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1 Introduction

Since the first works of Skorokhod [14] on existence and uniqueness for pathwize
solutions of reflected stochastic differential equations, many authors have investigated
this type of equation and extended his results on half-spaces to more general domains:
convex sets (Tanaka [15]), admissible sets (Lions-Sznitman [8]), domains satisfying only
the Uniform Exterior Sphere and the Uniform Normal Cone conditions (Saisho [10]), or
some weaker version of these conditions (Dupuis and Ishii [4]). The question of equi-
librium states of the reflected process (construction of time-reversible initial measures)
has also been investigated (see e.g. [13]).

All these studies were done under some smoothness assumptions on the boundary of
the domain. Typically the existence of at least one normal inward vector at each point
of the boundary is a necessary condition to define the normal reflection direction.

In most cases, the domain in which the process has to live is defined by constraints
which are physically natural rather than by its geometrical properties as a subset of
some Euclidean space. For example consider a system of n identical hard spheres with
radius r in Rd. The domain in which they evolve is the set of configurations (xi)1≤i≤n
satisfying the constraints |xi−xj | > 2r (i.e. the distance between the centers of any two
spheres is larger than twice their radius). The geometrical description is much more
complicated: the complementary set inRnd of some star-convex subset whose boundary
can be locally approximated by a tangent sphere and a cone.

Unfortunately, for reflected processes in dimension larger than three, the geometri-
cal properties of the domain are not that obvious from the physical constraints. In the
already mentioned nd-dimensional example of a finite system of hard spheres, the pa-
per [11] mainly consists in the proof that the set of allowed ball configurations satisfies
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SDE under multiple constraints

the Uniform Exterior Sphere and Uniform Interior Cone property. In [12] and [5] too, a
meticulous and extensive geometrical study has to be performed before the stochastic
analysis of the dynamics.

We present in this note a constraint-based assumption to construct pathwise solu-
tions of Skorokhod problems (even for non-reversible dynamics). Our aim is to deal
with assumptions as simple and physically natural as possible, even if they are not the
weakest ones.

In the special case of time-reversible dynamics, Skorokhod problems can be studied
using potentiel theory. This Dirichlet form approach allows constructions on relatively
non-smooth domains, as done in the seminal article of Chen [3]. But our aim here is to
deal with either reversible or non-reversible cases. We want an explicit criterion on the
constraints which enables a pathwise construction of the solution, i.e. it constructs the
path X and its local time L as a function of the path W of the Brownian motion defined
on the underlying Probability space. So the technics are closer to Saisho’s approach
than to potentiel theory.

This note is divided in two parts.
The first part (section 2) exhibits a new compatibility criterion for constraints. If it

is satisfied, then the reflected stochastic differential equation admits a unique strong
solution. The proof uses the Uniform Exterior Sphere and the Uniform Normal Cone
conditions, hence it ultimately relies on the convergence of the discretized Brownian
pathes projected on the subset ofRd where all the constraints are satisfied. The solution
is time-reversible in the special case of a gradient system whose reflection direction is
consistent with its diffusion coefficient.

In section 3 we present an illustration inspired by [2]. We consider the behaviour of
many spherical particles around a sphere. They are submitted to a smooth attractive
influence and their motion is perturbated by collisions into other particles and into the
sphere. We prove that at equilibrium and for low temperature all particles are as close
as possible, all located beneath some altitude with high probability. Applications to
more realistic models (see e.g. [9] or [1]) are currently investigated.

2 Reflected stochastic differential equation under multiple con-
straints

We are interested in a process living in the closure of a domain D. This domain is
defined by a finite set F of smooth R-valued constraint functions on Rd:

D =
{
x ∈ Rd; f(x) > 0 for each f ∈ F

}
.

D is an intersection of smooth sets (arbitrary many of them provided they are in finite
number) so its boundary is a finite union of smooth boundaries:

∂D =
⋃
f∈F

{
x ∈ D; f(x) = 0

}
.

Since we want the process to be reflected on the boundary of D we have to assume
some regularity on the functions in F . The reflection at any point x ∈ ∂D occurs ei-
ther in the inward normal direction ∇f(x) or with a fixed deviation from the normal
direction. So we have to suppose the existence of a direction which is normal to the
boundary: ∇f(x) 6= 0 for each x ∈ D such that f(x) = 0. We actually assume some-
thing more: the first derivative of the functions of F admits some positive uniform lower
bound, their second derivative is uniformly bounded and, most important, the boundary
of each single-constraint set {x ; f(x) > 0} crosses the boundaries of the other single-
constraint sets at "not too sharp an angle". To be more precise, we have to exclude
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SDE under multiple constraints

infinitely sharp "thorns" whose vertex admits inward normal vectors in opposite direc-
tions. This is what we call compatibility between the constraints:

Definition 2.1. Let F be a finite set of R-valued C2-functions on Rd. These functions
are called compatible constraints if

• D :=
{
x ∈ Rd; f(x) > 0 for each f ∈ F

}
is a non-empty connected set ;

• for each f ∈ F , inf{|∇f(x)|; x ∈ D, f(x) = 0} > 0

and sup{|D2f(x)|; x ∈ Rd} < +∞ ;

• inf
x∈∂D

δ(0,Conv(x)) > 0

where Conv(x) is the convex hull of the unit normal vectors to the boundaries at
point x:

Conv(x) =

 ∑
f∈F,f(x)=0

cf
∇f(x)

|∇f(x)|
s.t. cf ≥ 0 and

∑
f∈F,f(x)=0

cf = 1

 .

