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The probability law of the Brownian
motion divided by its range

Florin Spinu*

Abstract

In the present paper we deduce explicit formulas for the probability laws of the quo-
tients X;/R; and m:/R;, where X, is the standard Brownian motion and m;, M, R:
are its running minimum, maximum and range, respectively. The computation makes
use of standard techniques from analytic number theory and the theory of the Hur-
witz zeta function.
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1 Introduction

The connection between the Riemann zeta function and its allies (Jacobi theta func-
tion, Hurwitz zeta function) on the one hand, and the probability laws of various pro-
cesses associated to the standard Brownian motion, on the other, is well established.
(See [3] for a comprehensive survey.) In the present paper we add two new results to
this theme.

Let X; be the standard one-dimensional Brownian motion: this is a Wiener-Levy pro-
cess with mean zero and covariance cov(X,, X;) = s A t. We use the following notations
for the max, min, and range of X;:

M, = Orgg%cth, my = _o?f[gltXS’ Ry =M, +my . (1.1)

For a fixed t > 0, we define the following quotients:
X:Xt/Rt, Q:mt/Rt. (12)

The random variable X is bounded between —1 and 1 and, by the scaling property of
the Brownian motion, its distribution is independent of t. The following theorem gives
an explicit formula for its probability law.

Theorem 1.1. The distribution of X is supported in the interval [—1,1], symmetric
around zero and, for0 <wv < 1,

- L l4v ?(1-0) 1 1
P(X <v)= 2 * 2 Z{(Zn—v)2(2n+v)2 ’ (1.3)

n=1
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The Brownian motion divided by its range

The probability law of @ was given in [5, eq. (2.5)]. We state it here as well and
provide a new proof, which is similar to that of Theorem 1.1.

Theorem 1.2. [5, Cséki] The distribution of @) is supported in the interval [0, 1], sym-
metric about 1/2 and, for0 < v < 1,

P(QSU)Zv(l—v)i(_U"—l( 1 n 1 )

n-—uv n-+uv

ot =) (V) 490 - 5 (3 -

where ¥(z) = 1;’((;:)) is the digamma function.

2 Proof of Theorem 1.1

2.1 An identity of Feller

It suffices to consider the case X = X;/R;. Let w(z,y, z) be the density of the event
{X1 =2,m <y, M; <z} Its explicit expression is given in [6] (as well as [4, 1.15.8]):

w(z,y,2) = Z ¢ (2ky + 2kz —x) — ¢ 2ky + 2(k — 1)z +z) (2.1)
k=—oc0
where ¢(x) = \/% exp(—2?/2) is the probability density function of the standard normal

distribution. From this, we can compute, when x > 0,

P(R; <1, X; € dx) /Tfm /sz 0%w /rﬂ ow
= d - dy = il _ d
dx I z 0 8y8z<x’y,2) y v az (‘T7r Z?’Z) IL',

since w(z,0, z) = 0. To evaluate this integral, we differentiate term-by-term (2.1)

ow ad

5 (@ —22) = > [2k¢! (2kr — ) — 2(k — 1)¢/ (2kr — 22+ 2)]

k=—o0

and then integrate from z = x to z = r — x to obtain (cf. [4, 1.15.8(2)])

PRy <r X, €dx) = i [(2k + 1) — 2k(r — 2)(2kr + 2)]¢(2kr + z) - dx, = <7.

k=—o0

We now turn to the quantity X = X;/R,. For a fixed v € (0, 1) we have, by definition,

P(X >v)=P(R; < X /v) = /00 P(Ry <z/v,X; €dx) = /OO f(z,v)dx (2.2)
0 0
where
fla,v) = > [(2k+1) = 2ka®(1/v — 1)(2k/v + 1)] ¢((2k/v + 1)) . (2.3)
k=—oc0

2.2 The Mellin Transform

Our strategy for computing fooo f(z,v) (eq. 2.2) relies on the observation that, al-
though we cannot integrate the series (2.3) term by term from 0 to co, we can integrate
it against #°, when s is a complex number with real part (s) > 2. In other words, we
consider the Mellin transform

M(s) := /000 f(z,v)2® Ci—x , R(s)>2. (2.4)
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The Brownian motion divided by its range

We prove in the Appendix (Proposition 4.2) that as a function of z, f(z,v) is smooth and
rapidly decreasing in x at both ends of the interval (0,00). This implies that M(s) is
defined everywhere as an entire function in the complex argument s € C. We then go
through the following steps:

» Step 1. Express M (s) in terms of well-known Dirichlet series when $(s) > 2.
 Step 2. Identify fom f(z,v)dx = M(1) by analytic continuation.

