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1 Introduction and main results

In recent years Stein’s method has proved to be an effective technique for probabil-
ity approximation, often yielding explicit error bounds and working well in the presence
of dependence. Stein’s method may be applied in a wide variety of settings: in this note
we consider compound Poisson approximation. See [1] and references therein for an
introduction to Stein’s method for compound Poisson approximation, and Stein’s tech-
nique more generally.

Our purpose in this note is to show how assumptions of association or negative
association may be combined with Stein’s method in a compound Poisson approxima-
tion setting. This provides an analogue of the idea of a ‘monotone coupling’ in Stein’s
method for Poisson approximation. See, for example, [3, Section 2.1]. In a Poisson
approximation setting, the existence of a monotone coupling means that error bounds
obtained via Stein’s method are often simpler to state and easier to evaluate in practice
than they would otherwise be. The same is true if we make assumptions of associa-
tion or negative association in a compound Poisson approximation setting, as will be
demonstrated in the applications of Section 2.

This work is organised as follows. The remainder of Section 1 is devoted to intro-
ducing the notation and ideas we will need, and stating our main results. Applications
of these results are discussed in Section 2, with the proof of our main theorems being
given in Section 3.

Throughout this work, we assume that X1, . . . , Xn are (possibly dependent) non–
negative integer valued random variables. We consider compound Poisson approxima-
tion for their sum W = X1 + · · · + Xn. Recall that X1, . . . , Xn are said to be associated
if

E[f(Xi, 1 ≤ i ≤ n)g(Xi, 1 ≤ i ≤ n)] ≥ E[f(Xi, 1 ≤ i ≤ n)]E[g(Xi, 1 ≤ i ≤ n)],
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Compound Poisson approximation with association or negative association

for all non–decreasing functions f and g. On the other hand, X1, . . . , Xn are said to be
negatively associated if

E[f(Xi, i ∈ Γ1)g(Xi, i ∈ Γ2)] ≤ E[f(Xi, i ∈ Γ1)]E[g(Xi, i ∈ Γ2)],

for all non–decreasing functions f and g, and all Γ1,Γ2 ⊆ {1, . . . , n} with Γ1 ∩ Γ2 = ∅.
See [7] and references therein for further discussion of these properties.

We will say that U ∼ CP(λ,µ) has a compound Poisson distribution if U
d
=
∑N
i=1 Yi,

where the Yi are positive integer valued random variables with P (Yi = j) = µj for
each i, N ∼ Po(λ) has a Poisson distribution and each of these random variables are
independent. We write µ = (µ1, µ2, . . .) and λj = λµj . Thus, λ =

∑
j≥1 λj and µj =

λ−1λj .
We follow, for example, [13] and for each i we consider a ‘neighbourhood of depen-

dence’ consisting of those indices j ∈ {1, . . . , i− 1, i+ 1, . . . , n} for which Xi and Xj are
strongly dependent, in some sense. These neighbourhoods of dependence are chosen
to suit the problem at hand. We will denote by J (i) the neighbourhood of dependence
of Xi. We then define

Zi =
∑
j∈J (i)

Xj , and Wi = W −Xi − Zi .

As in the work of Barbour et al. [1] or Roos [13], we then define our approximating
compound Poisson random variable U by setting

λj =
1

j

n∑
i=1

E[XiI(Xi + Zi = j)] , (1.1)

for each j ≥ 1.
In this note we consider approximation in total variation distance, although our re-

sults may also be applied to approximation in other probability metrics. The total vari-
ation distance between random variables W and U supported on Z+ is defined by

dTV (L(W ),L(U)) = sup
A⊆Z+

|P (W ∈ A)− P (U ∈ A)| .