Here and in the sequel, δ denotes the Euclidean distance in Rd, |y| denotes the
Euclidean norm of vector y and |M | = sup{|My|/|y| ; y ∈ Rd} denotes the norm of the
matrix M . Lebesgue measure is denoted by dx.

The next main theorem states that our compatibility definition provides a convenient
assumption to ensure the existence of a reflected process within a set defined by con-
straints. In most models, for the sake of simplicity, the reflection direction is the inward
normal direction on the boundary. Here we consider a co-normal reflection, as in the
case treated in [6] or in Section 3. We state the result with a fixed deviation θ tθ from
the normal direction. tθ denotes the transposed matrix. Normal reflection corresponds
to the special case θ = Id.

Theorem 2.2 (Existence and uniqueness). Let θ be a fixed d×d invertible matrix and F
be a set of compatible constraints withD =

⋂
f∈F

{
x ∈ Rd; f(x) > 0

}
the corresponding

subset of Rd. If σ : D −→ Rd
2

and b : D −→ Rd are bounded Lipschitz continuous
functions on D, then the reflected stochastic differential equation

X(t) = x +

∫ t

0

σ(X(s))dW(s) +

∫ t

0

b(X(s))ds+
∑
f∈F

∫ t

0

θ tθ∇f(X(s))dLf (s) (2.1)

has for each starting point x ∈ D a unique strong solution in D, where the local times

Lf satisfy Lf (·) =

∫ ·
0

1f(X(s))=0 dLf (s).

In this theorem "strong uniqueness of the solution" stands for strong uniqueness in
the sense of [7] chap.IV def.1.6 of the process X, not of the local times Lf .

Lemma 2.3. In definition 2.1 the condition inf
x∈∂D

δ(0,Conv) > 0 is equivalent to

∃β0 > 0 ∀x ∈ ∂D ∃v 6= 0 ∀f ∈ F s.t. f(x) = 0 v.∇f(x) ≥ β0|v| |∇f(x)|

where the dot denotes the Euclidean scalar product.

Though this statement is longer and apparently more difficult to obtain than an
uniform lower bound on the norms of the convex combinations, it is in some sense more
intuitive. It states the existence of cones (with vertex x, axis v and aperture 2 arccosβ0)
which contain all the inward normal vectors given by the constraints at point x. The
positivity condition ensures that these cones do not degenerate into half-spaces. This
condition is easier to check in some concrete situations (e.g. section 3).

ECP 18 (2013), paper 26.
Page 3/13

ecp.ejpecp.org

http://dx.doi.org/10.1214/ECP.v18-2730
http://ecp.ejpecp.org/


SDE under multiple constraints

Lemma 2.4 (Stability of the compatibility property). Let F be a set of compatible con-
straints on Rd.

• If θ is a d × d invertible matrix, the transformed constraints {f(θ ·); f ∈ F} are
compatible.

• If all constraints disregard one of the coordinates then F induces a set of com-
patible constraints on Rd−1, that is, if f(x1, · · · , xd−1, xd) = f(x1, · · · , xd−1, 0) for

each f in F and each x = (x1, · · · , xd) in Rd then

{
f :

Rd−1 −→ R

x 7−→ f(x, 0)
; f ∈ F

}
is

compatible.

In the special case where σ is constant and b is a gradient, equation (2.1) admits
a time-reversible measure µ (i.e. the distribution of the solution with initial measure
µ is invariant under the transformation

(
X(·), (Lf (·))f∈F

)
−→

(
X(T − ·), (Lf (T − ·) −

Lf (T ))f∈F
)

for each T > 0):

Theorem 2.5 (Reversibility in the gradient case). Let θ denote a fixed d× d invertible
matrix and let F be a set of compatible constraints. If Φ is a C2-function on Rd with
bounded derivatives, then the solution of

X(t) = X(0) + θW(t)− 1

2

∫ t

0

θ tθ∇Φ(X(s))ds+
∑
f∈F

∫ t

0

θ tθ∇f(X(t))dLf (s) (2.2)

admits dµ(x) = 1D(x)e−Φ(x)dx as a time-reversible measure.

The existence and reversibility of a weak solution of (2.2) is a simple special case of
[3] if the domain D is bounded: the constraints are smooth enough for a regular exhaus-
tion of D to admit a uniform bound on the surface measures of the boundaries. Thus D
complies with the assumptions of theorem 5.1 in [3]. However the small illustration in
section 3 and some realistic applications as in [9] involve unbounded domains.

The remaining of this section is devoted to the proofs of the above results. We first
prove lemmas 2.3 and 2.4 which will be useful in the other proofs and then proceed to
theorems 2.2 and 2.5.

Proof of lemma 2.3. The third compatibility condition is

∃β0 > 0 ∀x ∈ ∂D δ(0,Conv(x)) ≥ β0.

