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Abstract

The central limit theorem for the product of sums of various random variables has been studied
in a variety of settings. The purpose of this note is to show that this kind of result is a corollary
of the invariance principle.

Let {Xk; k ≥ 1} be a sequence of i.i.d exponential random variables with mean 1, Sn =
∑n

k=1 Xk, n ≥ 1. Arnold and Villaseñor (1998) proved that

(

n
∏

k=1

Sk

k

)1/
√

n

D→ e
√

2N(0,1), as n → ∞, (1)

where N(0, 1) is a standard normal random variable. Later Rempala and Wesolowski (2002)
extended such a central limit theorem to general i.i.d. positive random variables. Recently,
the central limit theorem for product of sums has also been studied for dependent random
variables (c.f., Gonchigdanzan and Rempala (2006)). In this note, we will show that this kind
of result follows from the invariance principle.
Let {Sn; n ≥ 1} be a sequence of positive random variables. To present our main idea, we
assume that (possibly in an enlarged probability space in which the sequence {Sn; n ≥ 1} is
redefined without changing its distribution) there exists a standard Wiener process {W (t) :
t ≥ 0} and two positive constants µ and σ such that

Sn − nµ − σW (n) = o(
√

n) a.s. (2)
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Then

log

n
∏

k=1

Sk

kµ
=

n
∑

k=1

log
Sk

kµ
=

n
∑

k=1

log

(

1 +
σ

µ

W (k)

k
+ o(k−1/2)

)

=

n
∑

k=1

(

σ

µ

W (k)

k
+ o(k−1/2)

)

=
σ

µ

n
∑

k=1

W (k)

k
+ o(

√
n)

=
σ

µ

∫ n

0

W (x)

x
dx + o(

√
n) a.s., (3)

where log x = ln(x ∨ e). It follows that

µ

σ

1√
n

log

n
∏

k=1

Sk

kµ

D→
∫ 1

0

W (x)

x
dx, as n → ∞.

It is easily seen that the random variable on the right hand side is a normal random variable
with

E

∫ 1

0

W (x)

x
dx =

∫ 1

0

EW (x)

x
dx = 0

and

E

(∫ 1

0

W (x)

x
dx

)2

=

∫ 1

0

∫ 1

0

EW (x)W (y)

xy
dxdy =

∫ 1

0

∫ 1

0

min(x, y)

xy
dxdy = 2.

So
(

n
∏

k=1

Sk

kµ

)γ/
√

n

D→ e
√

2N(0,1), as n → ∞, (4)

where γ = µ/σ. If Sn is the partial sum of a sequence {Xk; k ≥ 1} of i.i.d. random variables,
then (2) is satisfied when E|Xk|2 log log |Xk| < ∞. (2) is known as the strong invariance
principle. To show (4) holds for sums of i.i.d. random variables only with the finite second
moments, we replace the condition (2) by a weaker one. The following is our main result.

Theorem 1 Let {Sk; k ≥ 1} be a nondecreasing sequence of positive random variables. Sup-
pose there exists a standard Wiener process {W (t); t ≥ 0} and two positive constants µ and σ
such that

Wn(t) =:
S[nt] − [nt]µ

σ
√

n

D→ W (t) in D[0, 1], as n → ∞ (5)

and

sup
n

E|Sn − nµ|√
n

< ∞. (6)

Then




[nt]
∏

k=1

Sk

kµ





γ/
√

n

D→ exp

{∫ t

0

W (x)

x
dx

}

in D[0, 1], as n → ∞, (7)

where γ = µ/σ.
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Remark 1 (5) is known as the weak invariance principle. The conditions (5) and (6) are
satisfied for many random variables sequences. For example, if {Xk; k ≥ 1} are i.i.d. positive
random variables with mean µ and variance σ2 and Sn =

∑n
i=1 Xk, then (5) is satisfied by the

invariance principle (c.f., Theorem 14.1 of Billingsley (1999)). Also, for any n ≥ 1,

E

[ |Sn − nµ|√
n

]

≤
{

Var

[

Sn − nµ√
n

]}1/2

= σ,

by the Cauchy-Schwarz inequality, so Condition (6) is also satisfied. Many dependent random
sequences also satisfy these two conditions.