1.1 Stein’s method for compound Poisson approximation

Before stating our main results, we give a brief outline of Stein’s method for com-
pound Poisson approximation. For further details, see [1]. Letting U ∼ CP(λ,µ), we
begin by finding for each A ⊆ Z+ a function fA such that fA(0) = 0 and

I(x ∈ A)− P (U ∈ A) =
∑
j≥1

jλjfA(x+ j)− xfA(x) ,

for each x ∈ Z+. Note that the functions fA will depend on the choices of λ and µ.
Given such functions fA, by replacing x by W and taking expectation in the above we
may then write

dTV (L(W ),L(U)) = sup
A⊆Z+

∣∣∣∣∣∣E
∑
j≥1

jλjfA(W + j)−WfA(W )

∣∣∣∣∣∣ . (1.2)

In proving our main results in Section 3, we proceed by bounding the right–hand side
of (1.2). In doing so, it will be essential to have bounds on

H(λ,µ) = sup
A⊆Z+

sup
x∈Z+

|∆fA(x)|,
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where we use ∆ to denote the forward difference operator, so that ∆f(x) = f(x + 1) −
f(x) for any function f .

Good bounds on H(λ,µ) can be hard to find. Barbour et al. [1, Theorem 4] show
that

H(λ,µ) ≤ min

{
1,

1

λ1

}
eλ,

and, furthermore, that we cannot do better than this in general. This bound is useful
only for very small λ. However, under particular conditions we can find much better
bounds. For example, if we define

νi = iλi − (i+ 1)λi+1 ,

and assume that
νi ≥ 0 ∀i ≥ 1 , (1.3)

then Barbour et al. [1, Theorem 5] show that

H(λ,µ) ≤ min

{
1,

1

ν1

(
1

4ν1
+ log+(2ν1)

)}
, (1.4)

log+ denoting the positive part of the natural logarithm. Alternatively, under the as-
sumption that

θ =

∑
i≥2 i(i− 1)λi∑

i≥1 iλi
<

1

2
, (1.5)

Barbour and Xia [5, Theorem 2.5] show that

H(λ,µ) ≤ 1

(1− 2θ)
∑
i≥1 iλi

. (1.6)

1.2 Main results

We are now in a position to state our main results. The proofs of Theorems 1.1 and
1.2 are deferred until Section 3.

Theorem 1.1. Suppose that X1, . . . , Xn are negatively associated, and define λj as in
(1.1) for each j ≥ 1. Then

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)


n∑
i=1

∑
j∈J (i)∪{i}

E[XiXj ]− Var(W )

 .

Theorem 1.2. Suppose that X1, . . . , Xn are associated, and define λj as in (1.1) for
each j ≥ 1. Then

dTV (L(W ),CP(λ,µ))

≤ H(λ,µ)

Var(W )−
n∑
i=1

∑
j∈J (i)∪{i}

E[XiXj ] + 2

n∑
i=1

∑
j∈J (i)

E[Xi]E[Xj ]

 .

Remark 1.3. We have stated our results for approximation in total variation distance,
although they may easily be adapted for use with other probability metrics. For ex-
ample, we may wish to use the Kolmogorov distance, defined for non–negative integer
valued random variables by

dK(L(W ),L(U)) = sup
j≥0
|P (W ≥ j)− P (U ≥ j)| .
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In this case, the bounds of Theorems 1.1 and 1.2 continue to hold, with H(λ,µ) replaced
by

K(λ,µ) = sup
A∈I

sup
x∈Z+

|∆fA(x)| ,

where I = {[k,∞) : k ∈ Z+}. Clearly K(λ,µ) ≤ H(λ,µ). See [4, Section 3] and [6,
Section 1] for further bounds on K(λ,µ).

Remark 1.4. Boutsikas and Koutras [7] also discuss compound Poisson approximation
for a sum of associated or negatively associated random variables. The bounds we
establish in this note offer a greater flexibility in the choice of approximating compound
Poisson distribution than their results: we are able to choose the sets J (i) to suit the
problem at hand. The approximating distribution chosen by [7] is the same as that
obtained by us when setting J (i) = ∅ for each i. Furthermore, our bounds have the
advantage of including the so–called ‘Stein factor’ H(λ,µ), giving good bounds when
this Stein factor is small.

2 Applications

2.1 Independent summands

Suppose that X1, . . . , Xn are independent, non–negative integer valued random vari-
ables. In line with the definitions of Section 1, we choose J (i) = ∅ for each i, so that
λk =

∑n
i=1 P (Xi = k) for each k ≥ 1.

