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Université Pierre et Marie Curie, Laboratoire de Probabilités et Modèles aléatoires, 4, Place
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Abstract
In this note we use the boundary classification of diffusions in order to derive a criterion for the
convergence of perpetual integral functionals of transient real-valued diffusions. We present
a second approach, based on Khas’minskii’s lemma, which is applicable also to spectrally
negative Lévy processes.
In the particular case of transient Bessel processes, our criterion agrees with the one obtained
via Jeulin’s convergence lemma.

1 Introduction

Consider a linear regular diffusion Y on an open interval I = (l , r) in the sense of Itô and
McKean [11]. Let Px and Ex denote, respectively, the probability measure and the expectation
associated with Y when started from x ∈ I. It is assumed that Y is transient, and for all x ∈ I

lim
t→ζ

Yt = r Px-a.s., (1)
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where ζ is the life time of Y. Hence, if ζ <∞ then

ζ = Hr(Y ) := inf{t : Yt = r}.

Let f be a non-negative, measurable and locally bounded function on I, and introduce for all
t > 0

At(f) :=
∫ t

0

f(Ys) ds. (2)

The ultimate value of this additive functional, i.e., Aζ(f), is often called a perpetual inte-
gral functional. We are interested in finding necessary and sufficient conditions for the a.s.
finiteness of Aζ(f). To derive such conditions is an important problem per se in the theory of
diffusions. Functionals of type (2) appear naturally in various applications; e.g., in insurance
mathematics the functional Aζ(f) may be interpreted, in a suitable model, as the present value
of a continuous stream of perpetuities, see Dufresne [7].
In case Y is a Brownian motion with drift µ > 0 it is known that A∞(f) is finite a.s. if and only
if f is integrable at ∞ (see Engelbert and Senf [9] and Salminen and Yor [18]). This condition
is derived in [18] via Ray–Knight theorems and the stationarity property of the local time
processes (which makes Jeulin’s lemma [12] applicable). Moreover, conditions for existence of
moments are also given in [18]. For exponential functionals of Brownian motion, we refer to
the recent surveys by Matsumoto and Yor [15] and [16].
In Theorem 2, Section 2, we present a necessary and sufficient condition for a.s. finiteness of
Aζ(f) by exploiting the fact that AHx(f) for x < r can, via a random time change, be seen as
the first hitting time of a point for another diffusion. This approach, valid for Y determined
via a SDE with smooth coefficients and continuous f, leads naturally to an integral test for
the finiteness of Aζ(f) providing at the same time a probabilistic explanation for the test.
However, having seen the simple answer to the problem, another proof essentially based on
Khas’minskii’s lemma was constructed proving the result for general Y and f. This is discussed
in Theorem 3.
Since the integral test for continuous f can be interpreted as the condition that the right bound-
ary point is exit for a suitably chosen diffusion we offer a short discussion on exit boundaries
in Section 3. The paper is concluded with an example about Bessel processes.

2 The Main Results

We begin by formulating the key result connecting perpetual integral functionals to first hit-
ting times. The result is a generalization of a result in [17, Proposition 2.1] discussed in [3,
Propositions 2.1 and 2.3]. Assume that the diffusion Y introduced above is in fact determined
by the SDE

dYt = σ(Yt) dWt + b(Yt) dt,

where W is a standard Wiener process defined in a complete probability space (Ω ,F , {Ft},P).
It is assumed that σ and b are continuous and σ(x) > 0 for all x ∈ I. For the speed and the
scale measure of Y we respectively use

mY (dx) = 2σ2(x)eBY (x) dx and SY (dx) = e−BY (x) dx, (3)

where

BY (x) = 2
∫ x b(z)

σ2(z)
dz. (4)
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Proposition 1. Let Y and f be as above, and assume that there exists a two times continu-
ously differentiable function g such that

f(x) =
(
g′(x)σ(x)

)2
, x ∈ I. (5)

Let {at : 0 ≤ t < Aζ} denote the inverse of A, that is,

at := min
{
s : As > t

}
, t ∈ [0 , Aζ).