Proof of Theorem 1. For x > −1, write log(1 + x) = x + xθ(x), where θ(x) → 0, as x → 0.
Then for any t > 0,

log





[nt]
∏

k=1

Sk

kµ





γ/
√

n

=
1

σ
√

n

[nt]
∑

k=1

Sk − kµ

k
+

1

σ
√

n

[nt]
∑

k=1

Sk − kµ

k
θ

(

Sk

kµ
− 1

)

. (8)

Notice that for any ρ > 1,

max
ρn≤k<ρn+1

|Sk − kµ|
k

≤ max

{ |S[ρn+1] − [ρn+1]µ|
ρn

,
|S[ρn] − [ρn]µ|

ρn

}

+ µ
(

(ρ − 1) +
1

ρn

)

.

Together with (6), it follows that, for any n0 ≥ 1,

E

[

max
k≥ρn0

|Sk − kµ|
k

]

≤ ρE

[

max
n≥n0

|S[ρn] − [ρn]µ|
ρn

]

+ µ
(

(ρ − 1) +
1

ρn0

)

≤ρ sup
k

E|Sk − kµ|√
k

∞
∑

n=n0

ρ−n/2 + µ
(

(ρ − 1) +
1

ρn0

)

→ 0,

as n0 → ∞ and then ρ → 1. It follows that

max
k≥k0

∣

∣

∣

∣

Sk

kµ
− 1

∣

∣

∣

∣

P→ 0, as k0 → ∞,

which implies that
Sk

kµ
− 1 → 0 a.s., as k → ∞.

Hence we conclude that

θ

(

Sk

kµ
− 1

)

→ 0 a.s., as k → ∞.

On the other hand, by (6), we have

1√
n

E

[

n
∑

k=1

|Sk − kµ|
k

]

≤ C0
1√
n

n
∑

k=1

1√
k
≤ 2C0. (9)

It follows that

max
0≤t≤1

∣

∣

∣

∣

∣

∣

1

σ
√

n

[nt]
∑

k=1

Sk − kµ

kµ
θ

(

Sk

kµ
− 1

)

∣

∣

∣

∣

∣

∣

=
1√
n

n
∑

k=1

|Sk − kµ|
k

o(1) = oP (1).
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So, according to (8) it is suffices to show that

Yn(t) =:
1

σ
√

n

[nt]
∑

k=1

Sk − kµ

k

D→
∫ t

0

W (x)

x
dx in D[0, 1], as n → ∞. (10)

Let

Hǫ(f)(t) =







∫ t

ǫ

f(x)

x
dx, ǫ < t ≤ 1,

0, 0 ≤ t ≤ ǫ

and

Yn,ǫ(t) =















1

σ
√

n

[nt]
∑

k=[nǫ]+1

Sk − kµ

k
, ǫ < t ≤ 1,

0, 0 ≤ t ≤ ǫ.

It is obvious that

max
0≤t≤1

∣

∣

∣

∣

∫ t

0

W (x)

x
dx − Hǫ(W )(t)

∣

∣

∣

∣

= sup
0≤t≤ǫ

∣

∣

∣

∣

∫ t

0

W (x)

x
dx

∣

∣

∣

∣

→ 0 a.s., as ǫ → 0 (11)

and

E max
0≤t≤ǫ

|Yn(t) − Yn,ǫ(t)| = E

{

max
0≤t≤ǫ

E
∣

∣

∣

1

σ
√

n

[nt]
∑

k=1

Sk − kµ

k

∣

∣

∣

}

≤ 1

σ
√

n

[nǫ]
∑

k=1

E|Sk − kµ|
k

≤ C0

σ
√

n

[nǫ]
∑

k=1

1√
k
≤ 2C0

σ
√

n

√

[nǫ] ≤ C
√

ǫ, (12)

by (6). On the other hand, it is easily seen that, for n large enough such that nǫ ≥ 1,

sup
ǫ≤t≤1

∣

∣

∣

∣

[nt]
∑

k=[nǫ]+1

Sk − kµ

k
−
∫ nt

nǫ

S[x] − [x]µ

x
dx

∣

∣

∣

∣

= sup
ǫ≤t≤1

∣

∣

∣

∣

∫

[nǫ]+1≤x<[nt]+1

S[x] − [x]µ

[x]
dx −

∫ nt

nǫ

S[x] − [x]µ

x
dx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

nǫ≤x<[nǫ]+1

S[x] − [x]µ

x
dx

∣

∣

∣

∣

+ sup
ǫ≤t≤1

∣

∣

∣

∣

∫

nt≤x<[nt]+1

S[x] − [x]µ

x
dx

∣

∣

∣

∣

+ sup
ǫ≤t≤1

∣

∣

∣

∣

∫

[nǫ]+1≤x<[nt]+1

(

S[x] − [x]µ
)