Since X1, . . . , Xn are independent, they are also negatively associated. We apply
Theorem 1.1 to immediately obtain the bound

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)

n∑
i=1

(EXi)
2 .

This bound has also been obtained in the independent case by various other authors, for
example [13, Corollary 1]. See also Lemma 8 of [7]. We do not concern ourselves with
evaluating bounds on the Stein factor H(λ,µ) for this example, since better bounds
in compound Poisson approximation for a sum of independent random variables are
available by means other than Stein’s method. See also Section 4.1 of [1].

2.2 k-runs

We now turn our attention to compound Poisson approximation for the number of
runs in iid Bernoulli trials. This problem is discussed by Barbour et al. [2, Section 2.1].
We show that our Theorem 1.2 can be used to improve the bounds of their work.

We let ξ1, . . . , ξn be iid Bernoulli random variables with P (ξ1 = 1) = p. Fix some
k ≥ 1 and let Xi = ξi · · · ξi+k−1, where all indices are written modulo n to avoid edge
effects. Thus, W = X1 + · · · + Xn counts the number of k–runs in our Bernoulli trials.
Our random variables X1, . . . , Xn are associated, so Theorem 1.2 may be applied in this
case.

Following [2], we choose J (i) = {1 ≤ j ≤ n : 1 ≤ |i− j| ≤ k − 1} and obtain

λj =


npk+j−1(1− p)2 if j = 1, . . . , k − 1 ,

npk+j−1j−1(1− p)[2 + (2k − j − 2)(1− p)] if j = k, . . . , 2(k − 1) ,

np3k−2(2k − 1)−1 if j = 2k − 1 .

We have that for each i, EXi = pk, EZi = 2(k − 1)pk and that EW = npk. We also have,

Var(W ) =

n∑
i=1

Var(Xi) + 2
∑
i<j

Cov(Xi, Xj) =
npk

1− p
{

1 + p− pk[2 + (2k − 1)(1− p)]
}
.
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Furthermore, we also have that for each i

E[Xi(Xi + Zi)] = pkE[1 + Zi|Xi = 1] = pk

1 + 2

k−1∑
j=1

pj

 = pk
[
1 +

2p(1− pk−1)

1− p

]
,

so that

E

n∑
i=1

Xi(Xi + Zi) = npk
[
1 +

2p(1− pk−1)

1− p

]
.

Combining these expressions, Theorem 1.2 easily yields the bound

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)(2k − 1)np2k . (2.1)

This improves upon the bound of [2], who show that the above total variation distance
is bounded by H(λ,µ)(6k − 5)np2k.

To conclude this example, we note that condition (1.3) is satisfied if p ≤ 1/3, and
condition (1.5) holds if p < 1/5. See [2, Section 2.1]. Thus, when p ≤ 1/3, we may use
the bound (1.4), with ν1 = npk(1− p)2(1− 2p) for k > 2. When p < 1/5, we may combine
(1.6) with (2.1) to obtain the bound dTV (L(W ),CP(λ,µ)) ≤ (2k − 1)pk(1− p)(1− 5p)−1.

2.3 An urn model with overflow

We consider the following model of [8]. Suppose that n balls are distributed into
m urns, with each ball equally likely to be assigned to any urn. We fix some k ≥ 2,
and assume that each of our m urns can hold at most k − 1 balls. If a ball is assigned
to an urn which is already full, that ball is placed in an additional ‘overflow urn’ of
unlimited capacity. We consider a compound Poisson approximation for W , the number
of balls allocated to the overflow urn. Boutsikas and Koutras [8, pg 278] give a bound
for such an approximation in Kolmogorov distance. Here, we consider approximation in
the stronger total variation distance.

We write W = X1 + · · ·+Xm, where, for each 1 ≤ j ≤ m, Xj = (Sj − k + 1)I(Sj ≥ k)

and Sj is the number of balls allocated to urn j. Our random variables X1, . . . , Xm are
negatively associated, so we may apply Theorem 1.1. See [8, pg 278].

For notational convenience, we write p = m−1. For each i = 1, . . . , n − k + 1 and
j = 1, . . . ,m we have that

P (Xj = i) = P (Sj = i+ k − 1) =

(
n

i+ k − 1

)
pi+k−1(1− p)n−i−k+1 .