The condition in lemma 2.3 can be rewritten as

∃β0 > 0 ∀x ∈ ∂D max
v 6=0

min

{
v

|v|
.
∇f(x)

|∇f(x)|
; f ∈ F , f(x) = 0

}
≥ β0.

Thus it suffices to prove that for each x ∈ ∂D

δ(0,Conv(x)) = max
|v|=1

min

{
v.
∇f(x)

|∇f(x)|
; f ∈ F , f(x) = 0

}
.

The lower bound on δ(0,Conv(x)) follows from the inequality

|y| ≥ y.v ≥ min
f∈F,f(x)=0

∇f(x)

|∇f(x)|
.v

which holds for every unit vector v and every y ∈ Conv(x) because families (cf ) of
non-negative numbers summing up to 1 satisfy ∑

f,f(x)=0

cf
∇f(x)

|∇f(x)|

 .v ≥

 ∑
f,f(x)=0

cf

 min
f,f(x)=0

∇f(x)

|∇f(x)|
.v
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SDE under multiple constraints

Since the convex hull Conv(x) is a closed set, it contains an element z with minimal
norm: |z| = δ(0,Conv(x)). For each f satisfying f(x) = 0 and for each positive ε, the

convex combination 1
1+ε

(
z + ε ∇f(x)

|∇f(x)|

)
belongs to the convex hull hence its norm can

not be smaller than |z|:

|z|2 + ε2 + 2 ε z.
∇f(x)

|∇f(x)|
≥ (1 + ε)2 |z|2 i.e. ε+ 2 z.

∇f(x)

|∇f(x)|
≥ (2 + ε)|z|2

This proves that
z

|z|
.
∇f(x)

|∇f(x)|
≥ |z| = δ(0,Conv(x)) and provides the upper bound on

δ(0,Conv(x)).

Proof of lemma 2.4. Let us prove the compatibility of the set Fθ = {g(·) = f(θ ·); f ∈
F} of transformed constraints. θ−1D =

{
y ∈ Rd; ∀f ∈ F f(θy) > 0

}
is a non-empty

connected set as continuous image of the non-empty connected set D. θ also transforms
the bounds on the f ’s into bounds on the g’s. Lemma 2.3 with v replaced by θv provides
the existence of some positive β0 such that

∀x ∈ ∂D ∃v 6= 0 ∀f ∈ F s.t. f(x) = 0 v.tθ∇f(x) ≥ β0|θv| |∇f(x)|.

Replacing x by θy we obtain

∀y ∈ ∂(θ−1D) ∃v 6= 0 ∀g ∈ Fθ s.t. g(y) = 0

v.∇g(y) ≥ β0|θv| |tθ−1∇g(y)| ≥ β0
|v|
|θ−1|

|∇g(y)|
|tθ|

.

Thanks to lemma 2.3 with β′0 = β0

|θ−1| |tθ| , this proves that Fθ is a set of compatible
constraints.

In order to prove the second part of lemma 2.4, we now assume that f(x, xd) =

f(x, 0) for each f in F and each (x, xd) in Rd. The set D = {x ∈ Rd; f(x) > 0} is equal to
D×R where D = {z ∈ Rd−1; f(z) > 0} is a non empty connected set as a projection of a
non-empty connected set. The lower bound on∇f and the upper bound on D2f transfer
to f because∇f = (∇f, 0) and |D2f(x)| = |D2f(x1, · · · , xd−1, 0)|. From the compatibility
of F , we also get the existence of a positive β0 such that for each x ∈ ∂D there exists
a unit vector v satisfying v.∇f(x) ≥ β0|∇f(x)| for each function f ∈ F vanishing at
point x. The last coordinate of ∇f(x) vanishes hence v = (v1, · · · , vd−1) 6= 0. Since
∂D = ∂D ×R we obtain the compatibility of the f ’s:

∃β0 > 0 ∀z ∈ ∂D ∃v 6= 0 ∀f ∈ F s.t. f(z) = 0 v.∇f(z) ≥ β0|v| |∇f(z)|

Proof of theorems 2.2 and 2.5.
The case of normal reflection: we assume here that θ = Id. According to corollary
3.6 of [5], equation (2.1) has a unique strong solution as soon as D satisfies the four
assumptions of the inheritance criterion for Uniform Exterior Sphere and Uniform Nor-
mal Cone conditions (proposition 3.4 in [5]). We will check these four assumptions in
the unusual order (i) (ii) (iv) (iii) because some parameter appearing in (iii) depends on
a parameter defined in (iv). We use the notations ∇f := inf{|∇f |(x); x ∈ D, f(x) = 0}
and ||D2f ||∞ := sup{|D2f |(x); x ∈ Rd}.

Assumption (i): We have to prove that
{
x ∈ Rd ; f(x) ≥ 0

}
has C2 boundary in D for

each constraint f . Let us fix x ∈ D such that f(x) = 0. By definition of the constraint
functions ∇f(x) 6= 0, that is, we can choose an index k such that ∇kf(x) 6= 0. For
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SDE under multiple constraints

simplicity sake we assume that ∇df(x) > 0 (the idea easily adapts to k 6= d and to
negative partial derivatives). Applying the implicit function theorem to the C2-function
f , we obtain the existence of a neighborhood V of (x1, . . . , xd−1), a neighborhood U ′

of xd and an increasing C2-function h such that the C2-diffeomorphism (y1, . . . , yd) 7−→
(y1, . . . , yd−1, f(y1, . . . , yd)) maps {y ∈ V × U ′; f(y) ≥ 0} to

{(y1, . . . , yd−1, zd) ∈ V × U ′; zd ≥ h(y1, . . . , yd−1, 0)} .