Step 1. When R(s) > 2, we use (2.3) to integrate term by term in (2.4) and obtain,
through a change of variable,

M(s) = Z (2k + 1)/N¢((2k/v+ 1)a) 2 ﬂ;ﬁ
k=—o00 0
- (/v —-1) i 2k(2k/v+1) /Oo o((2k/v + 1)z) 2°+2 dx
0

X
k=—o0

oo

=o' My(s) Y

k=—o00

o0

2k +1
|2k 4+ v]|*

. 2% (2% +

k=—o00

where My(s) = [;° ¢(z)z* 9z is the Mellin transform of ¢. This can be computed
explicitly: My(s) = 2&25/%‘(5/2), but all we need is that My(s + 2) = sMy(s) and
My(1) = 1/2. To simplify the right-hand side of (2.5), we introduce the following Dirich-

let series (cf. [9, eq. 2.4] where a similar notation is used):

[e.°]

1 _ Nt 2k +v
Dt (s,v) = Z ko D~ (s,v) := Z g o R(s)>1. (2.6)

k=—o00 k=—o00

The following manipulation of the main term of the right-hand side of (2.5)
2k+1 2k +wv 1—v 2k(2k 4+ v) 1 v(2k 4+ v)

|2k + v|* - |2k + v|* * 2k +o*" 2k+o]st2 T 2k +ol* |2k +of+2

allows us to express M (s) in terms of D*(s,v) as follows:
M(s) = v*My(s) D™ (s — 1,v) +v°(v — 1)(s — 1)My(s) D (s,v)
—sv¥TH (v — 1)My(s) D™ (s + 1,v), R(s) >2. (2.7)

At this point we introduce the Hurwitz zeta function

((s,a) =Y (n%a) R(s) >1, ac(0,1). (2.8)

n=0

It was discovered by Hurwitz that, as a function of s, (s, a) can be analytically continued
to the entire complex plane, with only a simple pole at s = 1. Moreover, it is known that

[1]:
lim [C(s,a) - siJ — —gla), ¢(0,a) = % —a. 2.9)

As an immediate consequence, it follows that both

D6 =2 {e(u3) e (o1 )

have meromorphic continuation to s € C. Moreover, we deduce from (2.9) that

. + N _Ln _v
tiy [0 (6,0 = 24| =108~ § (43 + 001 - ) 2.10)
D=(1,v) =35 (v(1 - 5) —¥(3)) (2.11)
DT (0,0) =0, D= (0,0)=1—w (2.12)
ECP 18 (2013), paper 46. ecp.ejpecp.org
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Step 2. We now let s — 1 in the identity (2.7): we use (2.10) and (2.12) and My4(1) =1/2
to obtain

1 1 1
M) = iv(v -1+ 5112(1 —v)D™(2,v) + §vD7(O,v)
1
= 51;2(1 —v)D™(2,v) . (2.13)
Since s = 2 is in the domain of convergence of the D~ (s, v),
—  2k+v 1 1 1
D™ (2,v) = — = — - . 2.14
@v)= > P v2+§:{@k+vﬁ @kuv} (2.14)
k=—o0 k=1
We conclude that P(X >v) = [;* f = M(1), therefore
_ 1
PX<v)=1-M(1)=1- 51}2(1 —v)D™(2,v)
l-v 1 - 1 1
=1- 1 — 2.15
2 2" ”;[%Jrv) (2k—v)2}’ (2.15)

and this finishes the proof of Theorem 1.1.

2.3 Moments

Letpg(v) = %P(X < v) be the probability density function of X. It is clear from the

above identity that

a (102(1] - 1)D‘(2,v)> . 2.16)

The numerical calculation of pg(v) is given in the Appendix (section 4.2). We can in-
tegrate that expression numerically against test functions to obtain (the computations
were done in Matlab)

E[|X|] =~ 0.4621, FE[X?] ~0.2813, E[X%]~0.1418. (2.17)

px(v) =

2.4 The Taylor expansion at v =0

By differentiating (n + 1) times the identity (1.3), we obtain all the higher order
derivatives of p; (v) at v = 0:

1/2, n=0
Mgy — 0 n=1 2.18
P O = i 0277 ¢m), >3, odd .

(n+1)!n27""1¢(n+1), n>2 even

where ((s) = >_,°; n~* is the Riemann zeta function. In particular, p%(0) = 3¢(3) =
1.8031. This indicates that v = 0 is a local minimum for px(v), which explains the bi-
modality illustrated in Fig. 1a. The modes of the distribution of X occur near 40.554,
but it seems difficult to determine them explicitly.

