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Abstract: This paper provides a robust test for a function of the au-
toregressive parameters in AR models driven by G/GARCH noise under
model uncertainty in an asymptotic framework. To address this method,
we adopt the model average and choose weights based on our Mallows-type
methods. We next present a valid confidence interval by dividing the sam-
ple into a fixed number of groups to form a normalized estimator which
is asymptotically related to the Student’s t-distribution. We derive asymp-
totic results that are not only interesting in their own right, but contribute
to the theoretical foundations. These results include limiting distributions
of the proposed Mallows-type model averaging and selection estimators.
The proposed averaging estimators are stable-family distributions and are
yet to be precisely characterized; hence they cannot be implemented by
simulation. Through simulation experiments, our method yields outstand-
ing numerical performance, especially for testing the quotient of coefficients
in finite-sample tests.
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1. Introduction

Since the 1960s, empirical evidence has led many to reject the normal assump-
tion in favor of heavy-tailed alternatives. This suggests that the normal assump-
tion might not be suitable in some real applications; see, e.g., [20, Chapter 6], [6],
and [55], among others. Many studies show that the heavy-tailed noise assump-
tion better fits empirical data, which suggests that heavy-tailed distributions
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are necessary to model certain economic variables and stock price changes. In-
terested readers may refer to [23], [53], [54], [18], [9], [8], [2], [59], [26], [7], and
[76].

To make the idea of heavy-tailed distributions concrete, one considers that
noise is generated by the generalized autoregressive conditional heteroskedas-
ticity (GARCH) model, as proposed in the seminal works of [21] and [4]. This
model captures heavy-tailed features, and its sample autocorrelation function is
not

√
T -consistent, and hence not asymptotically normal, where T denotes the

sample size. However, how the GARCH parameters affect the asymptotic be-
havior of the estimator is far from clear, and only a few references can be found,
e.g., in [57], [46], [80], and the references therein. In practice, GARCH-type
noise has attracted a growing strand of literature as noise added to the autore-
gressive moving average (ARMA) model; we term this combined structure the
ARMA-GARCH model. For example, [4] uses an AR(4)-GARCH (1, 1) model
to study the US gross national product (GNP) series. [25], [73], [79], and [42]
also use GARCH-type noise; these models include the AR(1)-GJR(1, 1) model,
where the GJR model is introduced by [28]; several stock market index mod-
els MA(3)-GARCH (1, 1); and the AR-GARCH model on the return rate of the
simulated Dow Jones Industrial Average, to name a few. In the literature, there
are basically two types of GARCH models: the polynomial GARCH and the
exponential GARCH. These can be unified as the augmented GARCH model
proposed by [17], in which the general type of polynomial model is called the
general GARCH model proposed by [36]. Along that line, the seminal paper of
[1] presents a necessary and sufficient condition for the stationary solution of
the augmented GARCH model.

In ARMA models, setting up dependency within these time intervals (or se-
quences) is one of the main topics in the model selection procedure. As the name
suggests, model selection is choosing a model from a set of candidate models. A
typical way to select a model appeals to information criteria, for example, the
Akaike information criterion (AIC), the Bayesian information criterion (BIC),
and the Hannan–Quinn (HQ) principle. In the past few decades, the trend has
moved from model selection to model averaging for model uncertainty. Unlike
model selection, which picks a single model from all candidate models, in model
averaging all available information is incorporated by averaging over all poten-
tial models. The main problem in model averaging is hence deciding the weights
for all basic models.

Mallows model averaging (MMA), proposed by [30], is a common technique in
model averaging if compared to the Bayesian model averaging approach in [41]
or [65]. [30] demonstrates via simulations that the MMA estimator outperforms
AIC and BIC model selection methods and other averaging methods in the sense
of less expected squared error. The approach of [30] is an ordinary least squares
(OLS) based model averaging estimator with the weights selected by minimiz-
ing a criterion inspired by [51]. [31] also considers the asymptotic properties of
a least-squares forecast averaging method based on the MMA criteria for sta-
tionary time-series observations. Since then, the MMA methodology has been
widely applied to other regression models. For example, [75] investigate non-
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nested models, [35] study a jackknife averaging approach under heteroskedastic
error settings, [11] discuss factor augmented regression models, and [77] provide
the MMA criterion for the MIxed DAta Sampling (MIDAS) model. Other work
can be found on the time-series noise framework, e.g., [81] and [12].

Another central question is how to form inferences based on model selection
or model averaging estimators. One way to address the inference problem is to
provide asymptotic distributions of the estimators for all candidate models. For
related work, see [50], [64], and [32, 33, 34], among others. These studies focus
on a two-model case under the homoskedastic framework. A result of [49] then
permits applications to cross-section, panel, and time-series data. However, few
attempts have been made at time-series error by using model averaging.

An AR model driven by GARCH-type noise has been considered an em-
pirical setup, and therefore is an important model. In this paper we address
the inference problem based on the AR models driven by general GARCH noise
(AR-G/GARCH models, for short) under model uncertainty. Based on the ideas
inspired by [43] and [62], we propose a robust test for a function of the autore-
gressive parameters in AR-augmented GARCH models under model uncertainty.
Under the asymptotic distributions presented by [46] and [80], [62] verifies that
the sufficient conditions of [43] hold based on an AR model driven by general
GARCH noise (AR-G/GARCH model, for short). However, [46], [80], and [62]
do not consider model uncertainty.

For asymptotic inference without model uncertainty, [46] and [80] provide
asymptotic distributions of autoregressive parameters for the OLS estimator.
In finite samples under model uncertainty, adding regressors reduces model bias
but increases its variance. This implies a trade-off between bias and variance in a
finite-sample setting if one desires an approximation. To overcome this obstacle,
interested readers may refer to [39] and [13], who discuss the asymptotic distri-
bution in a local asymptotic framework, where the scaling of convergence in the
related literature is T 1/2. The realism of the local asymptotic framework can
be found in [40] and [66]. Of course, the scaling differs from ours since we con-
sider heavy-tailed noise. We determine that the tail behavior of noise strongly
impacts the scaling of convergence; not surprisingly, such scaling is upon our
local asymptotic framework, which exhibits four different levels as suggested in
asymptotic results by [80].

Another challenge is that the asymptotic distribution of the OLS estimator
for the autoregressive parameters is not asymptotically pivotal. This rules out
a traditional method as confidence intervals are constructed by inverting the
t-statistic of all candidate models, which ought to lead to a distorted inference.
Here we combine these two approaches to solve the issues mentioned above and
in the previous paragraph. First, we show that OLS-based averaging estimators
with fixed weights are asymptotic stable-family distributions in a local asymp-
totic framework and then we present a model averaging estimator based on the
Mallows model averaging proposed by [30]; see Section 4 for details. Second, in
light of [43] and [62], we provide a robust test of the autoregressive parameters
by normalization of subsamples obtained by dividing the original sample into a
fixed number of groups related to the Student’s t-statistic.
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We summarize our contributions as follows. Based on the ideas inspired by
[43] and [62], we propose a robust test for AR-augmented GARCH models,
and perform inference using models with heavy-tailed noise as the presence of
conditional heterogeneity under model uncertainty. We also present the limiting
distribution of OLS-based estimators for the submodels of an AR-G/GARCH
model under the local asymptotic assumption with different scaling and then
derive the limiting distribution of the estimator of the averaging model with
fixed weights. Finally, we offer a model averaging estimator based on the Mallows
model averaging ([30]) which we here term “Mallows-type model averaging.”

This paper is organized in the following order: We present a robust test in
Section 2. Section 3 contains the theoretical foundations needed to develop our
method. The proposed model averaging estimator and asymptotic results are
presented in Section 4, and in Section 5, we conduct simulations to demonstrate
the feasibility of our method for finite samples. We conclude in Section 6. All
technical proofs are deferred to the Appendix.

2. Robust inference

Consider the following AR(p + q) model:

yt = ρ1yt−1 + · · · + ρpyt−p + γ1yt−p−1 + · · · + γqyt−p−q + εt,

where {εt} is a sequence of yet unspecified random variables. Let

ȳt = (yt−1, . . . , yt−p, yt−p−1, . . . , yt−(p+q))′, (1)
ȳt,p = (yt−1, . . . , yt−p)′, (2)

ȳt−p,q = (yt−p−1, . . . , yt−(p+q))′, (3)

which are (p+q)×1, p×1, and q×1 matrices (or column vectors) of regressors,
respectively. We use the prime (′) to denote the transpose of a matrix or vector
and assume that all vectors are column vectors throughout.