We choose J (j) = ∅ for each j = 1, . . . ,m, so that

λi =

m∑
j=1

P (Xj = i) =

(
n

i+ k − 1

)
pi+k−2(1− p)n−i−k+1 , (2.2)

for each i = 1, . . . , n− k + 1.

Now, for each j = 1, . . . ,m we have that

EXj =

n−k+1∑
i=1

iP (Xj = i) =

n∑
i=k

(i− k + 1)

(
n

i

)
pi(1− p)n−i.
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Furthermore, Boutsikas and Koutras [8, (4.16)] show that

− 2
∑

1≤i<j≤m

Cov(Xi, Xj) = m(m− 1)


(

n∑
i=k

(i− k + 1)

(
n

i

)
pi(1− p)n−i

)2

−
n−k∑
i=k

n−i∑
j=k

(i− k + 1)(j − k + 1)

(
n

i, j

)
pi+j(1− 2p)n−i−j

 .

Combining the above expressions, Theorem 1.1 gives us that

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)


m∑
j=1

(EXj)
2 − 2

∑
1≤i<j≤m

Cov(Xi, Xj)

 = H(λ,µ)Θ ,

(2.3)
where

Θ = m2

(
n∑
i=k

(i− k + 1)

(
n

i

)
pi(1− p)n−i

)2

−m(m− 1)

n−k∑
i=k

n−i∑
j=k

(i− k + 1)(j − k + 1)

(
n

i, j

)
pi+j(1− 2p)n−i−j .

To conclude this example, we note that it can easily be shown using (2.2) that condition
(1.3) is satisfied if and only if i(i + k − np) ≥ p(n − k + 1) for 1 ≤ i ≤ n − k. Under this
condition, we may combine (1.4) with (2.3), where (2.2) gives us that ν1 =

(
n
k

)
pk−1(1 −

p)n−k−1
{

1− p− 2(n− k)p(k + 1)−1
}

.

2.4 Extremes

Suppose that ξ1, . . . , ξn is a stationary sequence of negatively associated random
variables. For simplicity, we will assume that each of the ξi have the same distribution
function, with F (x) = P (ξi ≤ x) for each i = 1, . . . , n. Note that throughout this section
we will treat all indices modulo n.

We fix some a1, . . . , an ∈ R and let Xi = I(ξi > ai). Since ξ1, . . . , ξn are negatively
associated, X1, . . . , Xn also have this property. See [11, page 288]. We define W =∑n
i=1Xi, so that W counts the number of the ξi exceeding the threshold ai.
In line with our earlier work, we consider the approximation of W by a compound

Poisson distribution CP(λ,µ), with λj given by (1.1) for j ≥ 1. For further discussion on
the choice and calculation of the λj see [10] and references therein.

Since
∑n
i=1(EXi)

2 =
∑n
i=1(1 − F (ai))

2, we use the definition of Zi and immediately
obtain from Theorem 1.1 that

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)Λ , (2.4)

where

Λ =

n∑
i=1

(1− F (ai))
2 + 2

n∑
i=1

∑
j∈J (i)

i<j

E[Xi]E[Xj ]

+

n∑
i=1

∑
j∈J (i)

{E[XiXj ]I(j < i)− E[XiXj ]I(i < j)} .
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Remark 2.1. Suppose that ai = a ∈ R for each i. We note that W = 0 if and only if
ξ1, . . . , ξn are all at most a. Hence, an immediate corollary of (2.4) is the bound∣∣∣P (max

i
ξi ≤ a)− e−λ

∣∣∣ ≤ H(λ,µ)Λ ,

where λ, µ and Λ are as above. Similar bounds apply if we wish to consider the proba-
bility that exactly k of our random variables ξ1, . . . , ξn exceed a.

We consider now an example in which we may compare (2.4) with a result of [10].