3 Proof of Theorem 1.2

Let F(y, z) :== P(my <y, M; < z), the joint distribution function of m; and M;. An
explicit expression can be obtained by integrating term-by-term the series (2.1) (cf. [6]
and [4, 1.15.4]):

F(y,z):/ w(z,y,z)dr =2 Z O((k+ 1y +kz), (3.1)

Y k=—o00
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where ®(z) := f ¢(u)du is the cumulative distribution function of the standard nor-
mal dlStI‘lbutIOIl For a fixed v € (0,1), P(Q < v) = P(;; < v) = P(mi < AMy),
where A = ;

Az 00
PQ<wv)= / dz/ E)(y dy—/ Fl(\z,z)dz , (3.2)
0
and F/(\z, z) can be obtained by differentiating (3.1):
> k+wv
Fl(A\z,2) =2 Y (-1)* k¢>( ) : (3.3)
k=—oc0

A similar analysis applies as in the case of f(x,v): we prove in the Appendix (Proposition
4.2) that F/()\z, z) is smooth and rapidly decreasing at both ends of the interval (0, c0),
and we identify P(Q < v) as a special value of the Mellin transform

P(Q<v)= /OOO F!(Az,z)dz = H(1) ,

where H(s) := fooo F!(\z,2) 2° 2 is an entire function of s. On the other hand, we can
integrate (3.3) term-by-term against z*, when R(s) > 2, to obtain

0 _1\k
H(s) =2(1—v)*My(s) > (=1)"k

R m, %(S) > 2. (34)

The inner sum can be easily identified as
D (s—1v)+ D (s—1,1—v)+v(D"(s,1 —v) — DT (s — 1,v)) .

Finally, we can use (2.10) and the identity M,;(1) = 1/2 to compute H (1) and thus arrive
at the second identity of (1.4). The equivalence of the two separate expressions of (1.4)
follows from the identity ¢ (z) = —1 — v — Zzozl(%-;-z — 1) (cf. [2, 6.3.16]).
3.1 The behavior near v =0

Let pg(v) = d%P(Q < v) the density function of ). The asymptotic expansion ¢ (z) =
—1 — 5+ 0(z),z = 0, where v is Euler’s constant, implies that

1 1
PQ<wv)= Y [y + (1) - 21/1(5)] +0(v?) = (2log2) v + O(v?), v — 0+
hence pg(0) = 2log(2) ~ 1.3863. (See [2, 6.3.3, 6.3.14] for the relevant identities.)

3.2 Moments

The symmetry around 1/2 implies that F[Q] = 1/2. The higher moments can be
approximated by integrating numerically pg(¢) against test functions (the computations
were done in Matlab):

E(Q%) ~0.3453, E(Q%) ~0.2679, E(Q*) ~ 0.2205 . (3.5)

4 Appendix

4.1 Theta functions

The main ingredients of the proof of Proposition 4.2 are two theta functions that are
special cases of the classical Jacobi theta functions [8, Chap. 10]. In what follows we
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define them and derive their main properties. For v € (0,1), p € {0,1} and = > 0, let

oo

Yp(x,v) = Z (kJrv)pe*”(kJ“’)%, np(x,v) == Z P e2mikv g mkie 4.1)

k=—o0 k=—o0

By definition, these functions are smooth in z > 0, and
Ip(x,v) =0(e™), m(z,v) =0(e""), n(z,v)=1+0("*),x = +0 (4.2)

(for any ¢ < 7). The Poisson summation formula [8, eq. 35.41] applied to the function
2
> (t +v)Pe~"(t+)°7 yields the following functional equations

o(z,0) = a7 2no(1/z,0), 1(x,0) = —iz "> 2 (1/x,v) . (4.3)
As a consequence of these identities we obtain the behavior near 0:
o(z,v) =2 2+ 0>, Vi(z,0) =0 %), =—0+ . (4.4)

We now turn to the analysis of the functions f(z,v) and F)(az, z), as defined in (2.3) and
(3.3). For simplicity of notation, we define

g(z,v) = Y [(2k+1) — 2ma(1 — 20)k(k + v)]e 0T (4.5)
k=—o00
so that f(z,v) = rg(?ri ). The behavior of f as z — 0+ is deduced from that of g.
1)

Lemma 4.1. Let A = ;% and z := (2)'/2(\ + 1)z. The following two identities hold:

J)%(x7v)+2[1+7f1}(1—21})x] ’191(1‘,1]) . (4.6)

LINVETY _ vy _v v v v 1-wv
(8) z(/\ZaZ) 791('77? 2) 2190(377 2) +191(l‘, 2 )+ 2190(];7 2 ) .