We call ȳt,p the core lag period regressors; they are necessarily included.
ȳt−p,q are additional lag period regressors that are optional to the model. Many
references indicate that several financial market indexes fit the AR-GARCH
model well; see, e.g., [42]. In empirical study, statisticians or econometricians test
models for stationarity by applying a unit-root test, e.g., an augmented Dickey-
Fuller (ADF) test. This ADF formulation allows higher-period autoregressive
processes, and the lag period p must be determined when applying the test.
When the above unit root hypothesis is rejected, the next question is to estimate
parameters to perform statistical inference. For higher periods from p+1 to p+q,
one may consider a more general stationary AR(r) model, where r > p. Since
submodels cause bias, the determination of the lag period is a long-standing
and significant problem. One way to solve this is to take the average of the
submodels; details are in Section 2.2.
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Denote ϑ = (ρ′,γ′)′ to be the (p+ q)× 1 matrix of the regression coefficients
where ρ = (ρ1, . . . , ρp)′ and γ = (γ1, . . . , γq)′. Furthermore, we consider that
parameter μ(ϑ) is a smooth real-valued function.1

The purpose of this section is to provide a hypothesis test on ϑ, or more
generally μ(ϑ), instead of model fitting,

H0 : μ(ϑ) = μ(ϑ0)

against H1 : μ(ϑ) �= μ(ϑ0). Moreover, we will show that this hypothesis test is
robust.

The outline of this section is the following: in Section 2.1 we introduce the AR
(p+ q)-G/GARCH (1, 1) model and the local-to-zero assumption. Based on the
above setup, we consider model averaging in Section 2.2 and use the Mallows-
type criterion to determine weights. Finally, we apply [62]’s theorem to verify
that our method is robust.

2.1. Model setup

We consider the following AR (p + q)-G/GARCH (1, 1) model:

yt = ρ1yt−1 + · · · + ρpyt−p + γ1yt−p−1 + · · · + γqyt−p−q + εt, (4)
εt = htzt, and Λ(h2

t ) = g(zt−1) + c(zt−1)Λ(h2
t−1), (5)

where −∞ < t < ∞, Λ(x) = xδ/2 for δ > 0, g(·) and c(·) are real-valued
functions such that P [Λ(h2

t ) > 0] = 1 and c(0) < 1, and {zt}∞t=∞ is a sequence
of independent and identically distributed (i.i.d.) symmetric noise. Model (5) is
called the general GARCH (1, 1) (or G/GARCH (1,1)) process proposed by [36].
Many well-known models are special cases of this model, e.g., the GARCH (1, 1)
in [4], the absolute value GARCH (1, 1) model in [74] and [71], the nonlinear
GARCH (1, 1) model in [22], the volatility switching GARCH (1, 1) model in
[24], the threshold GARCH (1, 1) model in [78], and the generalized quadratic
ARCH (1, 1) model in [72].

We could relax assumption Λ(x) = xδ/2 by a more general one: the existence
of Λ−1. Under this setup, model (5) is called an augmented GARCH (1, 1) pro-
cess, as proposed by [17]. This model includes the exponential GARCH model,
see, e.g., the multiplicative GARCH (1, 1) model in [27] and the exponential
GARCH (1, 1) (or EGARCH (1, 1)) model in [60].

We seek to find conditions sufficient to make the process {yt} stationary. This
can be done by the following steps.

We say that {yt} is causal if there exists a sequence {φj} with
∑∞

j=0 |φj | < ∞
such that

yt =
∞∑
j=0

φjεt−j , −∞ < t < ∞. (6)

1For example, μ(ϑ) is an individual parameter or a ratio of two parameters of regressors.
To form a long-run impact, one may consider μ(ϑ) the summation of all parameters.
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This property together with the stationarity of {εt}—which we will show later—
imply that {yt} is stationary.

We first tackle the stationarity of {εt}. Thanks to Theorem 2.3 in [1], if

E log+ |g(z1)| < ∞, (7)
E log+ |c(z1)| < ∞, and E log |c(z1)| < 0, (8)

then {εt} is stationary. Here we define log+(x) = max{log x, 0}.
It remains to show that {yt} is causal. Recall that ϑ = (ρ′,γ′)′ is the (p +

q) × 1 matrix of the regression coefficients where ρ = (ρ1, . . . , ρp)′ and γ =
(γ1, . . . , γq)′. One can show that if

ϑ(z) = 1 −
p∑

j=1
ρjz

j −
q∑

j=1
γjz

p+j (9)

= 1 − ϑ′(z1, z2, . . . , zp+q)′ �= 0 for all z ∈ C such that |z| ≤ 1, (10)

then {yt} is causal. The above proof follows by the arguments in the proof of
Theorem 3.1.1 on page 85 and Proposition 3.1.1 on page 83 in the book by [5]
without assuming the existence of the autocovariance function; nevertheless, the
arguments require the condition supt Eεt < ∞. Since zt and ht are independent,
E[εt] = E[htzt] = EhtEzt < ∞ if Eht < ∞. Condition supt Eεt < ∞ can be
fulfilled by using Theorem 2.2 in [1], which states that if ν > 0,

E log |c(z1)| < 0,
E|g(z1)|ν < ∞ and E|c(z1)|ν < 1,

then
E|Λ(h2

t )|ν < ∞.

Recall that Λ(x) = xδ/2, so if δν ≥ 1, then Eht < ∞. Moreover, under the same
assumptions as above, {ht} is stationary by Theorem 2.3 in [1]. All these ensure
that

sup
t

Eεt = Eε1 < ∞.

Lemma 2.1 in [80] shows that ε1 is heavy-tailed and still holds for the aug-
mented GARCH (1, 1) model, if we carefully check the arguments. For the sake
of completeness, we include the lemma below.

Lemma 1. Let Λ be a monotone increasing function. Assume the following:

1. z1 has a density with respect to the Lebesgue measure on R that is bounded
away from zero and infinity on compact sets.

2. E[log(c(z1))] < 0.
3. There exists a k0 > 0 such that

E[(c(z1))k0 ] ≥ 1,
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E[(c(z1))k0 log+(c(z1))] < ∞,

and

E[(g(z1) + |z1|)k0 ] < ∞,

where log+(x) = max{0, log(x)}.

Then there exists a unique α ∈ (0, k0] such that E[(c(z1))α] = 1 and

P [|ε1| > x] ∼ c0E|z1|α
[
Λ(x2)

]−α

for large x, where

c0 =
E
[(
g(z1) + c(zt)Λ(h2

1)
)α −

(
c(zt)Λ(h2

1)
)α]

αE
[
(c(zt−1))α log+(c(zt))

] .

Note that even if we start with weak noise such as Gaussian innovations {zt},
the process {εt} is heavy-tailed through the GARCH machinery, see [3].

We summarize the above assumptions, which can also be found in [46] and
[80], below.

Assumption 1. 1. z1 has a density with respect to the Lebesgue measure on
R that is bounded away from zero and infinity on compact sets.

2. E[log(c(z1))] < 0.
3. There exists a k0 > 0 such that

E[(c(z1))k0 ] ≥ 1,
E[(c(z1))k0 log+(c(z1))] < ∞,

and
E[(g(z1) + |z1|δ)k0 ] < ∞,

where log+(x) = max{0, log(x)}.
4. ϑ(z) = 1 − ϑ′(z1, z2, . . . , zp+q)′ �= 0, |z| ≤ 1.

Remark 1. The first condition in Assumption 1 is a regular condition for the
density function of z1 and is a technical condition for proving Lemma 1.

The second condition in Assumption 1 is a necessary and sufficient con-
dition for which there exists a stationary solution of h2

t , by [60]. Therefore,
G/GARCH (1, 1) has a strictly stationary solution. For example, if we consider
for GARCH (1, 1) that

h2
t := ω + αε2t−1 + βh2

t−1 = ω + (αz2
t + β)h2

t−1,

then the second condition in Assumption 1 can be rewritten as

E[log(αz2
t + β)] < 0.
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The third condition in Assumption 1 implies that ht is not a constant and
hence excludes that {ht} are i.i.d. Again if we consider the GARCH (1, 1) as an
example, then c(x) and g(x) in Assumption 1 are αx2 + β and ω respectively.