Hence the subset
{
x ∈ Rd; f(x) ≥ 0

}
has C2 boundary in D and its inward normal di-

rection at point x is
∇f(x)

|∇f(x)|
.

Assumption (ii): Let us prove that
{
x ∈ Rd; f(x) ≥ 0

}
satisfies the Uniform Exterior

Sphere property restricted to D. According to definition 3.1 in [5], we have to prove
that there exists some positive αf such that, for each x ∈ D satisfying f(x) = 0, one has

∀y s.t. f(y) ≥ 0 (y − x).
∇f(x)

|∇f(x)|
+

1

2αf
|y − x|2 ≥ 0. (2.3)

Let us fix x ∈ D on which f vanish. Taylor formula gives

∇f(x).(y − x) +
1

2
(y − x).D2f(x + c∗(y − x))(y − x) = f(y)

for each y ∈ Rd with some c∗ ∈ [0; 1] depending on y and x. In particular, for y such

that f(y) ≥ 0 we obtain (y − x).
∇f(x)

|∇f(x)|
+
||D2f ||∞
2|∇f(x)|

|y − x|2 ≥ 0 which gives (2.3) with

αf =
∇f

||D2f ||∞
.

Assumption (iv): We have to prove the existence of some β0 > 0 such that for
each x ∈ ∂D there exists a unit vector l0x satisfying l0x.∇f(x) ≥ β0|∇f | for each con-
straint such that f(x) = 0. But this has already been done in lemma 2.3 with β0 =

infx∈∂D d(0,Conv(x)) and l0x = z
|z| for some z with minimal norm in Conv(x).

Assumption (iii): We have to prove that each set
{
x ∈ Rd; f(x) ≥ 0

}
satisfies the

Uniform Normal Cone property restricted to D with constant βf smaller than β2
0/2.

Taylor formula for the derivative of f yields ∇f(y) = ∇f(x) +D2f(x+ c∗(y− x))(y− x)

for some c∗ ∈ [0; 1] depending on y and x. We obtain for x and y on which f vanish

∇f(x).∇f(y)

|∇f(x)||∇f(y)|
=
|∇f(x)|
|∇f(y)|

+
∇f(x).D2f(x + c∗(y − x))(y − x)

|∇f(x)||∇f(y)|
.

Since |∇f(x)| ≥ |∇f(y)| − |D2f(x + c∗(y− x))(y− x)| the right hand side is not smaller
than

1− |D
2f(x + c∗(y − x))(y − x)|

|∇f(y)|
− |∇f(x)||D2f(x + c∗(y − x))(y − x)|

|∇f(x)||∇f(y)|

i.e.
∇f(x)

|∇f(x)|
.
∇f(y)

|∇f(y)|
≥ 1 − 2

||D2f ||∞
∇f

|y − x|. As a consequence, for any βf ∈]0, 1[ one

can choose a δf > 0 small enough such that for each x ∈ D satisfying f(x) = 0 and each

y ∈ D satisfying f(y) = 0 and |y − x| ≤ δf one has
∇f(y)

|∇f(y)|
.
∇f(x)

|∇f(x)|
≥
√

1− β2
f .

This proves that
{
x ∈ Rd; f(x) ≥ 0

}
satisfies the Uniform Normal Cone property

restricted to D with any constant βf ∈]0; 1[. In particular it is satisfied with βf < β2
0/2

as requested.
To complete the proof of theorems 2.2 and 2.5 for θ = Id, we proceed as in the

proof of theorem 3.3 in [5], replacing the probability measure dµ(x) = 1
Z1D(x)e−Φ(x)dx
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in that proof by the (σ-finite but maybe unbounded) measure µ defined by dµ(x) =

1D(x)e−Φ(x)dx. Girsanov theorem yields the density of the distribution of the process
with initial measure µ with respect to the distribution of reflected Brownian motion with
Lebesgue measure as initial measure. Since both this density and the distribution of
reflected Brownian motion starting from Lebesgue measure are time-reversal invariant,
we obtain the reversibility of the solution with initial measure µ.

The case of co-normal reflection: Let us check that the results obtained in the
normal reflection case θ = Id transfer to the case of any invertible matrix θ. Using
the notation Xθ = θ−1X, existence and uniqueness for equation (2.1) is equivalent to
existence and uniqueness for

Xθ(t) = Xθ(0)+

∫ t

0

θ−1σ(θXθ(s))dW(s)+

∫ t

0

θ−1b(θXθ(s))ds+
∑
f∈F

∫ t

0

tθ∇f(θXθ(s))dLf (s)

(2.4)
in the closure of the set θ−1D =

{
y ∈ Rd; ∀f ∈ F f(θy) > 0

}
with local times satisfying

the condition Lf (·) =

∫ ·
0

1f(θXθ(s))=0 dLf (s).