Proof. By definition, g(z,v) is a linear combination of the series ije_”(’”“)%, with
j =0,1,2. The series corresponding to j = 0 and j = 1 are in the linear span of Jy(z, v)
and 94 (z,v). As for j = 2, term by term differentiation of (4.1) yields

09 > 2
a—;(x,v) =7 Z (k + v)2e mk+v)"e

k=—o0

g(z,v) = (1 —2v)9g(z,v) +2(1 — 2v)

(4.7)

hence the sum corresponding to 5 = 2 can be written as

2 1
Z k2e—m(k+v)e - 68110 (z,v) — v29(x,v) — 209, (z,v) .
k=—o00

The exact identity (4.6) results from careful bookkeeping. The proof of (4.7) is similar.
O

Proposition 4.2. As a function of z, f(x,v) is smooth and rapidly decreasing as ¢ — 0+
and © — +o0. The same holds true for F.()\z, z) as a function of z > 0.

Proof. In the case of f(z,v), it is enough to prove the same statement for g(x, v), when
x — 04. We differentiate the first identity from (4.3)

09 0

(@) = —(1/2) 2™ o1/, v) + 2722 (1, 0)
hence 2% (z,v) = —(1/2)z7%/2 + O(e~/*), as © — 0+ (with ¢ < 7). We use this estimate
and (4.4) to derive, from (4.6),

g(z,v) = (1 - 20)[x72 + O(e™/)] + 2(1 — 20) x [~ (1/2)z~% + O(e~*/*)] + O(e~/*)

as z — 0+. The leading terms cancel out conveniently and we are left with O(e=%/%).
Similarly, the proof for F.()\z, z) follows from (4.7) and (4.4). O
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4.2 The numerical computation of p3(v)

In this section we obtain an alternative expression for P(X < v) that is more conve-
nient for numerical computations than the slowly convergent series (1.3). To do so, we
evaluate D~ (2, v) with the aid of the Mellin transform

e d
M (V5 s) ::/ Iy (x, v)z® %, R(s)>1. (4.8)
0
On the one hand, we can integrate (4.1) term-by-term against x*

M(V1;8) =221 n T (s) D™ (25 — 1,2v), R(s) > 1. (4.9)

On the other hand, the functional equation (4.3) allows us to write

M(Vq58) /ﬁlmsx——l—/ 191:551‘?
:(—z)/ m(z,s)x 3/23— / H(z,s)x , seC,
1

since both 1J; and 7, are rapidly decreasing at oo. The series (4.1) converge uniformly
in x > 1, so we can integrate the above term-by-term to obtain

oo

M(9q;8)=7"7% Z

k=—o00

(k 4+ v)T(s,m(k +v)?)
|k 4 v|?s

- (4.10)
+ 27873/2 Z k252 sin(2rkv)T(3/2 — s, 7k?), s € C,

k=1
where T'(s,z) := f *tts% is the incomplete gamma function [2, 6.5.3]. Combining
(4.9) and (4.10) when s = 3/2, we obtain for v # 0 (after replacing 2v by v),

_ 2 o sgn(h)T(3, §(2k +v)?) - 2y o
D™ (2,v) = ﬁkZ (2%—1@) +7r;kf(0,ﬂ'k )sin(wkv) . (4.11)

(Here sgn(k) = 1if k > 0, and sgn(k) = —1 otherwise.) Both series on the right-hand
side are rapidly convergent, since I'(3/2,z) and I'(0,z) have exponential decay at occ.
The derivative of D~ (2,v) can also be computed:

o 4 o~ sgn(k)L(3/2,2(2k+v)?) = 2
g e =-gz 3y WEEREERE 2 5 e

k=—o0

(4.12)

+ 72 Z k*T(0, mk?) cos(mkv) , v #0.
k=1

The last two formulas allow us to evaluate numerically px (v) using (2.16), which we
re-write as

px(v) =vBv/2 —1)D™(2,v) + 102(7) - 1)2

2 v

In Matlab notation, I'(0,z) = expint(xz) and f I'(3/2,z) = gammainc(x,3/2, "upper’).

By retaining, on the right-hand side of (4.11), and (4.12), only the terms corresponding

to |k| < 2, in the exponential series, and k = 1, in the trigonometric series, we obtain an
approximation of p ¢ (¢) within 10~5, uniformly in the interval [-1, 1].
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sl —

(a) The distribution of X. (b) The distribution of Q.

Figure 1
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