Assuming that the first three conditions in Assumption 1 hold, Lemma 1 can
be restated as follows if we set λ = αδ and Λ(s) = xδ: there exists a unique
λ ∈ (0, δk0] such that E[(c(zt))λ/δ] = 1 and

P [|ε1| > x] ∼ c
(λ)
0 E[|z1|λ]x−λ,

where

c
(λ)
0 =

E
[(
g(z1) + c(zt)hδ

1
)λ/δ − (

c(zt)hδ
1
)λ/δ]

λE
[
(c(zt))λ/δ log+(c(zt))

] . (11)

Recall that the fourth condition in Assumption 1 is used to ensure that yt
in (4) is stationary. Moreover, Σ ≡ E[ȳtȳ′t] exists and is positive definite when
λ > 2.

Under some assumptions similar to Assumption 1, all finite-dimensional vec-
tors (yt, . . . , yt+k) have regularly varying tails defined in [68] with a tail index
which is the same as the tail index λ in the G/GARCH process; see [46] and
[80].

Apart from Assumption 1, we assume that the auxiliary regressor coefficients
γ satisfy the local-to-zero framework. More precisely,

γ = δ/f(T )

where δ is a constant, f(T ) is a non-decreasing function in T , and function f(T )
depends on λ which is a tail index in Remark 1. The local-to-zero framework
for auxiliary regressor coefficients is given in Assumption 2.

2.2. Model averaging estimator

Let

Y = (y1, . . . , yT )′, Ȳ1,p = (ȳ1,p, . . . , ȳT,p)′, Ȳ1−p,q = (ȳ1−p,q, . . . , ȳT−p,q)′

and
ε = (ε1, . . . , εT )′.

In matrix notation,

Y = Ȳ1,pρ + Ȳ1−p,qγ + ε = Xϑ + ε,

where X = (Ȳ1,p, Ȳ1−p,q) is a T × (p + q) matrix.
To study the model averaging method, we consider a set of M submodels

and label a submodel by m, where 1 ≤ m ≤ M . Let Πm be the qm× q selection
matrix that is used to select the partial auxiliary lag period regressors. Each



1978 S.-Y. Shiu and H.-C. Wong

m-th submodel includes all core lag period regressors Ȳ1,p and a subset of
auxiliary lag period regressors Ȳ1−p,qΠ′

m so that the m-th submodel has p+qm
regressors. For example, we consider a sequence of nested models, that is, a
sequence of submodels which have increasing auxiliary lag period regressors
from no auxiliary lag period regressors to full auxiliary lag period regressors;
in this case, M = q + 1. If we consider all submodels (all subsets of additional
regressors), then M = 2q.

We define Ik to be the k× k identity matrix; 0 stands for the zero matrix, in
which all entries are zeros. Let

S0 =
(
0p×q

Iq

)
and Sm =

(
Ip 0p×qm

0q×p Π′
m

)

be selection matrices of dimension (p+q)×q and (p+q)×(p+qm), respectively.
The OLS estimator of ϑ for the full model—i.e., all auxiliary regressors are

included in the model—is given by

ϑ̂ = (X′X)−1 X′Y,

and the estimator of ϑm = S′
mϑ = (ρ′,γ′Π′

m)′ = (ρ′,γ′
m)′ for submodel m is

ϑ̂m = (X′
mXm)−1 X′

mY,

where Xm = (Ȳ1,p, Ȳ1−p,qΠ′
m)(= XSm) is a T × (p + qm) matrix. If Πm = Iq

(Sm = Ip+q), then we have ϑ̂m = (X′X)−1 X′Y = ϑ̂, which is the OLS esti-
mator for the full model. If Πm = 0, then we have ϑ̂m =

(
Ȳ′

1,pȲ1,p
)−1 Ȳ′

1,pY,
which is the OLS estimator for the narrow model; i.e., the model without aux-
iliary regressor coefficients.

We here define the averaging estimator of the parameters μ(ϑ) with fixed
weight. Let w = (w1, . . . , wM )′ be a weight vector with wm ≥ 0 and

∑M
m=1 wm =

1. In other words, a weight vector lies in the unit simplex in R
M . We collect

those weights as

HT =
{

w ∈ [0, 1]M :
M∑

m=1
wm = 1

}
.

The averaging estimator of μ(ϑ) is defined by

μ̂(w) =
M∑

m=1
wmμ(ϑ̂m).

Through this definition, we observe that model selection is included in model
averaging. More specifically, let w0

m be an M × 1 vector, in which the m-th
element is one and the rest are zeros, and each w0

m is in HT for m = 1, 2, . . . ,M .
To determine the weights, we use Mallow’s type criterion. However, we leave a

detailed discussion on Mallow’s type criterion to Section 4 and proceed directly
to present our methodology.
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2.3. Methodology

Consider the AR-G/GARCH model defined in (4)–(5). Recall that we are inter-
ested in testing the null hypothesis

H0 : μ(ϑ) = μ(ϑ0)

against H1 : μ(ϑ) �= μ(ϑ0), where ϑ0 = (ρ′
0,γ

′
0)′ with ρ0 = (ρ1,0, . . . , ρp,0)′

and γ0 = (γ1,0, . . . , γq,0)′. First, we divide the time series of size T into a fixed
number Q ≥ 2 of equal-sized subsequences. More precisely, for i = 1, . . . , Q,

Y(i) = (y1+(i−1)�T/Q�, . . . , yi�T/Q�)′,

Ȳ(i)
1,p = (ȳ1+(i−1)�T/Q�,p, . . . , ȳi�T/Q�,p)′,

Ȳ(i)
1−p,q = (ȳ1+(i−1)�T/Q�−p,q, . . . , ȳi�T/Q�−p,q)′,

where 
x� denotes the integer part of x ∈ R. For each subsequence, we give an
OLS estimator for μ(ϑ) and apply the method by [62]. Define

Z(i) := ϑ̂(i) − ϑ0,

where

ϑ̂(i) =
[
(X(i))′X(i)

]−1
(X(i))′Y(i) and X(i) = (Ȳ(i)

1,p, Ȳ(i)
1−p,q).

Hence, the corresponding t-statistic based on Q observation is given by

τH0(full) :=
√
Q
Z̄

s
, (12)

where Z̄ =
∑Q

i=1 Z
(i)/Q and s2 =

∑Q
i=1(Z(i) − Z̄)2/(Q − 1). Let TQ−1 be a

random variable with a Student’s t-distribution with Q− 1 degrees of freedom;
cvQ(α) denotes the two-sided quantile, namely, P [|TQ−1| > cvQ(α)] = α. The
robustness of our method is motivated by the following theorem in [62] which
is based on t-statistic (12).

Proposition 1 (Theorem 3.4 of [62]). Suppose that random variable TQ−1 has
a Student’s t-distribution with Q−1 degrees of freedom and that cvQ(α) satisfies
P [|TQ−1| > cvQ(α)] = α. If α ≤ 0.05, then

lim sup
T→∞

P [|τH0(full)| > cvQ(α)] ≤ α

for λ ≥ 2.

Now we are ready for the robust test on model averaging. To introduce the
model averaging approach, we move from the full model approach introduced
above to the model averaging approach under model uncertainty. We first in-
troduce some notation. Denote that

ϑ̂(i)
m =

[
(X(i)

m )′X(i)
m

]−1
(X(i)

m )′Y(i)
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with X(i)
m = (Ȳ(i)

1,p, Ȳ
(i)
1−p,qΠ′

m), and that

Z(i)
m := μ(ϑ̂(i)

m ) − μ(ϑ0)

and

Z(i)(w) :=
M∑

m=1
wmZ(i)

m

for i = 1, . . . , Q. The t-statistic based on Q observations is given by

τH0(m) :=
√

Q
Z̄m

sm
and τH0(w) :=

√
Q
Z̄(w)
s(w) ,

where Z̄m =
∑Q

i=1 Z
(i)
m /Q, Z̄(w) =

∑Q
i=1 Z

(i)(w)/Q, s2
m =

∑Q
i=1(Z

(i)
m − Z̄m)2/

(Q − 1), and s2(w) =
∑Q

i=1(Z(i)(w) − Z̄(w))2/(Q − 1). According to Proposi-
tion 1, we expect a similar result; our method highly relies on this result. More
specifically, if α ≤ 0.05, then

lim sup
T→∞

P [|τH0(w)| > cvQ(α)] ≤ α (13)

for λ ≥ 2. In addition, by simulation experiments, result (13) works well for
different model weights of interest.