(

1

x
− 1

[x]

)

dx

∣

∣

∣

∣

≤max
k≤n

|Sk − kµ| sup
ǫ≤t≤1

(

2

nǫ
+

2

nt
+

1

nǫ

)

≤5 max
k≤n

|Sk − kµ|/(nǫ) = OP (
√

n)/n = oP (1)

by noticing that maxk≤n |Sk − kµ|/√n
D→ σ sup0≤t≤1 |W (t)| according to (5). So

1

σ
√

n

[nt]
∑

k=[nǫ]+1

Sk − kµ

k
=

1

σ
√

n

∫ nt

nǫ

S[x] − [x]µ

x
dx + oP (1) =

∫ t

ǫ

Wn(x)

x
dx + oP (1)
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uniformly in t ∈ [ǫ, 1]. Notice that Hǫ(·) is a continuous mapping on the space D[0, 1]. Using
the continuous mapping theorem (c.f., Theorem 2.7 of Billingsley (1999)) it follows that

Yn,ǫ(t) = Hǫ(Wn)(t) + oP (1)
D→ Hǫ(W )(t) in D[0, 1], as n → ∞. (13)

Combining (11)–(13) yields (10) by Theorem 3.2 of Billingsley (1999). �

Theorem 2 Let {Sk; k ≥ 1} be a sequence of positive random variables. Suppose there exists
a standard Wiener process {W (t); t ≥ 0} and two positive constants µ and σ such that

Sn − nµ − σW (n) = o
(
√

n log log n
)

a.s. (14)

Let

F =

{

f(t) =

∫ t

0

f ′(u)du : f(0) = 0,

∫ 1

0

(f ′(u))2du ≤ 1, 0 ≤ u ≤ 1

}

.

Then with probability one






(

[nt]
∏

k=1

Sk

kµ

)γ/
√

2n log log n

; 0 ≤ t ≤ 1







∞

n=3

is relatively compact (15)

and the limit set is
{

exp
{

∫ x

0

f(u)

u
du
}

: f ∈ F , 0 ≤ x ≤ 1

}

.

In particular,

lim sup
n→∞

(

n
∏

k=1

Sk

kµ

)γ/
√

2n log log n

= e
√

2 a.s. (16)

Proof of Theorem 2. Similar to (3), we have

log

n
∏

k=1

Sk

kµ
=

σ

µ

∫ n

0

W (x)

x
dx + o(

√

n log log n) a.s.

Notice
1√

2n log log n

∫ nt

0

W (x)

x
dx =

∫ t

0

1

u

W (nu)√
2n log log n

du

and with probability one
{

W (nt)√
2n log log n

: 0 ≤ t ≤ 1

}∞

n=3

is relatively compact

with F being the limit set (c.f., Theorem 1.3.2 of Csőrgö and Révész (1981) or Strassen (1964)).
The first part of the conclusion follows immediately. For (16), it suffices to show that

sup
f∈F

sup
0≤t≤1

∫ t

0

f(u)

u
du ≤

√
2 (17)

and

sup
f∈F

∫ 1

0

f(u)

u
du ≥

√
2. (18)
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For any f ∈ F , using the Cauchy-Schwarz inequality, we have

∫ t

0

f(u)

u
du =

∫ t

0

1

u

∫ u

0

f ′(v)dvdu =

∫ t

0

∫ t

v

f ′(v)
1

u
dudv

=

∫ t

0

f ′(v) log
t

v
dv ≤

(

∫ t

0

(

log
t

v

)2

dv

)1/2
(∫ t

0

(

f ′(v)
)2

dv

)1/2

≤
(

∫ t

0

(

log
t

v

)2

dv

)1/2

=
√

2t ≤
√

2,

where 0 ≤ t ≤ 1. Then (17) is proved. Now, let f(t) = (t− t log t)/
√

2, f(0) = 0. Then f ∈ F
and

∫ 1

0

f(u)

u
du =

1√
2

∫ 1

0

(1 − log u)du =
√

2.

Hence (18) is proved. �
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