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Abstract

The pivotal sampling algorithm, a.k.a. the Srinivasan sampling process, is a simply
described recursive algorithm for sampling from a finite population a fixed number of
items such that each item is included in the sample with a prescribed desired inclu-
sion probability. The algorithm has attracted quite some interest in recent years due
to the fact that despite its simplicity, it has been shown to satisfy strong properties of
negative dependence, e.g. conditional negative association. In this paper it is shown
that (tree-ordered) pivotal/Srinivasan sampling also satisfies the BK inequality. This
is done via a mapping from increasing sets of samples to sets of match sequences
and an application of the van den Berg-Kesten-Reimer inequality. The result is one of
only very few non-trivial situations where the BK inequality is known to hold.
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1 Introduction

Let n be a positive integer and let S = {0, 1}n with the usual coordinatewise partial
order. For ω ∈ S and K ⊆ [n], let ωK = (ωk)k∈K . Define the subset [ω]K as

[ω]K = {α ∈ S : αK = ωK}.

The operation � on pairs of subsets of S is given by

A�B = {ω ∈ S : ∃K,L ⊂ [n] : K ∩ L = ∅, [ω]K ⊆ A, [ω]L ⊆ B}.

Loosely speaking, A�B is the set of ω’s for which A and B occur disjointly. When
[ω]K ⊆ A we will sometimes say that ωK guarantees A. Note that if A and B depend on
disjoint sets of indices, then A�B = A ∩ B. A subset A of S is said to be increasing if
for all α, ω ∈ S, we have α ∈ A, α ≤ ω ⇒ ω ∈ A.

Let X = (X1, . . . , Xn) be a family of binary random variables and let µ(·) = P(X ∈ ·)
be its law. We say that X (or µ) is BK, or that X (or µ) satisfies the BK inequality, if for
every pair of increasing events, A and B,

P(X ∈ A�B) ≤ P(X ∈ A)P(X ∈ B). (1.1)

Recall also that X is said to be negatively associated (NA) whenever (1.1) holds for all
A and B which depend on disjoint sets of indices (i.e. whenever P(X ∈ A∩B) ≤ P(X ∈

∗Chalmers University of Technology and University of Gothenburg, Sweden.
E-mail: jonasson@chalmers.se

http://dx.doi.org/10.1214/ECP.v18-2045
http://ecp.ejpecp.org/
mailto:jonasson@chalmers.se


The BK inequality for pivotal sampling

A)P(X ∈ B) for all such A and B). Hence BK is trivially a property which is at least as
strong as NA.

The BK inequality is known to hold when the Xk’s are independent; this is the classi-
cal BK inequality of van den Berg and Kesten [3], a result which has turned out to be of
fundamental importance in e.g. percolation theory and reliability theory, see e.g. [10].
In fact, when the Xk’s are independent, (1.1) holds for all sets A and B. This was a long
standing open problem until finally solved by David Reimer [13] (2000). Consequently,
this fact is now known as the van den Berg-Kesten-Reimer inequality, a result that will
be of fundamental importance in this paper.

Clearly, if a family has the BK property, this means that it is negatively dependent in
some sense. For example, as noted above, any BK family is NA. In recent years, it has
become a challenge to understand how the BK property fits into the theory of negative
dependence. The chase for a theory of negative dependence started out a decade or
so ago with the pioneering papers [12] and [9]. A major step forward was taken by
Borcea, Brändén and Liggett in [4]. Their work was based on an algebraic/analytic
approach involving the zeros of the generating polynomials. This approach in turn was
based on a series of papers of Borcea and Brändén, see the bibliography of [4]. The
generating polynomial approach is powerful, see e.g. [5], where a number of important
sampling techniques were easily shown to satisfy a strong form of negative dependence,
the strong Rayleigh property, This property implies in particular CNA, i.e. that the
conditional distribution, given any subset of the variables, of the remaining variables is
NA. However, the BK property has so far resisted the analytic approach and it is unclear
how it would fit into this framework. Markström [11] gave examples that showed that
the BK property is neither closed under conditioning, nor under external fields. He also
showed that there are examples of NA families which are not BK. If CNA is sufficient
for BK, remains an open question.