Define Zt := g(Yat) for all t ∈ [0 , Aζ). Then, Z is a diffusion that satisfies the SDE

dZt = dW̃t +G(g−1(Zt)) dt, t ∈ [0 , Aζ).

Here, W̃t is a Brownian motion and

G(x) =
1

f(x)

(
1
2
σ(x)2 g′′(x) + b(x) g′(x)

)
.

Moreover, for l < x < y < r

AHy(Y ) = inf{t : Zt = g(y)} =: Hg(y)(Z) a.s. (6)

with Y0 = x and Z0 = g(x).

In order to fix ideas, let us assume that the function g of Proposition 1 is increasing. We define
g(r) := limx→r g(x), and use the same convention for any increasing function defined on (l , r).
The state space of the diffusion Z is the interval (g(l), g(r)) and limt→ζ(Z) Zt = g(r) a.s.. We
can let y → r in (6) to find that

AHr(Y ) = inf{t : Zt = g(r)} a.s., (7)

where both sides in (7) are either finite or infinite. Now we have

Theorem 2. For Y, A, f and g as above it holds that Aζ is finite Px-a.s. for all x ∈ (l, r) if
and only if for the diffusion Z the boundary point g(r) is an exit boundary, i.e.,∫ g(r)

SZ(dα)
∫ α

mZ(dβ) <∞, (8)

where the scale SZ and the speed mZ of the diffusion Z are given by

SZ(dα) = e−BZ(α) dα and mZ(dβ) = 2 eBZ(β) dβ,

with

BZ(β) = 2
∫ β

G ◦ g−1(z) dz.

Condition (8) is equivalent with the condition∫ r

x

(
SY (r)− SY (v)

)
f(v)mY (dv) <∞ for all x ∈ (l , r). (9)
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Proof. As is well known from the standard diffusion theory, a diffusion hits its exit boundary
with positive probability and an exit boundary cannot be unattainable (see [11] or [2]). This
combined with (7) and the characterization of an exit boundary (see [2, No. II.6, p. 14]) proves
the first claim. It remains to show that (8) and (9) are equivalent. We have

BZ(α) = 2
∫ g−1(α)

G(u) g′(u) du

= 2
∫ g−1(α)(1

2
g′′(u)
g′(u)

+
b(u)
σ2(u)

)
du

= log(g′(g−1(α))) +BY (g−1(α)).

Consequently,

SZ(dα) = e−BZ(α) dα =
1

g′(g−1(α))
exp

(
−BY (g−1(α))

)
dα,

and
mZ(dα) = 2 eBZ(α) dα = 2 g′(g−1(α)) exp

(
BY (g−1(α))

)
dα.

Substituting first α = g(u) in the outer integral in (8) and after this β = g(v) in the inner
integral yields∫ g(r)

SZ(dα)
∫ α

mZ(dβ) = 2
∫ r

du e−BY (u)

∫ u

dv (g′(v))2 eBY (u)

= 2
∫ r

dv (g′(v))2 eBY (v)

∫ r

v

du e−BY (u)

by Fubini’s theorem. Using the expressions given in (3) for the speed and the scale of Y and
the relation (5) between f and g completes the proof.

It is easy to derive a condition that the mean of Aζ(f) is finite:

Ex (Aζ(f)) =
∫ ∞

0

Ex (f(Ys)) ds

=
∫ r

l

GY
0 (x, y) f(y)mY (dy) <∞, (10)

where GY
0 is the Green kernel of Y with respect to mY . Under the assumption (1) we may

take for x ≤ y
GY

0 (x, y) = SY (r)− SY (y).

