. for all i ≤ n. A strategy is Markov if the value of δn
(
{(k,Wk) : 0 ≤ k ≤ i − 1}

)
depends only on the pair (Wi, Ji). It is easily seen that if the strategy is Markov, then
{(Wi, Ji) : i ≥ 0} is a Markov process. We writeAn for the set of all admissible strategies
and A∗n for the set of all admissible Markov strategies. When the dependence on the
strategy needs to be made clear, we write P (·; δn) for probability when strategy δn is
used, but generally we suppress the δn in the notation.

We are interested in steering the process toward a target site, and specifically in the
behavior of

P̂ (Wn = 0) = sup
δn∈An

P (Wn = 0; δn) (1.1)

as n → ∞. The word “steering” is a bit misleading here, as the process never has a
drift. For SSRW, of course P (Wn = 0) ∼ Cn−d/2. (Here and throughout the paper, C
and C1, C2, . . . are generic constants, and an ∼ bn means the ratio converges to 1.) A
simple strategy to increase this is to minimize steps, i.e. always stand still as long as al-
lowed, taking only n/mn steps, yielding P (Wn = 0) � (mn/n)d/2, where we use an � bn
to mean the ratio is bounded away from 0 and∞. A slightly more sophisticated strategy
is to minimize steps until time n −mn then maximize steps (i.e. never stand still) until
{Wi} hits 0 (if it does), and then stand still until time n. For d = 1, conditionally on

{|Wn−mn | ≤ m
1/2
n } this strategy has a success probability of order 1, so the uncondi-

tional success probability is of order min(mn/n
1/2, 1); in particular it is bounded away

from 0 if mn ≥ Cn1/2.
This brings up two questions. For which {mn} is P̂ (Wn = 0) bounded away from 0?

And are there nontrivial {mn} for which P̂ (Wn = 0) → 1? Our two main theorems give
some answers.

Theorem 1.1. Suppose d = 1 and mn � (log n)2+γ for some γ > 0.. Then P̂ (Wn = 0)→
1 as n→∞.

In one dimension, the “more sophisticated” strategy described above relies on the
fact that a SSRW started at distance k from 0 has a probability of order one to hit 0
by time k2. In two dimensions, this probability is only of order (log k)−1 so it is more
difficult to construct a strategy based on waiting for the RW to return to 0 after it has
wandered away. Nonetheless we have the following.

Theorem 1.2. Suppose d = 2 and mn � nε, for some ε > 0. Then

lim inf
n

P̂ (Wn = 0) > 0.

In (1.1) one could consider only Markov strategies, i.e. take the sup over A∗n. Since
the underlying SSRW is Markov, one cannot actually do better with a non-Markov strat-
egy, so the two sups are the same. Allowing non-Markov strategies simply lets us use
ones that can be concisely described and analyzed.

Remark 1.3. One could consider alternate ways of slowing down the controlled RW,
in place of standing still. For example, one could allow a choice between a standard
SSRW step and a delayed SSRW step, the latter meaning we stand still with probability
1 − 1

mn
and take a standard SSRW step of ±ei with probability 1/mn, with no limit on

how many consecutive times we choose the delayed SSRW step. A brief examination of
the proofs shows that both theorem statements above remain valid in this case.

Remark 1.4. The continuous analog of the problem we consider is a diffusion ξt in
which the drift is always 0 and one can control the diffusivity σ(x, t), but constrained
to an interval [σ1, σ2], on a time interval [0, T ], where σ1 > 0. We take [σ1, σ2] = [εT , 1]

and ask, how slowly can we have εT → 0 as T → ∞ and still have P̂ (|ξT | < 1) →
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1 or lim infT P (|ξT | < 1) > 0? Note that εT is the analog of 1/mn. McNamara [3]
considered closely related questions for a one-dimensional diffusion; see also [2] for
another variant. He proved that there are constants K = K(σ1, σ2) and β = β(σ1/σ2)

such that

P̂ x
(
|ξT | ≤

δ

2

)
≤ K

(
δ√
T

)β
for all x ∈ R, δ > 0, (1.2)

while in the other direction, for each h > 0 there exists ∆ > 0 such that

P̂ 0

(
|ξT | ≤

δ

2

)
> K

(
δ√
T

)β+h
for all δ ∈ (0,∆). (1.3)

Here P̂ x denotes probability (maximized over the allowed controls) for a process started
at x. Numerical evidence was given that β is approximately proportional to σ1/σ2. If we
assume this to be true and consider εT of order 1/ log T , we get β of order 1/ log T as
well. If we could take h also of this order, then the right side of (1.3) would be bounded
away from 0 in T , as desired. The problem is that one cannot get a useful result from
(1.3) if one takes h depending on T , since then δ must also depend on T . Nonetheless
we may observe that εT ≤ C/ log T corresponds tomn ≥ C log n in our discrete problem.
Further, still assuming β proportional to σ1/σ2, we see that since we want the left side of
(1.2) bounded away from 0, we cannot allow εT � 1/ log T , suggesting that we perhaps
cannot do better than requiringmn ≥ C log n in Theorem 1.1. But we know of no results
giving lower bounds for the rate at which mn must grow to give P̂ (Wn = 0)→ 1.