A moments thought reveals that the van den Berg-Kesten-Reimer inequality can only
be satisfied for product measures. However it is intuitively clear that (1.1) should hold
for all increasing events for many classes of negatively dependent binary random vari-
ables. Until quite recently however, the BK inequality was not known to hold for any
substantial classes of measures apart from product measures, despite the efforts of sev-
eral researchers (oral communication). The first substantial new contribution came in
[2], where uniform samples of, say, k items from a population of size n, were shown
to be BK. This was also shown to be true for weighted versions of uniform k-out-of-n
samples and products of such measures. The still more recent work [1] proves that the
anti-ferromagnetic Ising Curie-Weiss model satisfies the BK inequality. It is also shown
that if (1.1) is modified in a natural way, then it holds also for the ferromagnetic Ising
model.

In this paper, we show that the important pivotal sampling procedure, also known as
Srinivasan sampling, satisfies the BK inequality. As in [2], this is done via an application
of Reimer’s results. A difference however, is that here we apply the van den Berg-
Kesten-Reimer inequality directly, whereas [2] refers to the key ingredient of Reimer’s
proof, namely the set-theoretic fact known as Reimer’s Butterfly Theorem.

The rest of the paper is organized as follows. In Section 2, we briefly introduce the
sampling process and state the main result. Section 3 is then devoted to the proof.

2 Notation and statements

Pivotal sampling is an important algorithm in sampling theory. It was introduced by
Deville and Tillé [7] in 1998. In the computer science community, which was generally
not aware of the Deville-Tillé paper, the method was independently rediscovered and
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introduced by Srinivasan [14] and is consequently known there as Srinivasan sampling.
The pivotal/Srinivasan algorithm is an efficient method for picking fixed size samples
with the exact right pre-specified inclusion probabilities, that despite its simplicity en-
joys all the virtues of negative association. One drawback is that the entropy of the
resulting sample is fairly low. For example, in a population of n items, there will typi-
cally be n − 1 pairs of items such that the two items in a given pair either cannot both
be included in the sample or cannot both be outside the sample.

The algorithm is recursive and works as follows. Suppose that we have a population
of n items from which we want to draw a sample of exactly k items, in such way that
for each item i, the probability that this item is included in the sample is exactly a pre-
specified number πi. (To make this possible, we of course need that

∑
i πi = k.) Order

the items linearly as item 1, item 2, ..., item n in some arbitrary way. Suppose that
π1+π2 ≤ 1. Play a "match" between items 1 and 2, with 1 as the winner with probability
π1/(π1 + π2) and 2 as the winner with the remaining probability π2/(π1 + π2). The loser
is now ruled out from being included in the sample (i.e. one sets X1 = 0 if item 1 lost the
match and X2 = 0 otherwise), whereas the winner gets the new inclusion probability
π′2 = π1 + π2 and is relabelled as item 2′ in a new population consisting of 2′ together
with 3, . . . , n. Now apply the algorithm recursively and independently from the result of
the first match, on the new population with inclusion probabilities π′2, π3 . . . , πn. In case
π1 + π2 > 1, declare instead 1 the winner with probability (1 − π2)/(2 − π1 − π2) and
declare 2 the winner with the remaining probability (1− π1)/(1− π1 − /π2). The winner
is now given a secure place in the sample (i.e. one sets X1 = 1 if item 1 won the match
and X2 = 1 otherwise), whereas the loser plays on, as above under the new identity 2′,
in the new population 2′, 3, . . . , n, with inclusion probabilities π′2 = π1 + π2 − 1 for 2′ and
πi for i = 3, . . . , n.

Note that the i’th match of the process is always played between the item initially
labelled i + 1 and one item with a lower initial label, whose identity is determined by
the results of the previous i − 1 matches and that the probabilities with which these
two items compete is non-random. In particular the final sample is determined by the
n − 1 independent matches. Note also that the process can equivalently be described
with the matches in reverse order. Indeed, with the process as described above, we can
equally well pick the sample on 2′, 3, . . . , n first and then use the first match (which now
becomes the last match) to decide the true identity of 2′.

That this indeed produces a sample of exactly k items and with the desired inclusion
probabilities follows from a short induction argument. Indeed, by induction it follows
that it suffices to note that the inclusion probability of item 1 is π1 under the induction
hypothesis that the algorithm works as claimed for populations of size n − 1. This
however, is obvious.