The transformed coefficients σθ = θ−1σ(θ ·) and bθ = θ−1b(θ ·) inherit the bound-
edness and Lipschitz continuity property from σ and b. Lemma 2.4 provides the com-
patibility of the set of transformed constraints {f(θ ·); f ∈ F}. Moreover, (2.4) is an
equation with normal reflection because ∇(f(θ ·)) = tθ∇f(θ ·). Thus equation (2.4) and
then equation (2.1) have a unique strong solution.

Moreover, if σ = θ, b = − 1
2θ

tθ∇Φ and X(0) ∼ 1D(x)e−Φ(x)dx for some C2-function
Φ with bounded derivatives, then Xθ is the solution of equation (2.4) with σθ = Id,
bθ = − 1

2

t
θ∇Φ(θ ·) and initial distribution Xθ(0) ∼ 1θ−1D(y)e−Φ(θy)|det(θ)|dy. Thanks

to the reversibility result obtained for normal reflection, Xθ is time-reversible. This
implies the time-reversibility of the solution of equation (2.1).

3 Example: cluster of particles around an attractive sphere

Our aim in theorem 2.2 is to easily obtain the existence of dynamics derived from
physical models, so that we can concentrate on their ergodicity properties. We are
interested in the convergence toward equilibrium for colloidal particles as in [9]. How-
ever, the study of the Janus particles described in [9] is complicated by the fact that
these spherical particles have an additional characteristic beside their position, which
is an angular characterictic. In this note, we restrict ourselves to a small illustration of
the previous results and we consider particles which have a simpler additional charac-
teristic: a random radius.

We study the configuration of a large number of such particles around a fixed sphere
we call the planet. These spherical hard particles have a random radius oscillating be-
tween a minimum and a maximum value (as in [5]). Each particle is driven by a Brown-
ian motion and undergoes the influence of the gravitational attraction generated by the
planet. The motion is perturbated as the particles bump into each other and into the
planet. In this illustration we obtain the existence and uniqueness of such a dynamics
and we describe typical configurations of the equilibrium distribution of the particles.
Using the results of section 2, we prove in proposition 3.3 that the particles eventually
tend to cluster at the surface of the planet when the temperature (represented by the
diffusion coefficient) tends to zero.

More precisely, the planet is the closed ball B(0, R) in Rd centered at the origin with
radius R. A large number n of particles moves around it. Each particle is represented
by the position xi of its center in Rd and the value x̆i of its radius. Thus configurations
are vectors x = (x1, x̆1, . . . , xn, x̆n) in Rn(d+1).
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To prevent negative radii, we enforce x̆i ∈ [r−, r+] for some fixed values 0 < r− < r+.
Random oscillations of the positions of the particles are not on the same scale as

random oscillations of their radii. The elasticity coefficient σ̆ > 0 of their surface takes
this into account.

We assume that the gravity field ϕ generated by the planet is isotropic: it only
depends on the norm |x|. As usual (see e.g. [2]) the gravitational attraction appears
as a drift in the dynamics. Function ϕ is an increasing function which is C2 on ]0; +∞[.
The drift decreases with the distance, but not too fast in the sense that ϕ′′ ≤ 0 and
lim infρ→+∞ ρϕ′(ρ) > 0. An important example in dimension d = 3 is ϕ(ρ) = Cst ln(ρ)

which gives the drift −ϕ′(ρ) = −C
st

ρ corresponding to the gravitational acceleration

−ϕ′′(ρ) = Cst

ρ2 .
At temperature θ > 0, the random motion of particles is modelized by the stochastic

differential system

(Eθ)



for i ∈ {1, . . . , n}

Xi(t) = Xi(0) + θWi(t)−
∫ t

0

ϕ′(|Xi(s)|)
Xi

|Xi|
(s) ds

+

∫ t

0

Xi

R+ X̆i

(s) dLRi (s) +

n∑
j=1

∫ t

0

Xi −Xj

X̆i + X̆j

(s) dLij(s)

X̆i(t) = X̆i(0) + θσ̆W̆i(t)− σ̆2LRi (t)− L+
i (t) + L−i (t)− σ̆2

n∑
j=1

Lij(t)

In this equation, vector (Xi(·), X̆i(·))1≤i≤n represents the positions and radii of the n

particles, the Wi’s are independent Rd-valued Brownian motions and the W̆i’s are in-
dependent one-dimensional Brownian motions, also independent from the Wi’s. The
amplitude of the Brownian oscillation of the position depends on temperature θ, while
the amplitude of the radius oscillation depends on both the temperature θ and the sur-
face elasticity σ̆. The drift of Xi is directed toward the origin as expected. The local
time LRi represents the repulsion received by the ith particle when it collides with the
planet (impulsion away from the origin in the direction of the unit vector Xi

R+X̆i
) and

the local times Lij represent the collisions between particles, which tend to move the

involved particles away from each other (unit direction Xi−Xj
X̆i+X̆j

). Collisions between par-

ticles are symmetric (Lij ≡ Lji). These local times also appear in the dynamics of the
radii, because particles, like bubbles, have smaller radii after the collision. The local
times L+

i and L−i are here to comply with the condition x̆i ∈ [r−, r+] and give a positive
(resp. negative) impulsion to the radius if it becomes too small (resp. too large). The im-
pulsions are only given on the boundary of the set of allowed configurations, therefore
LRi ’s, L+

i ’s, L−i ’s and Lij ’s should satisfy

(E ′θ)


for i, j ∈ {1, . . . , n}

LRi (t) =

∫ t

0

1|Xi(s)|=R+X̆i(s)
dLRi (s) , L+

i (t) =

∫ t

0

1X̆i(s)=r+ dL+
i (s)