Consequently, condition (9) may be viewed as a part of condition (10). This point of view
can be elaborated further and, indeed, we have the following Theorem 3 extending criterion
(9) in Theorem 2 for non-negative, measurable and locally bounded functions which are not
neccessarily continuous. An essential tool hereby is Khas’minskii’s lemma (see Khas’minskii
[14], Simon [19], Durrett [8], Chung and Zhao [5], Stummer and Sturm [20] and Salminen and
Yor [18] with a reference to Dellacherie and Meyer [6]) from which we may deduce that (iv)
and (v) below are equivalent. Also Lemma 4 is closely related to Khas’minskii’s result.

Theorem 3. Let Y, f, and Aζ(f) be as in the introduction. For all x ∈ (l , r) define fx(y) :=
f(y)1[x,r)(y). Then, the following are equivalent:
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(i) Px{Aζ(f) <∞} = 1 for all x ∈ (l , r);

(ii) Px{Aζ(fx) <∞} = 1 for all x ∈ (l , r);

(iii) (GY
0 fx)(x) :=

∫ r

x
GY

0 (x, v) f(v)mY (dv) <∞ for all x ∈ (l , r);

(iv) supl<z<r(GY
0 fx)(z) <∞ for all x ∈ (l , r);

(v) supl<z<r Ez[exp(cAζ(fx))] < ∞ for some c ∈ (0 ,∞) and for all
x ∈ (l , r).

In our proof of Theorem 3 we make use of an observation about Hunt processes presented
below as Lemma 4. For this, let {At}t≥0 be a continuous additive functional of a Hunt process
with shifts {θt}t≥0. Define {τ(λ)}λ≥0 to be the right-continuous inverse to {At}t≥0. Then, for
all integers n ≥ 0, and all reals λ > 0,

Px {Aζ ≥ (n+ 1)λ} = Px{τ(nλ) < ζ , Aζ ◦ θτ(nλ) ≥ λ}
≤ Px{Aζ ≥ nλ} · sup

l<y<r
Py{Aζ ≥ λ}.

Consequently,

sup
l<y<r

Py {Aζ ≥ nλ} ≤

(
sup

l<y<r
Py {Aζ ≥ λ}

)n

.

Hence, we have proved

Lemma 4. The following are equivalent:

(a) There exists λ > 0 such that supl<y<r Py{Aζ > λ} < 1;

(b) There exists c > 0 such that supl<y<r Ey[exp(cAζ)] <∞.

Proof of Theorem 3.
(i)⇔(ii): Choose and fix x ∈ (l , r). Let Lx denote the last exit time from x. Then, by transience,
Px{0 < Lx <∞} = 1, and, under Px,

Aζ(f) :=
∫ ζ

0

f(Ys) ds =
∫ Lx

0

f(Ys) ds+
∫ ζ

Lx

f(Ys) ds

=
∫ Lx

0

f(Ys) ds+
∫ ζ

Lx

fx(Ys) ds,

from which the claim follows.
(ii)⇒(v): Let x ∈ (l , r) be fixed. Applying the strong Markov property, the continuity of
t 7→ Yt and assumption (1) we obtain for y ≤ x

Py{Aζ(fx) ≥ λ} = Px{Aζ(fx) ≥ λ}, (11)

and for y ≥ x
Py{Aζ(fx) ≥ λ} ≤ Px{Aζ(fx) ≥ λ}. (12)

Consequently,
sup

l<y<r
Py{Aζ(fx) ≥ λ} = Px{Aζ(fx) ≥ λ}.
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From (ii) it follows that there exists λ′ such that

Px{Aζ(fx) ≥ λ′} < 1,

and, hence, validity of (v) is proved by using Lemma 4.
(v)⇒(iv): Since (cf. (10))

Ey[Aζ(fx)] = (GY
0 fx)(y)

statement (iv) is obtained from (v) by series expansion of the exponential function.
(iv)⇒(iii): By reasoning as we did in the proof of (ii)⇒(v), when deriving (11) and (12), we
deduce

sup
l<y<r

Ey[Aζ(fx)] = Ex[Aζ(fx)] = (GY
0 fx)(x). (13)