3. Asymptotic framework

In this section, we introduce the local-to-zero assumption on auxiliary regressor
coefficients that is a part of our model setup. We also present results on asymp-
totic distributions of the model averaging estimator under G/GARCH (1, 1)
noise.

We state the asymptotic results for the OLS estimators of parameters ϑ for
the full model, and then provide the limiting distribution of the OLS estimators
for submodels.
Proposition 2 (Theorem 2.1 of [80]). Suppose that Assumption 1 holds. Let λ
be given as in Remark 1. Then, as T → ∞ we have

(a) when λ ∈ (0, 2),
ϑ̂− ϑ

d→
(
Σ(λ/2)

)−1
S1(λ/2),

where S1(λ/2) is a λ/2 stable random vector on R
p+q and Σ(λ/2) is an

(p+q)×(p+q) matrix whose elements are composed of λ/2 stable variables;
(b) when λ = 2,

log T (ϑ̂− ϑ) d→
(
Σ(1)

)−1
S1(1),

where Σ(1) is an (p + q) × (p + q) matrix with the (i, j)-th element
∞∑
l=0

ϕlϕl+|i−j|,

where ϕl is defined in (6).
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(c) when λ ∈ (2, 4),
T 1−2/λ(ϑ̂− ϑ) d→ Σ−1S1(λ/2),

where Σ = E[ȳtȳ′t].
(d) when λ = 4, √

T/ log T (ϑ̂− ϑ) d→ N(0,Σ−1ΩΣ−1),

where Ω =
(
c
(4)
0 E[z2

1 ]
)

(aij)(p+q)×(p+q) is positively defined with aij =
limN→∞ E[ut,i,Nut,j,N ] and

ut,i,N =
N∑
l=i

ϕl−izt−l

l∏
i=1

(c(zt−i;φ2))1/δ
N∏

k=l+1

(c(zt−k;φ2))2/δ.

Our method requires that the tail probability be approximately x−λ for some
λ, since this index λ is relevant to the scaling of our asymptotic theory in Sec-
tion 3 which matters to our robust test. It is possible to extend our asymptotic
theories from G/GARCH to augmented GARCH, but we as yet do not know the
proper scaling for our asymptotic theory if we consider the augmented GARCH
model.

Remark 2. We consider a special case in which

h2
t (θ) = ω + αε2t + βh2

t−1(θ),

where ω > 0, α > 0, and β > 0. Case (c) in Proposition 2 was obtained from
[46].

Remark 3. We summarize recent asymptotic results of estimators when the
noise εt is i.i.d. with respect to three moment assumptions:

(i) E[ε21] < ∞;
(ii) E[ε21] = ∞ with a constraint condition on the tail probability;2 for more

detail see [76]; and
(iii) E[ε21] = ∞ with tail index λ ∈ (0, 2).

(i) Under E[ε21] < ∞, the least-squares estimator, the least absolute devia-
tion estimator, and the M -estimator are all

√
T -consistent and asymptotically

normal. (ii) [76] shows that the least-squares estimator is L(T )
√
T -consistent

and asymptotically normal, where L(T ) is a slowly varying function. They also
provide a robust test for predictability in the predictive regression model with
heavy-tailed noise, in which the predictive variable is persistent and its noise is
highly correlated with returns. (iii) In the last case, the least-squares estimator,
the least absolute deviation estimator, and the M -estimator are all L(T )T 1/λ-
consistent and converge to a stable law; see [15], [56], and [14]. For noise that is
not i.i.d., few references address asymptotic behavior, e.g., [57], [46], and [80].

2Two examples are the Pareto distribution and the t-distribution with 2 degrees of freedom.
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Due to model uncertainty, one does not know which lag period regressors
should be included in the real model. In our submodels, all core lag period
regressors must be included. The auxiliary lag period regressors are partially,
or even fully, included. We observe that the scaling error of the submodel—
but not that of the full model—yields bias. If parameter γ does not depend
on T , the asymptotic bias tends to infinity for λ ≥ 2. Therefore, γ ought to
converge to zero when T goes to infinity. Due to this technical issue, we adopt
the local-to-zero asymptotic framework, which is stated as follows:

Assumption 2. Suppose that for λ ∈ (0, 4], γ is chosen as follows:

(a) When λ ∈ (0, 2), γ = γ(λ) = δ(λ) is an unknown constant vector which is
independent of sample size T .

(b) When λ = 2, γ = γ(2) = δ(2)/ log T , where δ(2) is an unknown constant
vector.

(c) When λ ∈ (2, 4), γ = γ(λ) = δ(λ)/T 1−2/λ, where δ(λ) is an unknown
constant vector.

(d) When λ = 4, γ = γ(4) = δ(4)/
√

T/ log T , where δ(4) is an unknown
constant vector.

This local-to-zero asymptotic framework ([39]) is to ensure that the asymp-
totic mean squared error of the averaging estimator remains finite. Along this
line, many studies analyze the asymptotic and finite sample properties of the
model selection and averaging estimator, see for example the papers by [47],
[64], [19], [34], and [49], among others. The order of T in Assumption 2 comes
from Proposition 2, the reason for which is given by first considering the case
of λ ∈ (2, 4), since the other cases merely mirror the following arguments. The
OLS estimator for submodel m can be decomposed as

ϑ̂m = (X′
mXm)−1X′

mY
= (X′

mXm)−1X′
m[Xϑ + ε]

= ϑm + (X′
mXm)−1 X′

mȲ1−p,q (Iq − Π′
mΠm)γ + (X′

mXm)−1 X′
mε. (14)

One can consider the second term in (14) as a bias where (Iq − Π′
mΠm) is a

selection matrix that keeps the non-selected auxiliary regressors in the m-th
model; the estimator variance is from the third term in (14). The following
explains why Assumption 2 appears. If γ(λ) converges to 0 slower than T 1−2/λ,
the asymptotic bias goes to infinity, except for the full model, which suggests
that we should use the full model. If γ(λ) converges to 0 faster than T 2/λ−1, the
asymptotic bias goes to zero, which shows that all submodels are acceptable.
Since we prefer low variance, the narrow model wins.

O
(
T 2/λ−1) is the order in our local-to-zero framework because we know

that the estimator variances3 are of the order O(T−1), and the order of the
3By Remark 1 of [46], it holds that as T → ∞,(

1
T

X′X
)

a.s.→ Σ,

where Σ = E[ȳtȳ′t].
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asymptotic distribution4 is O
(
T−2/λ).

Now we are ready to present the scaling limit of the difference between ϑ̂m

and ϑm for submodel m in the following form:

n(T )(ϑ̂m − ϑm) d→ deterministic column vector + matrix × stable distribution,

where n(·) is a non-decreasing function on {1, 2, 3, . . .}. The asymptotic distri-
bution of the difference between the estimator and the true parameter is stated
as follows. The purpose of this is because of inference.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then, as T → ∞, we have

(a) when λ ∈ (0, 2),

ϑ̂m − ϑm
d→ A(λ/2)

m γ(λ) + B(λ/2)
m S1(λ/2),

where A(λ/2)
m =(Σ(λ/2)

m )−1S′
mΣ(λ/2)S0(Iq−Π′

mΠm), B(λ/2)
m =(Σ(λ/2)

m )−1S′
m,

and Σ(λ/2)
m = S′

mΣ(λ/2)Sm.
(b) when λ = 2,

(log T )(ϑ̂m − ϑm) d→ A(1)
m δ(2) + B(1)

m S1(1),

where A(1)
m = (Σ(1)

m )−1S′
mΣ(1)S0(Iq − Π′

mΠm), B(1)
m = (Σ(1)

m )−1S′
m, and

Σ(1)
m = S′

mΣ(1)Sm.
(c) when λ ∈ (2, 4),

T 1−2/λ(ϑ̂m − ϑm) d→ Amδ(λ) + BmS1(λ/2),

where Am = (Σm)−1 S′
mΣS0 (Iq − Π′

mΠm), Bm = (Σm)−1 S′
m, and Σm =

S′
mΣSm.

(d) when λ = 4,√
T/ log T (ϑ̂m − ϑm)
d→ N(Amδ(4), (Σm)−1Ωm(Σm)−1) = Amδ(4) + BmN(0,Ω),

where Ωm = S′
mΩSm.