One variant of the pivotal sampling algorithm, which may raise the entropy, is to
replace the linear order of the items with a tree order. I.e. place the items at the leafs
of a binary tree (i.e. a tree where all vertices have degree 1 or 3) with n leafs, in some
deterministic way. Then play the first match between two predetermined vertices at
two leafs with a common neighbor. Place the winner or the loser, depending on the
total probability of the given match, at the common neighbor and erase the two leafs.
Then repeat recursively as above. (Another variant, which stands out naturally, is to
order the items linearly in a uniform random way. Then, of course, our results apply
given the order, but unfortunately they do not apply to the whole procedure including
the randomness in order.)

Pivotal sampling/Srinivasan’s process was shown to be CNA under linear order
in [8]. This was extended to the tree-ordered case in [6]. These results were fur-
ther strengthened in [5], where it was shown that pivotal sampling is in fact strongly
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Rayleigh. Here we prove that it is also BK:

Theorem 2.1. Let X = (X1, . . . , Xn) be the indicator random variables of a pivotal
sample on n items, either linearly ordered or tree-ordered. I.e. let π1, . . . , πn be the
given inclusion probabilities (satisfying

∑
i = k, k ∈ [n]) and let Xi = 1 if item i gets

included in the sample and Xi = 0 otherwise. Then X is BK.

3 Proof of Theorem 2.1

The sample X is determined by n − 1 matches. Let the i’th match be denoted by
mi and let M = {m1, . . . ,mn−1} be the set of matches. Let Y = (Y1, . . . , Yn−1) be the
binary random variables given by Yi = 1 if match number i is won by the item with
the smallest label and Yi = 0 otherwise. Let f : {0, 1}M → Sk = {ω ∈ S :

∑
i ωi = k}

be the function given by letting f(y) be the pivotal sample that results from Y = y. In
particular X = f(Y ). (Note that f is neither injective nor surjective. E.g. if π1 + π2 > 1,
then f(y)1 + f(y)2 ≥ 1 for all y and it is easily seen that f(y)1 = f(y)2 = 1 for at least
two different y’s). For an event A ⊆ S, let Â := f−1(A) = {y ∈ {0, 1}M : f(y) ∈ A}. The
key result is the following lemma.

Lemma 3.1. Let A and B be two increasing subsets of {0, 1}n. Then

Â�B ⊆ Â�B̂.

Proof. We will do this by induction over n. It is trivial to check this for n = 1 (which
makes perfect sense), so we can focus on the induction step. Fix an integer r ≥ 2 and
assume that the lemma holds for n = 1, . . . , r − 1 and consider the case n = r. Pick an
arbitrary y ∈ Â�B. Let x := f(y). By definition we have x ∈ A�B. Hence there are two
disjoint index sets I, J ⊆ [n] such that [x]I ⊆ A, [x]J ⊆ B and xI ≡ xJ ≡ 1. We want to
show that y ∈ Â�B̂. The crucial step is to use that if we write y = (y1, u), u ∈ {0, 1}n−2,
then the match sequence u gives, by the very definition of pivotal sampling given above,
rise to a pivotal sample x′ on the items 2′, 3, . . . , n which agrees with x on 3, . . . , n, but
may possibly differ on items 1 and 2. Since this latter sample is from a population of
n− 1 items, the induction hypothesis applies.

Consider first the case π1 + π2 < 1. Then, since at least one of x1 and x2 is 0, we
cannot have both items 1 and 2 in I ∪ J . Let I ′ = I if 1, 2 6∈ I, and I ′ = I \ {i} ∪ {2′} if
i ∈ I, i ∈ {1, 2}. Define J ′ identically. Then I ′ and J ′ are disjoint. Hence by the induction
hypothesis, there are disjoint sets of matches, K ′ and L′ (subsets of {m2, . . . ,mn−1})
such that f(w)I′ ≡ 1 for w ∈ [u]K′ and f(w)J′ ≡ 1 for w ∈ [u]L′ .