Example 2.2. Assume, in the setting of this section, that the random variables ξ1, . . . , ξn
are also m–dependent. That is, we may choose J (i) = {i−m, . . . , i− 1, i+ 1, . . . , i+m}
for i = 1, . . . , n and we have that for j 6= i, ξi is independent of ξj for all j 6∈ J (i). We
will assume, for simplicity, that ai = a ∈ R for each i = 1, . . . , n. In this case, we have
that

n∑
i=1

∑
j∈J (i)

i<j

E[Xi]E[Xj ] ≤ mn(1− F (a))2 ,

and

n∑
i=1

∑
j∈J (i)

{E[XiXj ]I(j < i)− E[XiXj ]I(i < j)}

≤
n∑
i=1

∑
j∈J (i)

E[XiXj ] ≤ 2mn(1− F (a))2 ,

where this final inequality uses the negative association property. We thus obtain the
bound

dTV (L(W ), CP (λ,µ)) ≤ H(λ,µ)(1 + 4m)n(1− F (a))2 . (2.5)

We compare this to the bound of Proposition 2.1 of [10], which states that if ξ1, . . . , ξn
is a stationary m–dependent (but not necessarily negatively associated) sequence of
random variables then

dTV (L(W ), CP (λ,µ)) ≤ H(λ,µ)(1 + 6m)n(1− F (a))2 ,

where the same approximating compound Poisson distribution is used as in (2.5). When
ξ1, . . . , ξn are negatively associated in addition to being m–dependent, our bound (2.5)
slightly improves upon this result. Note also that we do not need a condition of m–
dependence in order to apply the more general bound (2.4).

For further details in this example, including comments on the Stein factor H(λ,µ),
we refer the reader to [10].

Finally, we note that it is straightforward to construct examples with m–dependence
where (2.4) does better than (2.5). For example, if m = 1 take pairs of random variables
(ξi, ηi) for i = 1, . . . , n/2 such that for each i, ξi and ηi are independent of all random

variables except each other. Now take W =
∑n/2
i=1{I(ξi > a) + I(ηi > a)}. If our negative

association condition holds, an argument analogous to that used to derive (2.5) gives a
bound smaller than that result.

In the setting of this section, if we suppose that our random variables ξ1, . . . , ξn are
associated rather than negatively associated, we may employ Theorem 1.2 rather than
than Theorem 1.1 to obtain a bound analogous to (2.4). One application of such a bound
would be to extremes of moving average processes. We illustrate this by considering a
special case in the following example.
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Example 2.3. We suppose that η1, . . . , ηn are iid uniform random variables on (0, 1), and
define ξi = ηi−1 + ηi. Following the notation of this section, we define Xi = I(ξi > a).
We have that λ = EW = nP (η1 + η2 > a). We choose a = 2−

√
2λ/n (where n ≥ 2λ, so

1 ≤ a ≤ 2). As usual, W =
∑n
i=1Xi. Note that EXi = λ/n for each i.

Since each Xi is an increasing function of independent random variables η1, . . . , ηn,
we have that X1, . . . , Xn are associated, so Theorem 1.2 may be applied, in line with
which we choose J (i) = {i− 1, i+ 1}.

Barbour et al. [3, Section 8.3] consider Poisson approximation for W in this case,
and use the fact that

Var(W ) = λ− λ2

n
+

2λ(n− 1)

n

(√
8

3

√
λ

n
− λ

n

)
.

With our choice of J (i) we have that EZi = 2λ/n for each i. Further straightforward
calculations show that

n∑
i=1

E[Xi(Xi + Zi)] = λ {1 + 2P (ξ2 > a|ξ1 > a)} = λ

{
1 +

4

3

√
2λ

n

}
.

Combining the above expressions, Theorem 1.2 gives

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)

{
3λ2

n
− 4λ

3n

√
2λ

n
+

2λ2

n2

}
. (2.6)

Similar calculations to the above also give us the parameters of our approximating
compound Poisson distribution. Using (1.1) we have that

λ1 =
n(2− a)2(12a− a2 − 8)

24
, λ2 =

n(2− a)2(20− 8a− a2)

36
, λ3 =

5n(2− a)4

72
,

and λj = 0 for j ≥ 4. Recalling that we must have 1 ≤ a ≤ 2, it is now straightforward
to check that (1.3) holds whenever 6

√
35− 34 ≤ a ≤ 2, while (1.5) does not hold for any

valid choice of a. When 6
√

35 − 34 ≤ a ≤ 2 we may combine (2.6) with the bound (1.4)
on H(λ,µ), where ν1 = n(2− a)2(a2 + 68a− 104)/72.