In Lemma 2, Amδ(λ) represents the asymptotic bias of the submodel estima-
tors. If the parameters of the auxiliary regressors are all zeros (γ = 0) or the
auxiliary regressors are uncorrelated (Σ is a diagonal matrix), the asymptotic
bias of the submodels is zero. Those two components contribute the asymptotic
bias. Note that A(λ/2)

m and B(λ/2)
m are not continuous at λ = 2; that is, as λ ↑ 2,

A(λ/2)
m �= A(1)

m + o(1) and B(λ/2)
m �= B(1)

m + o(1).
4By Theorem 2 of [46] (also Proposition 3.3 in [16]), as T → ∞,

T−2/λX′ε
d→ S1(λ/2).
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We now consider that the parameter μ(ϑ) is a smooth real-valued function.
We are more interested in estimating μ(ϑ) than in model fitting, which is more
commonly studied in traditional model selection or model averaging approaches.
Let

Dϑ =
(
D′

ρ,D′
γ

)′
, Dϑm =

(
D′

ρ,D′
γm

)′
,

D′
ρ = ∂μ

∂ρ
(ρ,γ(λ)

m ,0), D′
γ = ∂μ

∂γ
(ρ,γ(λ)

m ,0), and D′
γm

= ∂μ

∂γc
m

(ρ,γ(λ)
m ,0).

(15)

Assume that the partial derivatives are continuous in the neighborhood of the
null point. The following lemma gives more general results than Lemma 2 and
is proved by the delta method.

Lemma 3. Under the same assumptions as in Lemma 2,

(a) when λ ∈ (0, 2), there exists a function h : Rp+q �→ R with

lim
x→(ρ′,γ′

m,0′)′
h(x) = 0

such that as T → ∞,

μ(ϑ̂m) − μ(ϑ) d→ D′
ϑC(λ/2)

m γ(λ) − h(ϑ)|Πmcγ(λ)| + D′
ϑV(λ/2)

m S1(λ/2),

where C(λ/2)
m = (VmΣ(λ/2) − Ip+q)S0(Iq − Π′

mΠm) and V(λ/2)
m =

Sm(S′
mΣ(λ/2)Sm)−1S′

m.
(b) when λ = 2, as T → ∞,

log T
(
μ(ϑ̂m) − μ(ϑ)

)
d→ D′

ϑC(1)
m δ(2) + D′

ϑV(1)
m S1(1),

where C(1)
m =(VmΣ(1)−Ip+q)S0(Iq−Π′

mΠm) and V(1)
m =Sm(S′

mΣ(1)Sm)−1S′
m.

(c) when λ ∈ (2, 4), as T → ∞,

T 1−2/λ
(
μ(ϑ̂m) − μ(ϑ)

)
d→ D′

ϑCmδ(λ) + D′
ϑVmS1(λ/2),

where Cm = (VmΣ−Ip+q)S0(Iq−Π′
mΠm) and Vm = Sm(S′

mΣSm)−1S′
m.

(d) when λ = 4, as T → ∞,
√
T/ log T

(
μ(ϑ̂m) − μ(ϑ)

)
d→ N(D′

ϑCmδ(4),D′
ϑVmΩVmDϑ).

4. Mallows-type criteria

Model uncertainty is pervasive in empirical economic/finance applications. One
way to address this is to use model selection, where we consider a group of can-
didate models and pick the best among them according to a criterion. A more
general way to handle model uncertainty is called model averaging. Instead of
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selecting one candidate model as in model selection, model averaging incor-
porates all available information by taking the average over all basic models.
Many studies show that model averaging is more robust than model selection.
The fundamental problem in model averaging is selecting the weights for all
basic models. In what follows, under G/GARCH noise, we provide a model av-
eraging estimator based on the Mallows averaging model proposed by [30]. We
also construct a model selection estimator by reformulating traditional Mallows
model selection.

First, we consider an averaging model for which the weights are fixed and de-
fine the averaging estimator of parameters μ(ϑ). Recall that w = (w1, . . . , wM )′
is a weight vector with wm ≥ 0 and

∑M
m=1 wm = 1,

HT =
{

w ∈ [0, 1]M :
M∑

m=1
wm = 1

}
,

and the averaging estimator of μ(ϑ) is defined by

μ̂(w) =
M∑

m=1
wmμ(ϑ̂m).

The following lemma provides the asymptotic distribution of the averaging
estimator with fixed weights; this result covers the case of model selection.

Lemma 4. Under the assumptions of Lemma 2,

(a) when λ ∈ (0, 2), as T → ∞,

μ̂(w) − μ(ϑ) d→ D′
ϑC(λ/2)(w)γ(λ) − h(ϑ)

M∑
m=1

wm|Πmcγ(λ)|

+ D′
ϑV(λ/2)(w)S1(λ/2),

where C(λ/2)(w) =
∑M

m=1 wmC(λ/2)
m , V(λ/2)(w) =

∑M
m=1 wmV(λ/2)

m , and
h is defined in Lemma 3.

(b) when λ = 2, as T → ∞,

log T (μ̂(w) − μ(ϑ)) d→ D′
ϑC(1)(w)δ(2) + D′

ϑV(1)(w)S1(1),

where C(1)(w) =
∑M

m=1 wmC(1)
m and V(1)(w) =

∑M
m=1 wmV(1)

m .
(c) when λ ∈ (2, 4), as T → ∞,

T 1−2/λ (μ̂(w) − μ(ϑ)) d→ D′
ϑC(w)δ(λ) + D′

ϑV(w)S1(λ/2),

where C(w) =
∑M

m=1 wmCm and V(w) =
∑M

m=1 wmVm.
(d) when λ = 4, as T → ∞,√

T/ log T (μ̂(w) − μ(ϑ)) d→ N(D′
ϑC(w)δ(4), V (w))

where V (w) =
∑M

m=1 w
2
mD′

ϑVmΩV′
mDϑ + 2

∑∑
m �=k

wmwkD′
ϑVmΩV′

kDϑ.
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Remark 4. Recall that the limiting distributions in cases (b), (c), and (d) are
stable distributions since a linear transformation of a stable distribution is a
stable distribution if the stability parameter is greater than or equal to 1. This
is a direct result of Theorems 2.1.2 and 2.1.5 (c) in [70].

Remark 5. When λ = 4, it is clear that V (w) can be rewritten as

D′
ϑV(w)ΩV(w)Dϑ,

where V(w) is a symmetric matrix since Vm is a symmetric matrix for m =
1, . . . ,M .

Remark 6. In this paper, we propose a robust test based on our Lemma 4
and Theorem 1, and the idea of [62] for AR-G/GARCH models under model
uncertainty. Note that [49, Theorem 6] corrects bias from the submodels and
estimates weights to construct a valid confidence interval. Although the limiting
distributions of errors in [49] are all Gaussian, the limiting distributions of
errors under G/GARCH noise have stable laws and are yet to be completely
characterized. To account for this and obtain a valid confidence interval, we use
the idea of [62] to construct a valid confidence interval and in so doing make
new progress in handling model uncertainty. Our method can also be used for
model selection.

Thanks to Lemma 4, a(λ)
�T/Q�Z

(i)(w) is asymptotically stable and hence asymp-
totically mixed Gaussian ([70, Proposition 1.3.1]). Thanks to the argument in
Lemma 3.2 of [62], we know that a(λ)

�T/Q�Z
(i)(w) and a

(λ)
�T/Q�Z

(j)(w) are asymp-
totically independent for i �= j. Therefore, in the proposed method of Section 2.3,
a valid 100(1−α)% confidence interval for μ(ϑ) is [−cvQ(α), cvQ(α)]. Through
our simulation experiments, we note that the result (13) likely still holds even if
we withdraw the zero median condition.

4.1. Mallows-type model averaging estimator

The celebrated MMA approach of [30] is an OLS-based model averaging es-
timator whose weights are selected by minimizing a criterion in the spirit of
Mallows’ Cp ([51]), where the MMA estimator is asymptotically optimal in the
sense of achieving the lowest squared error with a penalty over all weights in
the unit simplex R

M . MMA has been widely applied to other regression models.
Note that [30] extends this asymptotic optimality from model selection in [48] to
model averaging, and it has been established that the average squared error of
the MMA estimator is asymptotically equivalent to the lowest expected squared
error. To consider the asymptotic optimality for time-series noise, readers are
referred to [12]. In this paper, we do not study asymptotic optimality because5

(i) the lag period p + q is finite instead of infinite and (ii) high-order moments
of noise do not exist in our setting.