Now if neither 1 nor 2 is in I ∪ J , then I ′ = I and J ′ = J , so with K = K ′ and
L = L′, f(w)I ≡ 1 whenever w ∈ [u]K and f(w)J ≡ 1 whenever w ∈ [u]L. Hence
if z = (z1, w) ∈ [y]K , then w ∈ [u]K , so f(z)I ≡ 1 and analogously f(z)J ≡ 1 when
z ∈ [y]L. Assume now that 2 ∈ I. Then y1 must equal 0, since otherwise f(y)2 = 0, a
contradiction. Let K = K ′ ∪ {m1} and L = L′. It is obvious that f(z)J ≡ 1 for z ∈ [y]L.
If z = (z1, w) ∈ [y]K , then z1 = 0 and w ∈ [u]K′ . Therefore f(z)2 = 1 and f(z)I′\{2′} ≡ 1,
i.e. f(z)I ≡ 1. Of course, the case 2 ∈ J is analogous, with K = K ′ and L = L′ ∪ {m1}.
If instead 1 ∈ I (or 1 ∈ J), then just replace 0 with 1 for y1 and z1 and repeat the
argument. In all cases, we have found disjoint sets K,L ⊆ {m1, . . . ,mn−1} such that
f(z)I ≡ 1 whenever z ∈ [y]K and f(z)J ≡ 1 whenever z ∈ [y]L. Hence y ∈ Â�B̂.

Now consider the case π1 + π2 > 1. Assume first that y1 = 1, so that 1 wins match
m1. Hence match m1 guarantees that f(y)1 = 1 and we have f(y)2 = 1 iff f(u)2′ = 1.
Let I ′ = I \ {1} if 2 6∈ I and I ′ = I \ {1, 2} ∪ {2′} if 2 ∈ I and define J ′ identically. Then
I ′ and J ′ are disjoint subsets of {m2, . . . ,mn}, so the induction hypothesis allows us to
assume that there are disjoint sets K ′, L′ ⊆ {m2, . . . ,mn−1} such that f(w)I′ ≡ 1 for
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w ∈ [u]K′ and f(w)J′ ≡ 1 for w ∈ [u]L′ . If neither 1 nor 2 is in I ∪ J , then we can take
K = K ′ and L = L′ exactly as for π1 + π2 ≤ 1. If 1 ∈ I (or 1 ∈ J) and 2 6∈ I ∪ J , then take
K = K ′ ∪ {m1} and L = L′ (or K = K ′, L = L′ ∪ {m1}). If 2 ∈ I (or 2 ∈ J) and 1 6∈ J ,
then take K = K ′ and L = L′. If 1 and 2 are both in I ∪ J , then take K = K ∪ {m1},
L = L′ if 1 ∈ I and K = K ′ and L = L′ ∪ {m1} if 1 ∈ J . In all cases K and L are disjoint,
f(z)I ≡ 1 for z ∈ [y]K and f(z)J ≡ 1 for z ∈ [y]L. This proves that y ∈ Â�B̂.

Finally if y1 = 1, then repeat the same analysis with the rôles of 1 and 2 changed.

Now the proof of the main result is very short. Since the Yi’s are independent,

P(X ∈ A�B) = P(Y ∈ Â�B) ≤ P(Y ∈ Â�B̂)

≤ P(Y ∈ Â)P(Y ∈ B̂) = P(X ∈ A)P(X ∈ B),

where the second inequality is the van den Berg-Kesten-Reimer’s inequality. This com-
pletes the proof. 2

Remark. It may be tempting to believe that Â�B = Â�B̂. However the inclusion
Â�B̂ ⊆ Â�B fails. The following example is due to an anonymous referee. Let n = 4,
π1 = π2 = 1/3 and π3 = π4 = 2/3. Let A be the event that X2 +X3 +X4 ≥ 2 and let B be
the event that X1 +X2 +X3 ≥ 2. Then A�B is the event that X1 = X2 = X2 = X4 = 1

and since all match sequences result samples of size 2, Â�B = ∅. However any match
sequence z = (z1, z2.z3) with z1 = 0 entails X1 = 0 and hence A occurs. Analogously
z3 = 1 implies B. Hence Â�B̂ ⊇ {(0, 0, 1), (0, 1, 1)}.
Acknowledgments. I would like to thank the two anonymous referees whose com-
ments helped me to substantially improve this paper. I am particularly grateful to the
referee who discovered an important mistake in the proof of the main lemma in an
earlier version.
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