2 Proof of Theorem 1.1

Throughout the paper we will make use of various quantities which approach infinity
as n → ∞. For λ > 0 let un(λ) = max{k : m1+kλ

n ≤ n}; note that un(λ) is of order
log n/ logmn for all λ > 0. Also, the hypothesis that mn � (log n)2+γ for some γ > 0 is
equivalent to

mn �
(

(log n)2

log logn

)1/(1−η)

for some η ∈ (0, 1). (2.1)

Fixing such an η and writing un for un(η), we observe that (2.1) is equivalent to

m1−η
n logmn � (log n)2,

hence also to

m
1+ηθ(m1−η

n / logmn)
1/2

n ≥ n for all large n, for every θ > 0,

and therefore finally to

un = o

((
m1−η
n

logmn

)1/2
)
. (2.2)

Fix n, write m for mn. and define

εm =
logm

m1−η , so εm = o

(
1

u2n

)
as n→∞.

We define a sequence of windows {tk}×Ik, 1 ≤ k ≤ un, in space-time, with size decreas-
ing as k increases and the target (n, 0) is approached; we then construct a strategy
which makes the space-time trajectory of the process pass through all of these win-
dows, with high probability. Specifically, let

tk = n−m1+η(un−k), 2 ≤ k ≤ un, and t0 = 0, t1 =
t2
2
, tun+1 = n,
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Nk = tk − tk−1, hmk = (εmNk+1)
1/2

.

Let I0 = {0},
Ik = [−hmk, hmk], 1 ≤ k ≤ un, and Iun+1 = {0}.

We want to find a strategy, and choice of εm, for which we can show

max
k≤un+1

P (Wtk /∈ Ik |Wtk−1
∈ Ik−1) = o

(
1

un

)
as n→∞. (2.3)

From (2.2) and (2.3) it follows that

P (Wn = 0) ≥
un+1∏
k=1

P (Wtk ∈ Ik |Wtk−1
∈ Ik−1) ≥

(
1− o

(
1

un

))un+1

= 1− o(1) (2.4)

as n→∞, proving the theorem.
For (2.3), fix 1 ≤ k ≤ un + 1 and let τ0 = τ

(k)
0 = min{t > tk−1 : Wt = 0}. Fix x ∈ Ik−1

and observe that

P (Wtk /∈ Ik |Wtk−1
= x) ≤ P

(
τ0 > tk

∣∣Wtk−1
= x

)
+ P

(
τ0 ≤ tk, |Wtk | > hmk

∣∣Wtk−1
= x

)
. (2.5)

To fully specify, and then bound, these probabilities we need to designate a strategy;
we do so by describing how the strategy works between tk−1 and tk, for general k.
For k ≤ un, we begin by taking all SSRW steps (i.e. no standing still) from time tk−1
until time τ0 ∧ tk. If τ0 > tk, we deem the strategy to have failed and we continue in
an arbitrary manner, say all SSRW steps. If τ0 ≤ tk, we continue from time τ0 to tk
by always standing still for the maximum allowed period of time m during the interval
(τ0, tk], that is, we take an SSRW step every mth time step. The last standing period is
truncated if it would otherwise go beyond time tk.

For k = un+ 1, our strategy during (tun , tun+1] = (n−m,n] is to maximize steps until

the the time τ0 = τ
(un+1)
0 when the process first hits 0 (if τ0 ≤ n), then stand still until

time n.
Note that the failure of the Markov property for our strategy comes from the fact that

standing still vs. taking a step depends on whether the stopping time τ0 has occurred
yet, not just on the current location of the process.

We now bound the first term on the right side of (2.5). From the Reflection Principle
we have (for `, hmk of opposite even-odd parity):

P (τ
(k)
0 − tk−1 > l |Wtk−1

= x) = P (−|x| < Yl < |x|), (2.6)

and hence for every ε > 0,

P (τ
(k)
0 − tk−1 > yx2 |Wtk−1

= x) ∼ 2

(
Φ

(
1
√
y

)
− Φ(0)

)
as |x| → ∞, uniformly over y ∈ [ε,∞). (2.7)

The left side of (2.6) is a nondecreasing function of |x|, so for all x ∈ Ik, by (2.7)