L−i (t) =

∫ t

0

1X̆i(s)=r− dL
−
i (s) , Lij(t) =

∫ t

0

1|Xi(s)−Xj(s)|=X̆i(s)+X̆j(s) dLij(s)

The corresponding set of constraints is

• fRi (x) = |xi|2 − (R+ x̆i)
2 > 0 for 1 ≤ i ≤ n (particles do not intersect the planet);

• f+
i (x) = r+ − x̆i > 0 for 1 ≤ i ≤ n (radii are smaller than the maximum value);

• f−i (x) = x̆i − r− > 0 for 1 ≤ i ≤ n (radii are larger than the minimum value);

• fij(x) = |xi−xj |2−(x̆i+ x̆j)
2 > 0 for i 6= j in {1, 2, . . . , n} (particles do not overlap).
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SDE under multiple constraints

Proposition 3.1.{
fRi , f

+
i , f

−
i ; 1 ≤ i ≤ n

}
∪{fij ; 1 ≤ i < j ≤ n} is a set of compatible constraints onRn(d+1).

Let D =
⋂n
i=1

(
(fRi )−1(R∗+) ∩ (f+

i )−1(R∗+) ∩ (f+
i )−1(R∗+) ∩

⋂
j 6=i(fij)

−1(R∗+)
)

.

Proposition 3.2.
If ϕ is an increasing C2-function on ]0; +∞[ satisfying ϕ′′ ≤ 0 and lim inf

ρ→+∞
ρϕ′(ρ) > 0 then

equation (Eθ, E ′θ) has a unique strong solution, which is a D-valued process.

The measure 1D(x)e−
1
θ2

∑n
i=1 ϕ(|xi|)dx is a time-reversible measure for the solution. For

θ small enough, this measure is finite thus the solution admits a time-reversible proba-
bility measure:

µθ(dx) =
1∫

D e
− 1
θ2

∑n
i=1 ϕ(|yi|)dy

1D(x)e−
1
θ2

∑n
i=1 ϕ(|xi|)dx

Once existence and uniqueness is proved for the dynamics, we will check that at
low temperature all particles cluster around the planet with high probability. That is,
there exists with high probability an interface between two regions around the planet:
no particle over some altitude, and beneath this altitude a particle density so high that
one cannot add one more particle (see figure 1).

Figure 1: A configuration with an interface between high particle density and empty
space.

Proposition 3.3.
For each positive ε, let Aε be the set of configurations which do not pack into a minimal
volume:

Aε = {x ∈ D; ∃y ∈ D ∃k ≤ n s.t. ∀i 6= k yi = xi and |yk| < |xk| − ε}

The probability that Aε occurs at equilibrium tends to zero as the temperature tends to
zero:

lim
θ→0

µθ(Aε) = 0.

The end of the paper is devoted to the proofs of the three above propositions.

Proof of proposition 3.1. The constraints in

F = {fij ; 1 ≤ i < j ≤ n} ∪
{
f+
i , f

−
i , f

R
i ; 1 ≤ i ≤ n

}
are C∞ and the corresponding set D of possible configurations is obviously a non-empty
connected set. The first derivative of each constraint function is uniformly positive on
its vanishing set because:

• ∇fRi (x) = 2 (0, . . . , 0, xi,−(R+ x̆i), 0, . . . , 0)

if fRi (x) = 0 i.e. |xi| = R+ x̆i then |∇fRi (x)| = 2
√

2(R+ x̆i) ≥ 2
√

2(R+ r−) > 0 ;

• ∇f+
i (x) = −∇f−i (x) = − (0, . . . , 0, 1, 0, . . . , 0) ((i(d+ 1)− 1)th coordinate) ;
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• ∇fij(x) = 2 (0, . . . , 0, xi − xj ,−(x̆i + x̆j), 0, . . . , 0, xj − xi,−(x̆i + x̆j), 0, . . . , 0)

if fij(x) = 0 i.e. |xi − xj | = x̆i + x̆j then |∇fij(x)| = 4(x̆i + x̆j) ≥ 8r− > 0.

We check the condition inf
x∈∂D

d(0,Conv(x)) > 0 in the form given in lemma 2.3. We have

to find some positive β0 and some non-vanishing vector v depending on x ∈ ∂D such
that

∀f ∈ F s.t. f(x) = 0 v.∇f(x) ≥ β0|v| |∇f(x)|

From an intuitive point of view, v is the "shortest way to go back" into D from the
point x on the boundary of D. It is the quickest way for colliding particles to go apart,
for particles with maximum (resp. minimum) radius to become smaller (resp. larger)
and for particles touching the planet to go away. CR will denote the indices of these
globules: CR = {i s.t. |xi| = R+ x̆i}.