5The reader is referred to [30], [75], and [77], among others.
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Let us introduce the classical MMA criterion: define

ε̂(w) = Y − Xϑ̄(w) = Y −
M∑

m=1
(wmXmϑ̂m) =

M∑
m=1

wmε̂m

to be the residual vector, where the averaging estimator is

ϑ̄(w) =
M∑

m=1
wmSmϑ̂m.

Under the homoskedastic linear regression model,6 [30] suggests selecting the
weights for all basic models by minimizing the following Mallows criterion:

C(w) = ε̂(w)′ε̂(w) + 2σ2k′w, (16)

where k = (k1, . . . , kM )′ with km = p + qm for 1 ≤ m ≤ M . Here σ2 in (16) is
the variance of the noise.

In this section, we propose the Mallows-type model averaging (MTMA) cri-
terion in AR-G/GARCH models. One aim of this paper is to study asymptotic
inference under an assumption of heavy-tailed noise. Therefore, the first step is
to rescale the criteria to cause the asymptotic distribution to exist. The second
step is to modify the penalty term.

The first term on the right-hand side in (16) must be scaled such that the
sample size goes to infinity. To obtain an asymptotic distribution, we multiply
the scaling by a constant to the first term in (16) to yield

(a) when λ ∈ (0, 2),
(
a
(λ)
T

)−2
ε̂(w)′ε̂(w),

where a
(λ)
T =

(
c
(λ)
0 E|z1|λT

)1/λ
and c

(λ)
0 is defined in (11).

(b) when λ = 2, (
log T
c
(2)
0 T

)
ε̂(w)′ε̂(w).

(c) when λ ∈ (2, 4), (
T 1−4/λ

)
ε̂(w)′ε̂(w).

6The homoskedastic linear regression is expressed as

yi =
∞∑
j=1

θjxji + ei, E[ei|xi] = 0, E[e2i |xi] = σ2,

where yi is real-valued whereas xi = (x1i, x2i, . . .) is countably infinite.
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(d) when λ = 4, (
1

log T

)
ε̂(w)′ε̂(w).

It is known (cf. [80]) that σ2 := E[ε21] exists if λ ∈ (2, 4]. Thus, the penalty
term for λ ∈ (2, 4] is still set to 2σ2, as in the classical version. However, the
second moment does not exist for λ ∈ (0, 2]. The tail behavior shown by [80,
Lemma 2.1] infers that the level of the penalty for λ ∈ (0, 2] is⎧⎨

⎩2
(
c
(λ)
0 E[|z1|λ]

)2/λ
if λ ∈ (0, 2);

2c(2)0 if λ = 2.

Here the criterion varies when λ changes. To indicate this dependency, we use
MTMA-λ to denote the MTMA criterion with parameter λ.

We summarize the MTMA-λ criterion for different ranges of λ below:

(a) when λ ∈ (0, 2),

C(λ)(w) =
(
a
(λ)
T

)−2
ε̂(w)′ε̂(w) + 2

(
c
(λ)
0 E[|z1|λ]

)2/λ
k′w, (17)

where a
(λ)
T =

(
c
(λ)
0 E|z1|λT

)1/λ
and c

(λ)
0 is defined in (11).

(b) when λ = 2,

C(2)(w) =
(

log T
c
(2)
0 T

)
ε̂(w)′ε̂(w) + 2c(2)0 k′w. (18)

(c) when λ ∈ (2, 4),

C(λ)(w) =
(
T 1−4/λ

)
ε̂(w)′ε̂(w) + 2σ2k′w, (19)

where σ2 = E[ε21].
(d) when λ = 4,

C(4)(w) =
(

1
log T

)
ε̂(w)′ε̂(w) + 2σ2k′w. (20)

Remark 7. Consider an example in a simple setting: for λ ∈ (2, 4), consider
the GARCH (1, 1) model with

h2
t = ω + αε2t−1 + βh2

t−1,

where ω > 0, α > 0, and β > 0. It is well-known that under some regular
conditions, we have E[ε2t ] = ω

1−(α+β) and E[εsεr] = 0 for s �= r. So, the criterion
is

C
(λ)
T (w) =

(
T 1−4/λ

)
ε̂(w)′ε̂(w) + 2 ω

1 − (α + β)k
′w.
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We use the case of λ ∈ (2, 4) to introduce the idea of MTMA, since other cases
are basically the same. To derive the asymptotic distribution of the MTMA-λ
estimator, we rewrite the criterion (see Remark 8) as

C(λ)(w) = w′ζ(λ)w + 2σ2k′w +
(
T 1−4/λ

)
ε̂′ε̂, (21)

where ζ(λ) = ζ(λ)(T ) is an M × M matrix whose (m, l)-th element is ζ
(λ)
m,l =

ζ
(λ)
m,l(T ) =

(
T 1−4/λ) (ε̂m − ε̂)′(ε̂l − ε̂) and ε̂ and ε̂m are the residual vectors in

the full model and the m-th submodel, respectively.
Remark 8. The MTMA-λ criterion (19) can be rewritten as the form in (21)
because of ε̂′mε̂ = ε̂′ε̂; hence ε̂′mε̂l − ε̂′ε̂ = (ε̂m − ε̂)′(ε̂l − ε̂). The arguments will
be given in the Appendix.

Note that
(
T 1−4/λ) is not related to the weight vector w. Thus, minimizing

C
(λ)
T (w) over w is equivalent to minimizing

C̃(λ)(w) := w′ζ(λ)w + 2σ2k′w.

The following theorem gives the asymptotic distribution of the MTMA estima-
tors.
Theorem 1. Let ŵ(λ) = argminw∈HT

C̃(λ)(w) be the MTMA-λ weights. Sup-
pose that Assumptions 1 and 2 hold. As T → ∞, we have

(a) when λ ∈ (0, 2),

C̃(λ)(w) = w′ζ(λ)w + 2
(
c
(λ)
0 E[|z1|λ]

)2/λ
k′w

d→ w′ζ∗(λ)w + 2
(
c
(λ)
0 E[|z1|λ]

)2/λ
k′w,

where ζ∗(λ) is an M ×M matrix whose (m, l)-th element is

ζ∗
(λ)
m,l =

(
Γ(λ)
m

)′
Σ(λ/2)Γ(λ)

l ,

where
Γ(λ)
m = C(λ/2)

m γ(λ) +
(
V(λ/2)

m −
(
Σ(λ/2)

)−1
)
S1(λ/2)

and C(λ/2)
m and V(λ/2)

m are defined in Lemma 3.
Moreover, as T → ∞, we have

ŵ(λ) d→ w∗(λ) = argminw∈HT

(
w′ζ∗(λ)w + 2

(
c
(λ)
0 E[|z1|λ]

)2/λ
k′w

)
and

μ̂(ŵ(λ)) − μ(ϑ) d→ D′
ϑC(λ/2)(w∗(λ))γ(λ) − h(ϑ)

M∑
m=1

w∗(λ)
m |Πmcγ(λ)|

+ D′
ϑV(λ/2)(w∗(λ))S1(λ/2),

where w∗(λ)
m is the m-th element of w∗(λ).
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(b) when λ = 2,

C̃(2)(w) = w′ζ(2)w + 2c(2)0 k′w d→ w′ζ∗(2)w + 2c(2)0 k′w,

where ζ∗(2) is an M ×M matrix whose (m, l)-th element is

ζ∗
(2)
m,l =

(
Γ(2)
m

)′
Σ(1)Γ(2)

l

where
Γ(2)
m = C(1)

m δ(2) +
(
V(1)

m −
(
Σ(1)

)−1
)
S1(1)

and C(1)
m and V(1)

m are defined in Lemma 3.
Moreover, as T → ∞, we have

ŵ(2) d→ w∗(2) = argminw∈HT

(
w′ζ

(2)
∗ w + 2c(2)0 k′w

)
and

log T
(
μ̂(ŵ(2)) − μ(ϑ)

)
d→ D′

ϑC(1)(w∗(2))δ(2) + D′
ϑV(1)(w∗(2))S1(1).