P
(
τ0 > tk

∣∣ Wtk−1
= x

)
≤ P

(
τ0 − tk−1 > Nk

∣∣ Wtk−1
= hmk

)
≤ C
√
εm. (2.8)

Turning to the second term on the right side of (2.5), it is 0 for k = un + 1 so
we consider k ≤ un. We can condition also on τ0 as follows: for t ∈ (tk−1, tk], using
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Hoeffding’s Inequality [1],

P
(
|Wtk | > hmk

∣∣ τ0 = t,Wtk−1
= x

)
= P

(
|Wtk | > hmk

∣∣ Wt = 0
)

= P
(
|Y(tk−t)/m| > hmk

)
≤ e−h

2
mkm/2Nk

= e−mεmNk+1/2Nk . (2.9)

For k ≥ 1 we have Nk+1/Nk ≥ m−η (with equality for k ≥ 3), so (2.9) says that

P
(
|Wtk | > hmk

∣∣ τ0 = t,Wtk−1
= x

)
≤ m−1/2 ≤

√
εm. (2.10)

Since x ∈ Ik−1 is arbitrary, combining (2.5), (2.8) and (2.10) yields that for all 1 ≤
k ≤ un + 1,

P (Wtk /∈ Ik |Wtk−1
∈ Ik−1) ≤ C

√
εm = o

(
1

un

)
as n→∞, (2.11)

proving (2.3) and thereby proving Theorem 1.1.

3 Proof of Theorem 1.2

We keep the same definition of un(λ) and note that now our hypothesis on mn is
equivalent to the statement that {un} is bounded, say un ≤ u < ∞ for all n. We keep
the same formula for tk but with η replaced by κ, determined as follows. Choose

θ ∈
(

1− ε
2

,
1

2

)
,

so 1− 2θ < ε, then choose κ small enough so

0 <
1− 2θ

1− 2κθ
< ε. (3.1)

We then write un for un(κ). For our windows, in place of the interval Ik we have the

square Qk = [−Nθ
k+1, N

θ
k+1]2. To distinguish dimensions clearly, we now write {Y (d)

i } for
d-dimensional SSRW, d = 1, 2. We use the same strategy as in one dimension: in each
interval (tk−1, tk], take an SSRW step every time step until time τ (k)0 , then an SSRW step

every mth time step from time τ (k)0 to tk. In place of (2.3), we will need that for some
C > 0,

P (Wtk ∈ Qk |Wtk−1
∈ Qk−1) ≥ C for all k, for all large n. (3.2)

Let L[a,b] be the number of visits to 0 by the SSRW {Y (2)
i } during the time interval [a, b].

In comparison to (2.8), we have for all x ∈ Qk−1:

P
(
τ0 ≤ tk

∣∣ Wtk−1
= x

)
= P

(
τ0 ≤ tk

∣∣ Y (2)
tk−1

= x
)

≥
E(L(tk−1,tk] | Y

(2)
tk−1

= x)

E(L(tk−1,tk] | τ0 ≤ tk, Y
(2)
tk−1

= x)
(3.3)

Since |x| ≤ CNθ
k with θ < 1

2 , the numerator in (3.3) is equal to

Nk∑
i=1

P (Yi = 0 | Y (2)
0 = x) ≥ C

Nk∑
i=|x|2

1

i
≥ C1 logNk. (3.4)
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Here C1 depends on θ. The denominator in (3.3) is bounded above by

E(L(tk−1,tk] | Y
(2)
0 = 0) ≤ C

Nk∑
i=1

1

i
≤ C2 logNk. (3.5)

Therefore we have the analog of (2.8):

P
(
τ0 ≤ tk

∣∣ Wtk−1
= x

)
≥ C1

C2
> 0 for all k ≤ un, x ∈ Qk−1. (3.6)

In comparison to (2.9), we have for x ∈ Qk and t ∈ (tk−1, tk], using again Hoeffding’s
Inequality [1]:

P
(
Wtk /∈ Qk

∣∣ τ0 = t,Wtk−1
= x

)
= P

(
Wtk /∈ Qk

∣∣ Wt = 0
)

= P
(
Y(tk−t)/m /∈ Qk | Y (2)

0 = 0
)

≤ 2 max
j≤Nk/m

P (|Y (1)
j | > Nθ

k+1)

≤ 4e−mN
2θ
k+1/2Nk . (3.7)

For k ≥ 1 we have Nk+1 ≥ m−κNk (with equality for k ≥ 3), so by (3.1),

mN2θ
k+1

Nk
≥ m1−2κθ

N1−2θ
k

≥ m1−2κθ

n1−2θ
→∞ as n→∞. (3.8)

Combining (3.6), (3.7) and (3.8) we see that (3.2) holds. Since {un} is bounded, it
follows as in (2.4) that lim infn P (Wn = 0) > 0.
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