3 Proofs of Theorems 1.1 and 1.2

Our proofs are based on techniques developed by [12] and [9]. We begin by defining
the size–biased distribution. For any non–negative integer valued random variable X

with EX > 0, we let X? have the X–size–biased distribution. That is, X? satisfies

E[Xg(X)] = (EX)Eg(X?) , (3.1)

for all functions g for which the above expectations exist. We have that

P (X? = j) = (EX)−1jP (X = j) ,

for all j ≥ 1. Throughout this section we let λj be defined by (1.1) for each j ≥ 1 and
Y be a random variable, independent of all else, with P (Y = j) = µj for j ≥ 1, where
µj = λ−1λj and λ =

∑
j≥1 λj . We note that with these choices of parameters, we have

that ∑
i≥1

iλi = EW , and
∑
i≥1

i2λi = E

n∑
j=1

Xj(Xj + Zj) . (3.2)
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Consider now the relation (1.2). Using the above definitions and relations, we obtain

E

∑
j≥1

jλjfA(W + j)−WfA(W )

 = E [λY fA(Y +W )−WfA(W )]

= E [λ(EY )fA(Y ? +W )− (EW )fA(W ?)] = (EW )E [fA(Y ? +W )− fA(W ?)] .

Recalling that fA(0) = 0, we write fA(j) = ∆fA(0) + · · ·+ ∆fA(j − 1). Substituting this
in the above and interchanging the order of summation, we have that

E

∑
j≥1

jλjfA(W + j)−WfA(W )

 = (EW )

∞∑
k=0

∆fA(k) {P (Y ? +W > k)− P (W ? > k)} .

Then, using (1.2), we obtain

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)(EW )

∞∑
k=0

|P (Y ? +W > k)− P (W ? > k)| . (3.3)

To proceed further with our proofs, we need the following lemmas. Lemma 3.1 treats
the case of negative association, while Lemma 3.2 considers the case of association. The
proofs of these lemmas are given in Sections 3.1 and 3.2, respectively, before which
we show how they are used to prove Theorems 1.1 and 1.2. Note that, since we are
assuming Y is independent of all other random variables, the size–biased version Y ?

used in Lemmas 3.1 and 3.2 is, in particular, independent of W .

Lemma 3.1. Suppose that X1, . . . , Xn are negatively associated. Then, for all non–
decreasing functions g,

Eg(W ?) ≤ Eg(Y ? +W ) .

Lemma 3.2. Suppose that X1, . . . , Xn are associated and let V be a random index,
independent of all else, chosen according to the distribution P (V = i) = (EW )−1EXi

for i = 1, . . . , n. Then, for all non–decreasing functions g,

Eg(W ?) ≥ Eg(Y ? +W −XV − ZV ) .

To complete the proof of Theorem 1.1, we combine (3.3) with Lemma 3.1. Since
I(j > k) is non–decreasing in j we get that, in the negatively associated case,

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)(EW )E[Y ? +W −W ?] . (3.4)

Using (3.1) and (3.2), we have that

E[W ?] =
E[W 2]

EW
, and E[Y ?] =

E[Y 2]

EY
=

∑
i≥1 i

2λi∑
i≥1 iλi

=
E
∑n
j=1Xj(Xj + Zj)

EW
. (3.5)

Combining these expressions with (3.4), we easily obtain that

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)

E
n∑
j=1

Xj(Xj + Zj)− Var(W )

 ,

from which the bound of Theorem 1.1 follows. To complete the proof of Theorem 1.2,
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we use the triangle inequality to obtain from (3.3) that

dTV (L(W ),CP(λ,µ))

≤ H(λ,µ)(EW )

{ ∞∑
k=0

|P (Y ? +W > k)− P (Y ? +W −XV − ZV > k)|

+

∞∑
k=0

|P (Y ? +W −XV − ZV > k)− P (W ? > k)|

}
,

where V is as in Lemma 3.2. Since I(j > k) is non–decreasing in j, we may apply
Lemma 3.2 to get that in the associated case

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)(EW )E[2(XV + ZV ) +W ? −W − Y ?] .