(iii)⇒(ii): This means that Ex[Aζ(fx)] < ∞ implies Px{Aζ(fx) < ∞} = 1, which is obvious.
�

Remark 5. In accord with (11) and (12) we are using only the fact that the process is contin-
uous when it hits points from below. Therefore, Theorem 3 is valid also when Y is a spectrally
negative Lévy process. In this case, we recall the result in Bertoin [1, p. 212] which states that
the Green kernel associated with Y when killed at rate q > 0 exists and has the form

GY
q (x , y) = Φ′(q)e−Φ(q)(y−x), y > x, (14)

where Φ is an appropriately-defined inverse to the Laplace exponent of Y . If, in addition,
limt→∞ Yt = ∞ then Φ(0) = 0 and Φ′(0) > 0. In this case we can choose q ≡ 0 and find that
GY

0 (x , y) is a constant for all y > x. Consequently, Theorem 3(iii) implies that∫ ∞

0

f(Ys) ds <∞ a.s. ⇔
∫ ∞

f(x) dx <∞.

This condition is derived in Erickson and Maller [10] under a more restrictive condition on f .
However, Erickson and Maller treat more general Lévy processes than those considered here.

3 Reminder on exit boundaries

Since the exit condition (8) plays a crucial rôle in our approach we discuss here shortly two
proofs of this condition, thus making the paper as self-contained as possible.
Let Y be an arbitrary regular diffusion living on the interval I with the end points l and r.
The scale function of Y is denoted by S and the speed measure by m. It is also assumed that
the killing measure of Y is identically zero. Recall the definition due to Feller

r is exit ⇔
∫ r

S(dα)
∫ α

m(dβ) <∞. (14)

Note that by Fubini’s theorem∫ r

S(dα)
∫ α

m(dβ) =
∫ r

m(dβ)(S(r)− S(β)),

and, hence, S(r) <∞ if r is exit. Moreover, if r is exit then Hr <∞ with positive probability.
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3.1. We give now some details of the proof of (14) following closely Kallenberg [13] (see also
Breiman [4]). For l < a < b < r let Hab := inf{t : Yt = a or b}. Then for a < x < b

Ex (Hab) =
∫ b

a

ĜY
0 (x, z)m(dz), (15)

where ĜY
0 is the (symmetric) Green kernel of Y killed when it exits (a, b), i.e.,

ĜY
0 (x, z) =

(S(b)− S(x))(S(y)− S(a))
S(b)− S(a)

x ≥ y.

If r is exit there exists h > 0 such that Px(Hr < h) > 0 for any fixed x ∈ (a, r). Using this
property it can be deduced (see [13, p. 377]) that for any a ∈ (l , r)

Ex (Har) <∞,

which, from (15), is seen to be equivalent with (14).
3.2. Another proof of (14) can be found in Itô and McKean [11, p. 130]). To also present this
briefly recall first the formula

Ex(exp(−λHb)) =
ψλ(x)
ψλ(b)

, (16)

where λ > 0 and ψλ is an increasing solution of the generalized differential equation

d

dm

d

dS
u = λu. (17)

Letting b→ r in (16) it is seen that

r is exit ⇔ lim
b→r

ψλ(b) <∞.

Let ψ+
λ denote the (right) derivative of ψλ with respect to S. Since ψλ is increasing it holds

that ψ+
λ > 0. The fact that ψλ solves (17) yields for z < r

ψ+
λ (r)− ψ+

λ (z) = λ

∫ r

z

ψλ(a)m(da).