Intuitively, the best way to separate colliding particles is to move them away from
the center of gravity of the cluster. One should give each center xi an impulsion in the
direction xi − 1

]Ci

∑
j∈Ci xj where Ci ⊂ {1, . . . , n} is the cluster of colliding particles

around xi (i.e. Ci is the set containing i and all indices connected to i in the graph
constructed on the vertices {1, . . . , n} by the edges j ∼ j′ ⇐⇒ |xj − xj′ | = x̆j + x̆j′).
Similarly, the best way for particles touching the planet to go away is for each center
xi with i ∈ CR to receive a small impulsion proportional to xi (this impulsion will also
separate clusters of colliding particles). So a convenient v should be

vi =


xi −

1

]Ci

∑
j∈Ci

xj if Ci ∩ CR = ∅

xi if Ci ∩ CR 6= ∅
and v̆i =


r−/2 if x̆i = r−
−r−/2 if x̆i = r+

0 otherwise

Let us prove that the above vector v satisfies the desired inequalities.

• if |xi| = R+ x̆i then vi = xi hence v.
∇fRi (x)

|∇fRi (x)|
=
R+ x̆i√

2
− v̆i√

2
≥ R√

2

• if x̆i = r+ then v.
∇f+

i (x)

|∇f+
i (x)|

= −v̆i =
r−
2

and if x̆i = r− then v.
∇f−i (x)

|∇f−i (x)|
= v̆i =

r−
2

• If |xi − xj | = x̆i + x̆j then Ci = Cj which implies vi − vj = xi − xj thus

v.
∇fij(x)

|∇fij(x)|
=
x̆i + x̆j

4
− v̆i + v̆j

4
≥ r−

4

So v. ∇f(x)
|∇f(x)| is bounded from below, uniformly in x ∈ ∂D and f ∈ F such that f(x) = 0.

To complete the proof of proposition 3.1, it only remains to find a uniform upper bound
for |v|.

|v|2 =

n∑
i=1

|vi|2 + v̆2
i =

∑
i; Ci∩CR 6=∅

|xi|2 +
∑

i; Ci∩CR=∅

| 1

]Ci

∑
j∈Ci

(xi − xj)|2 + n
r2
−
4

If Ci is any cluster of colliding globules,∣∣∣∣∣∣
∑
j∈Ci

(xi − xj)

∣∣∣∣∣∣
2

≤ ]Ci
∑
j∈Ci

|xi − xj |2 ≤ ]Ci
]Ci−1∑
k=0

(2kr+)2 = (2r+)2(]Ci)
2 (]Ci − 1)(2]Ci − 1)

6

Similarly, if Ci is a cluster with at least one globule at distance R+ x̆i of the origin,

∑
j∈Ci

|xj |2 ≤
]Ci−1∑
k=0

(R+ x̆i + 2kr+)2 ≤ 2]Ci(R+ x̆i)
2 + 2(2r+)2 (]Ci − 1)]Ci(2]Ci − 1)

6
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and the same upper bound holds for a sum over a union of such clusters. Consequently

|v|2 ≤ 2n(R+ r+)2 +
4

3
r2
+(n− 1)n(2n− 1) +

2

3
r2
+

∑
i; Ci∩CR=∅

(]Ci − 1)(2]Ci − 1) + n
r2
−
4

Since the sum over {i; Ci ∩ CR = ∅} is smaller than n(n − 1)(2n − 1), the norm of v is
uniformly bounded from above as a function of x. This completes the proof.

Proof of proposition 3.2. We use theorem 2.2 with the n(d+1)×n(d+1) diagonal matrix
θ which has n times the sequence (θ, . . . , θ, θσ̆) as its main diagonal entries. Since the
constraints are compatible on Rn(d+1), for any C2-function Φ on Rn(d+1) with bounded
derivatives,

X(t) = X(0) + θW(t)− 1

2

∫ t

0

θ tθ∇Φ(X(s))ds+
∑
f∈F

∫ t

0

θ tθ∇f(X(s))dLf (s) (3.1)

has a unique strong solution in the closure of the set D defined by the constraints.
Choosing Φ(x) =

∑n
i=1 ϕ(|xi|)/θ2 hence ∇xiΦ(x) = 1

θ2
xi
|xi|ϕ

′(|xi|) and ∇x̆iΦ(x) = 0, equa-
tion (3.1) becomes

Xi(t) = Xi(0) + θWi(t)−
∫ t

0

ϕ′(|Xi(s)|)
Xi

|Xi|
(s)ds+

∫ t

0

2θ2Xi(s)dLfRi (s)

+

n∑
j=1

∫ t

0

2θ2(Xi −Xj)(s)dLfij (s)

X̆i(t) = X̆i(0) + θσ̆W̆i(t) + θ2σ̆2

(
−
∫ t

0

2(R+ X̆i)(s)dLfRi (s)− Lf+
i

(t) + Lf−i
(t)

−
n∑
j=1

∫ t

0

2(X̆i + X̆j)(s)dLfij (s)


Let us define Lij(·) = 2θ2

∫ ·
0
(X̆i + X̆j)(s)dLfij (s), L

+
i = θ2σ̆2Lf+

i
, L−i = θ2σ̆2Lf−i

and

LRi (·) = 2θ2
∫ ·

0
(R+X̆i)(s)dLfRi (s). The property Lf (·) =

∫ ·
0

1f(X(s))=0 dLf (s) implies that

condition (E ′θ) is satisfied for these new local times. Then the solution of equation (3.1)

is the solution of (Eθ). Theorem 2.5 states that 1D(x)e−Φ(x)dx = 1D(x)e−
1
θ2

∑n
i=1 ϕ(|xi|)dx

is a time-reversible measure for the solution. To complete the proof, let us check that
this measure can be renormalized as a probability measure for θ small enough.