Using (3.5), this is easily shown to yield

dTV (L(W ),CP(λ,µ)) ≤ H(λ,µ)

2(EW )E[XV + ZV ] + Var(W )− E
n∑
j=1

Xj(Xj + Zj)

 .

Employing the definition of V then gives us the bound of Theorem 1.2. To establish our
Theorems 1.1 and 1.2, it therefore remains only to prove Lemmas 3.1 and 3.2.

3.1 Proof of Lemma 3.1

Our proof is based upon that of Lemma 3.1 of [12]. We begin by recalling the defini-
tion of Wi from Section 1 and observing that, under the conditions of Theorem 1.1,

E[XiI(Xi + Zi = j)g(j +Wi)] ≤ E[XiI(Xi + Zi = j)]Eg(j +Wi) , (3.6)

for any j ∈ Z+, i = 1, . . . , n and g non–decreasing. This can be seen by conditioning on
Xi + Zi and using the negative association property.

To prove Lemma 3.1, we note that it is enough to show that under our negative
association assumption

E[Wg(W )] ≤

∑
k≥1

kλk

Eg(Y ? +W ) ,

for all non–decreasing functions g. Using (3.1) and (3.2), this is equivalent to the state-
ment of our lemma. We have that

E[Wg(W )] = E

n∑
i=1

Xig(W ) = E

n∑
i=1

∑
j≥1

XiI(Xi + Zi = j)g(W )

= E

n∑
i=1

∑
j≥1

XiI(Xi + Zi = j)g(j +Wi) ≤
n∑
i=1

∑
j≥1

E[XiI(Xi + Zi = j)]Eg(j +Wi) ,

where we use (3.6) for this inequality. Now, since g is non–decreasing and Wi ≤ W

almost surely,

E[Wg(W )] ≤
n∑
i=1

∑
j≥1

E[XiI(Xi + Zi = j)]Eg(j +W ) =
∑
j≥1

jλjEg(j +W )

= λ(EY )
∑
j≥1

P (Y ? = j)Eg(j +W ) =

∑
k≥1

kλk

Eg(Y ? +W ) .

This completes the proof of Lemma 3.1.
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3.2 Proof of Lemma 3.2

Our proof of Lemma 3.2 is built upon the work of Daly et al. [9, Section 4.2]. Analo-
gously to (3.6), we observe that with our association assumption,

E[XiI(Xi + Zi = j)g(j +Wi)] ≥ E[XiI(Xi + Zi = j)]Eg(j +Wi) , (3.7)

for any j ∈ Z+, i = 1, . . . , n and g non–decreasing. Similarly to the proof of Lemma 3.1,
we establish our result by showing that

E[Wg(W )] ≥

∑
k≥1

kλk

Eg(Y ? +W −XV − ZV ) ,

for all g non–decreasing. We begin by defining for each j ≥ 1 a random index V (j)

defined by

P (V (j) = i) =
E[XiI(Xi + Zi = j)]

jλj
, 1 ≤ i ≤ n . (3.8)

It is straightforward to check that the random variable V (Y ?) has the same distribution
as V , the random index defined in the statement of Lemma 3.2. Following the proof of
Lemma 1.1, but employing (3.7) in place of (3.6), we have that

E[Wg(W )] = E

n∑
i=1

∑
j≥1

XiI(Xi+Zi = j)g(j+Wi) ≥
n∑
i=1

∑
j≥1

E[XiI(Xi+Zi = j)]Eg(j+Wi) .

Using the definition (3.8), we thus obtain

E[Wg(W )] ≥
∑
j≥1

jλj

n∑
i=1

P (V (j) = i)Eg(j +Wi) =
∑
j≥1

jλjEg(j +W −XV (j) − ZV (j))

= λ(EY )
∑
j≥1

P (Y ? = j)Eg(j+W−XV (j)−ZV (j)) =

∑
k≥1

kλk

Eg(Y ?+W−XV −ZV ) .

This completes the proof of Lemma 3.2.
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