(c) when λ ∈ (2, 4),

C̃(λ)(w) = w′ζ(λ)w + 2σ2k′w d→ w′ζ∗(λ)w + 2σ2k′w,

where ζ∗(λ) is an M ×M matrix whose (m, l)-th element is

ζ∗
(λ)
m,l =

(
Γ(λ)
m

)′
ΣΓ(λ)

l

where
Γ(λ)
m = Cmδ(λ) +

(
Vm − Σ−1)S1(λ/2)

and Cm and Vm are defined in Lemma 3.
Moreover, as T → ∞, we have

ŵ(λ) d→ w∗(λ) = argminw∈HT

(
w′ζ∗(λ)w + 2σ2k′w

)
and

T 1−2/λ
(
μ̂(ŵ(λ)) − μ(ϑ)

)
d→ D′

ϑC(w∗(λ))δ(λ) + D′
ϑV(w∗(λ))S1(λ/2).

(d) when λ = 4,

C̃(4)(w) = w′ζ(4)w + 2σ2k′w d→ w′ζ∗(4)w + 2σ2k′w,

where ζ∗(4) is an M ×M matrix whose (m, l)-th element is

ζ∗
(4)
m,l =

(
Γ(4)
m

)′
ΣΓ(4)

l
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where
Γ(4)
m = Cmδ(4) +

(
Vm − Σ−1)N(0,Ω).

Moreover, as T → ∞, we have

ŵ(4) d→ w∗(4) = argminw∈HT

(
w′ζ∗(4)w + 2σ2k′w

)
and √

T/ log T
(
μ̂(ŵ(4)) − μ(ϑ)

)
d→ N(D′

ϑC(w∗(4))δ(4), V (w∗(4))).

4.2. Mallows-type model selection estimator

Here we introduce the classical Mallows model selection (MMS) criterion. Recall
that

ε̂m = Y − Xmϑ̂m

is a residual in the m-th submodel. In traditional model selection, [51] suggests
that the criterion for selecting a submodel among all candidate models is

min
m∈HT

(
ε̂′mε̂m + 2σ2km

)
=: min

m∈HT

C(m), (22)

where HT is an index set. We mention two remarkable results in the literature
of model selection. [48] demonstrates that a model selected upon Mallows’s
criterion C(m) is asymptotically optimal in homoskedastic linear regression.
Later, [44] show that Akaike’s and Mallows’s criteria can be used for model
selection and result in asymptotic optimality for the out-of-sample forecast. As
mentioned earlier, the topic of asymptotic optimality will not be discussed here.

We let

H0
T =

{
w0

1,w0
2, . . . ,w0

M

}
,

where we recall that w0
m is an M × 1 vector for m = 1, 2, . . . ,M , whose m-th

element is one and the others are zeros. We thus have H0
T ⊆ HT and (22) can

be written as

min
w∈H0

T

C(w),

where C(w) is defined in (16). Similarly, the proposed Mallows-type model
selection (MTMS) criterion is given by

(a) when λ ∈ (0, 2),

C(λ)(w) =
(
a
(λ)
T

)−2
ε̂(w)′ε̂(w) + 2

(
c
(λ)
0 E[|z1|λ]

)2/λ
k′w (23)

for w ∈ H0
T , where a

(λ)
T =

(
c
(λ)
0 E|z1|λT

)1/λ
and c

(λ)
0 is defined in (11).
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(b) when λ = 2,

C(2)(w) =
(

log T
c
(2)
0 T

)
ε̂(w)′ε̂(w) + 2c(2)0 k′w (24)

for w ∈ H0
T .

(c) when λ ∈ (2, 4),

C(λ)(w) =
(
T 1−4/λ

)
ε̂(w)′ε̂(w) + 2σ2k′w (25)

for w ∈ H0
T , where σ2 = E[ε21].

(d) when λ = 4,

C(4)(w) =
(

1
log T

)
ε̂(w)′ε̂(w) + 2σ2k′w (26)

for w ∈ H0
T .

Remark 9. The advantage of our method is that we have a robust test for μ(ϑ)
in AR-G/GARCH models under model uncertainty according to the MTMA or
MTMS criterion. The proposed MTMA approach can be applied to a large class
of AR-G/GARCH models, and captures correlation, heterogeneity, and heavy
tails (caused by G/GARCH noise). Aside from the above, the main reason that
we use the term robust is because the value of δ and the sharpness of λ do not
affect the performance of the test.

5. Simulation study

To verify the applicability of the proposed MTMA and MTMS methods, we
conduct Monte Carlo experiments through the following five data-generating
processes (DGPs):

1. AR(1 + 2)-GARCH (1, 1)

yt = ρ1yt−1 + γ1yt−2 + γ2yt−3 + εt,

where εt = htzt and h2
t = ω + αε2t−1 + βh2

t−1.
(27)

2. AR(2 + 2)-GARCH (1, 1)

yt = ρ1yt−1 + ρ2yt−2 + γ1yt−3 + γ2yt−4 + εt,

where εt = htzt and h2
t = ω + αε2t−1 + βh2

t−1.
(28)

3. AR(2 + 3)-GARCH (1, 1)

yt = ρ1yt−1 + ρ2yt−2 + γ1yt−3 + γ2yt−4 + γ3yt−5 + εt,

where εt = htzt and h2
t = ω + αε2t−1 + βh2

t−1.
(29)
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4. AR(2 + 5)-GARCH (1, 1)

yt = ρ1yt−1 + ρ2yt−2 + γ1yt−3 + γ2yt−4 + γ3yt−5 + γ4yt−6 + γ5yt−7 + εt,

where εt = htzt and h2
t = ω + αε2t−1 + βh2

t−1.

(30)

5. AR(2 + 2)-EGARCH (1, 1)

yt = ρ1yt−1 + ρ2yt−2 + γ1yt−3 + γ2yt−4 + εt(σ),
where εt = htzt and log h2

t = ω + αε2t−1 + β log h2
t−1.

(31)

We set (ω, α, β) = (0.00000858, 0.072, 0.925) for the first four DGPs: (27),
(28), (29), and (30) as in [58], whose paper estimates the tail index λ to be
approximately 3.2. We likewise adopt λ = 3.2 in our finite sample study with-
out further explanation or discussion concerning the estimation of λ as this
is beyond the scope of our paper. For the last DGP (31), we set (ω, α, β) =
(−0.00127, 0.11605, 0.95), following [52]. Besides the above parameters, we have
to determine Q in (12) due to our method. For the sake of convenience for
simulation, here we set Q = 3.

In the experiments of null hypothesis test

H0 : μ(ϑ) = μ(ϑ0)

against alternative H1 : μ(ϑ) �= μ(ϑ0), all tests are evaluated at the 5% signifi-
cance level. We consider the null hypotheses to be μ(ϑ0) = ρ1,0, μ(ϑ0) = ρ2,0,
and μ(ϑ0) = ρ1,0 + ρ2,0 from Tables 2 to 9. Besides the above hypotheses, we
test the ratio of coefficients μ(ϑ0) = ρ1,0/ρ2,0 in Tables 4, 5, 6, and 7. The
reasons for testing those null hypotheses are as follows: Testing an individual
coefficient is for understanding a relationship between yt and {yt−k : k ∈ N},
see e.g., [69]. The sum of coefficients, in macroeconomics, is frequently used for
long-run effects from lag periods on the fiscal policy, international aid, or foreign
investment, we refer interested reader to, e.g., [67] and [63]. The quotient of coef-
ficients is a type of long-run propensity in economics, see [67], [37], and [38]. The
testing results for DGPs (27), (28), (29), (30), and (31) are in Tables 2, 3, 4, 6,
and 8, respectively. In Table 5, the true model is AR(2 + 3)-GARCH (1, 1) and
all testing base on the models AR(2 + q)-GARCH (1, 1), for 0 ≤ q ≤ 5. The
purpose for the Table 7 is in order to compare the results of models with and
without auxiliary regressors by using DGP (28). Table 9 presents the outcomes
by adopting DGP (28) when we use the wrong tail index.

5.1. Finite sample study

We now investigate the robustness of the proposed model averaging (or selection)
estimator and compare the performance of the MTMA method to other OLS-
based estimators through DGPs (27) to (30). Those OLS-based estimators are
built in a single-nested-model framework. More specifically, for DGPs (27) and
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(28), we consider three OLS-based single-nested models which include all core
regressors but have partial (this could be none or full) auxiliary lag period
regressors: (i) the narrow model contains no auxiliary lag period regressors;
(ii) a middle model includes only one auxiliary lag period regressor; (iii) the
full model has all auxiliary lag period regressors. In DGPs (29) and (30), we
add one auxiliary regressor to the model each time in order of the indices of
the auxiliary regressors. Except for the MTMA estimator, we also consider the
equal-weighted (EW) model, for which the weights for all submodels are all
equal.