From the positivity of ` := lim infρ→+∞ ρϕ′(ρ) we get

∀η > 0 ∃K > 0 ∀ρ > K ϕ′(ρ) ≥ `− η
ρ

.

This integrates into ϕ(ρ) ≥ ϕ(K) + (`− η)(ln ρ− lnK) for ρ ≥ K and leads to

∀c > 0

∫ +∞

K

e−cϕ(ρ)ρd−1dρ ≤ e−cϕ(K)Kc(`−η)

∫ +∞

K

ρ−c(`−η)+d−1dρ

For c large enough to satisfy −c(`− η) + d < 0 the above integral is finite, that is,∫
Rd\B(0,R)

e−cϕ(|x|)dx < +∞

This gives the desired normalization constant for θ small enough to satisfy 1
θ2 ≥ c:∫

D
e−

1
θ2

∑n
i=1 ϕ(|xi|)dx ≤ e−

n
θ2
ϕ

∫
(Rd\B(0,R))n

e−c(
∑n
i=1 ϕ(|xi|)−nϕ)dx

≤ ecnϕ−
n
θ2
ϕ

(∫
Rd−1\B(0,R)

e−cϕ(|x|)dx

)n
< +∞
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where ϕ = min[R;+∞[ ϕ denotes the infimum on [R; +∞[ of the smooth increasing func-
tion ϕ.

Proof of proposition 3.3. Let ϕD := inf{
∑n
i=1 ϕ(|yi|); y ∈ D}. This infimum exists be-

cause ϕ is increasing on ]0; +∞[. We fix x ∈ Aε. There exists an allowed configuration
y with all particles at the same position as in x except one particle (say, the k’th) which
satisfies |yk| < |xk| − ε. Since ϕ′ is a decreasing function,

n∑
i=1

ϕ(|xi|) =

n∑
i=1

ϕ(|yi|) +

∫ |xk|
|yk|

ϕ′(ρ)dρ > ϕD + (|xk| − |yk|)ϕ′(|xk|)

Function ϕ′ admits a limit at infinity.

• If this limit does not vanish, then
n∑
i=1

ϕ(|xi|) > ϕD + ε lim
ρ→+∞

ϕ′(ρ) > ϕD ;

• If lim+∞ ϕ′ = 0, the positivity of ` = lim inf
ρ→+∞

ρϕ′(ρ) implies the existence of a K such

that

∀ρ ≥ K ρϕ′(ρ) ≥ 2`

3
and (R+ r+)ϕ′(ρ) ≤ `

3
hence (ρ−R− r+)ϕ′(ρ) ≥ `

3
.

Without loss of generality, we can choose K ≥ R + 2nr+ + nε. Consider the xk’s
such that there exists y ∈ D satisfying |yk| < |xk| − ε and yi = xi for i 6= k.

– If at least one of them has a norm smaller than K then

n∑
i=1

ϕ(|xi|) > ϕD + εϕ′(K) > ϕD

– If not, all particles in x are at distance at least K from the origin because
it is impossible for only n particles to completely fill a sphere of radius K ≥
R+2nr+ +nε. The xk which has the largest norm is shifted at distance R+r+

from the origin and is relabeled yk. This define configuration y ∈ D. Then

n∑
i=1

ϕ(|xi|) > ϕD + (|xk| −R− r+)ϕ′(|xk|) ≥ ϕD +
`

3
> ϕD

So we obtain
n∑
i=1

ϕ(|xi|) > ϕD + ε′ for all x ∈ Aε with a positive ε′ equal to ε lim
+∞

ϕ′ if this

limit does not vanish and to min(εϕ′(K), `
3 ) otherwise.

An immediate consequence is µθ(Aε) ≤ µθ({x ∈ D;

n∑
i=1

ϕ(|xi|) > ϕD + ε′}).

The normalization constant of the probability measure µθ is larger than∫
D
1∑n

i=1 ϕ(|xi|)≤ϕD+ε′ e
− 1
θ2

∑n
i=1 ϕ(|xi|) dx ≥ e−

1
θ2

(ϕ
D

+ε′)

∫
D
1∑n

i=1 ϕ(|xi|)≤ϕD+ε′ dx

thus µθ(Aε) ≤

∫
D 1

∑n
i=1 ϕ(|xi|)>ϕD+ε′ e

− 1
θ2

(
∑n
i=1 ϕ(|xi|)−ϕD−ε

′) dx∫
D 1

∑n
i=1 ϕ(|xi|)≤ϕD+ε′ dx

.

The denominator does not depend on θ. Dominated convergence theorem ensures that
the numerator converges to zero when θ tends to 0. So we obtain lim

θ→0
µθ(Aε) = 0.
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