In particular, ψ+
λ is increasing and ψ+

λ (r) > 0. Hence, assuming now that ψλ(r) < ∞ we
obtain S(r) <∞, and, further,

λψλ(z)
∫ r

z

S(dα)
∫ α

z

m(dβ) ≤ λ

∫ r

z

S(dα)
∫ α

z

ψλ(β)m(dβ)

=
∫ r

z

S(dα)
(
ψ+

λ (α)− ψ+
λ (z)

)
= ψλ(r)− ψλ(z)− ψ+

λ (z) (S(r)− S(z)) <∞,

which yields the condition on the right hand side of (14). Assume next that the condition on
the right hand side of (14) holds, and consider for z < β

0 ≤ (ψλ(β))−1 (
ψ+

λ (β)− ψ+
λ (z)

)
= (ψλ(β))−1

∫ β

z

ψλ(α)m(dα).
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Integrating over β gives

log(ψλ(r))− log(ψλ(z))− ψ+
λ (z)

∫ r

z

(ψλ(β))−1
S(dβ)

=
∫ r

z

S(dβ) (ψλ(β))−1
∫ β

z

ψλ(α)m(dα)

≤
∫ r

z

S(dβ)
∫ β

z

m(dα) <∞,

which implies that ψλ(r) <∞, thus completing the proof.

4 An example

As an application of Theorem 2, we consider a Bessel process with dimension parameter δ > 2.
Let R denote this process. It is well known that limt→∞Rt = ∞ and that R solves the SDE

dRt = dWt +
δ − 1
2Rt

dt,

where W is a standard Brownian motion. Here the function BR (cf. (4)) takes the form

BR(v) = (δ − 1) log v,

and, consequently, ∫ ∞
dv f(v) eBR(v)

∫ ∞

v

du e−BR(u)

=
∫ ∞

dv f(v) vδ−1

∫ ∞

v

du u−δ+1

=
∫ ∞

dv f(v) vδ−1 1
δ − 2

v−δ+2

leading to ∫ ∞

0

f(Rt) dt <∞ a.s. ⇔
∫ ∞

u f(u) du <∞.

Another way to derive this condition is via local times and Jeulin’s lemma [12]. Indeed, by
the occupation time formula and Ray–Knight theorem for the total local times of R (see, e.g.
[21, Theorem 4.1 p. 52]) we have∫ ∞

0

f(Rs) ds
(d)
=

∫ ∞

0

f(a)
ρaγ

γ aγ−1
da

=
1
γ

∫ ∞

0

a f(a)
ρaγ

aγ
da

where δ = 2 + γ and ρ is a squared 2-dimensional Bessel process. Using the scaling property,
it is seen that the distribution of the random variable ρaγ/aγ does not depend on a. Hence,
we obtain by Jeulin’s lemma that if the function a 7→ a f(a), a > 0, is locally integrable on
[0 ,∞) then ∫ ∞

0

f(Rs) ds <∞ ⇔
∫ ∞

a f(a) da <∞. (18)
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The same argument allows us to recover the result in [18], that is,∫ ∞

0

g(W (µ)
s ) ds <∞ ⇔

∫ ∞
g(x) dx <∞. (19)

where g is any non-negative locally integrable function and W (µ) denotes a Brownian motion
with drift µ > 0. To see this, write g(x) = f(ex) and use Lamperti’s representation

exp(W (µ)
s ) = R

(µ)

A
(µ)
s

, s ≥ 0,

where

A(µ)
s =

∫ s

0

du exp(2W (µ)
u ),

and R(µ) is a Bessel process with dimension d = 2(1 + µ) starting from 1, we obtain (cf. [17,
Remark 3.3.(3)]) ∫ ∞

0

f(exp(W (µ)
s )) ds =

∫ ∞

0

(
R(µ)

u

)−2

f(R(µ)
u ) du a.s.,

and, in order to get (19) it now only remains to use the equivalence (18).
We wish to underline the fact that in Theorem 3 it is assumed that the function f is locally
bounded whereas the approach via Jeulin’s lemma, which we developed above, demands only
local integrability.
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