As we mentioned earlier, we consider null hypothesis test

H0 : μ(ϑ) = μ(ϑ0)

against alternative H1 : μ(ϑ) �= μ(ϑ0), where μ(ϑ0) = ρ1,0, μ(ϑ0) = ρ2,0,
μ(ϑ0) = ρ1,0+ρ2,0 for all tables and μ(ϑ0) = ρ1,0/ρ2,0 for Tables through 4 to 7.
All tests are evaluated at the 5% significance level and the simulation studies are
based on 10,000 Monte Carlo draws of the sample path via DGPs (27)–(30) with
the same initial y0 = 0. We show the rejection rates by choosing the confidence
interval proposed in Section 2.3. Summary statistics of the rejection rate can be
found in Table 1.

Table 1

Statistics of rejection rate

MTMA EW

Panel A: model averaging
1
N

∑N
i=1 1{τH0 (ŵ)/∈cvQ(α)}(i) 1

N

∑N
i=1 1{τH0 (wew)/∈cvQ(α)}(i)

AR(p + q1) · · · AR(p + qM )

Panel B: single model
1
N

∑N
i=1 1{τH0 (1)/∈cvQ(α)}(i) · · · 1

N

∑N
i=1 1{τH0 (M)/∈cvQ(α)}(i)

Notes: N is the number of experiments, 1{·} is the indicator of event {·},
1{·}(i) is related to the i-th experiment, ŵ = argminw∈HT

C̃(λ)(w), and
wew = ( 1

M
, . . . , 1

M
).

Tables 2–7 report the finite-sample rejection rates of two-sided tests at the
5% significance level with various p and q under the same GARCH (1, 1) noise.
The results in these tables show that the model averaging methods (MTMA
and EW), MTMS method, and full model are relatively robust (near 0.05) if
compared to some other single models.

First, for ρ1,0 = 0 under the model AR(1 + 2)-GARCH (1, 1), rejection rates
look the same among all methods, see Panel A in Table 2. Table 3 shows that
the full and middle model outperforms the narrow model. In Tables 3 and 4, null
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Table 2. Rejection rates under AR(1 + 2)-GARCH(1, 1) model

Model averaging Single model and model selection Model averaging Single model and model selection
δ T MTMA EW Narrow Middle Full MTMS MTMA EW Narrow Middle Full MTMS

Panel A: μ(ϑ0) = ρ1,0 = 0 Panel B: μ(ϑ0) = ρ1,0 = 0.3
0.3 100 0.0485 0.0497 0.0525 0.0460 0.0489 0.0487 0.0499 0.0505 0.0564 0.0471 0.0498 0.0498

400 0.0527 0.0525 0.0537 0.0516 0.0526 0.0522 0.0512 0.0538 0.0560 0.0541 0.0515 0.0520
1000 0.0473 0.0466 0.0472 0.0465 0.0482 0.0477 0.0498 0.0484 0.0527 0.0469 0.0474 0.0495

0.5 100 0.0492 0.0494 0.0520 0.0469 0.0498 0.0490 0.0497 0.0535 0.0653 0.0488 0.0500 0.0501
400 0.0524 0.0536 0.0542 0.0530 0.0524 0.0531 0.0515 0.0545 0.0620 0.0529 0.0512 0.0519
1000 0.0480 0.0469 0.0460 0.0472 0.0477 0.0478 0.0497 0.0498 0.0591 0.0477 0.0481 0.0503

0.9 100 0.0494 0.0552 0.0574 0.0539 0.0496 0.0490 0.0523 0.0625 0.1080 0.0504 0.0530 0.0522
400 0.0524 0.0551 0.0578 0.0547 0.0522 0.0531 0.0516 0.0600 0.0880 0.0540 0.0513 0.0512
1000 0.0493 0.0476 0.0481 0.0479 0.0487 0.0494 0.0496 0.0546 0.0807 0.0463 0.0484 0.0499

Notes: This table reports the finite-sample rejection rates of two-sided tests at the 5% significance level. The parameters for DGP in (27) are
(ω, α, β) = (0.00000858, 0.072, 0.925) and γ1 = γ2 = δ

T1−2/3.2 . The estimator of the tail index of [58] is 3.2. The simulation studies are based
on 10,000 replications.
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Table 3. Rejection rates under AR(2 + 2)-GARCH(1, 1) model

Model averaging Single model and model selection Model averaging Single model and model selection
δ T MTMA EW Narrow Middle Full MTMS MTMA EW Narrow Middle Full MTMS

Panel A: μ(ϑ0) = ρ1,0 = 0.3 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.3, 0.3)′ Panel D: μ(ϑ0) = ρ1,0 = 0.5 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0499 0.0493 0.0482 0.0464 0.0492 0.0494 0.0495 0.0487 0.0486 0.0471 0.0500 0.0498
400 0.0459 0.0459 0.0473 0.0484 0.0458 0.0463 0.0457 0.0451 0.0465 0.0460 0.0450 0.0467
1000 0.0512 0.0518 0.0499 0.0507 0.0514 0.0490 0.0488 0.0499 0.0487 0.0521 0.0510 0.0477

0.5 100 0.0480 0.0488 0.0524 0.0492 0.0486 0.0491 0.0489 0.0460 0.0657 0.0466 0.0479 0.0493
400 0.0457 0.0473 0.0534 0.0468 0.0443 0.0449 0.0438 0.0454 0.0563 0.0450 0.0440 0.0438
1000 0.0511 0.0502 0.0562 0.0509 0.0514 0.0506 0.0481 0.0504 0.0586 0.0510 0.0512 0.0473

0.9 100 0.0471 0.0560 0.1574 0.0518 0.0464 0.0452 0.0491 0.0556 0.1475 0.0530 0.0499 0.0506
400 0.0456 0.0518 0.0927 0.0473 0.0463 0.0457 0.0427 0.0532 0.1439 0.0451 0.0440 0.0441
1000 0.0504 0.0529 0.0883 0.0502 0.0511 0.0519 0.0517 0.0569 0.1139 0.0502 0.0519 0.0510

Panel B: μ(ϑ0) = ρ2,0 = 0.3 Panel E: μ(ϑ0) = ρ2,0 = 0.3
0.3 100 0.0603 0.0570 0.0519 0.0556 0.0611 0.0611 0.0560 0.0533 0.0567 0.0555 0.0566 0.0559

400 0.0493 0.0498 0.0504 0.0522 0.0511 0.0496 0.0494 0.0481 0.0562 0.0477 0.0508 0.0524
1000 0.0490 0.0494 0.0515 0.0534 0.0508 0.0485 0.0502 0.0484 0.0629 0.0513 0.0507 0.0494

0.5 100 0.0609 0.0562 0.0551 0.0556 0.0627 0.0616 0.0520 0.0525 0.0955 0.0523 0.0540 0.0523
400 0.0490 0.0506 0.0605 0.0515 0.0490 0.0487 0.0519 0.0509 0.0844 0.0492 0.0527 0.0538
1000 0.0497 0.0512 0.0659 0.0530 0.0499 0.0488 0.0502 0.0533 0.0964 0.0517 0.0496 0.0502

0.9 100 0.0558 0.0601 0.1507 0.0554 0.0557 0.0553 0.0482 0.0588 0.1520 0.0574 0.0487 0.0487
400 0.0522 0.0562 0.1105 0.0559 0.0508 0.0524 0.0511 0.0712 0.2606 0.0550 0.0519 0.0509
1000 0.0514 0.0607 0.1134 0.0592 0.0510 0.0518 0.0578 0.0717 0.2218 0.0566 0.0503 0.0567

Panel C: μ(ϑ0) = ρ1,0 + ρ2,0 = 0.6 Panel F: μ(ϑ0) = ρ1,0 + ρ2,0 = 0.8
0.3 100 0.0510 0.0456 0.0613 0.0513 0.0512 0.0514 0.0615 0.0463 0.1570 0.0632 0.0630 0.0626

400 0.0489 0.0481 0.0671 0.0509 0.0488 0.0482 0.0497 0.0465 0.1230 0.0509 0.0515 0.0499
1000 0.0496 0.0494 0.0674 0.0498 0.0492 0.0502 0.0517 0.0510 0.1205 0.0487 0.0466 0.0547

0.5 100 0.0486 0.0445 0.1127 0.0485 0.0490 0.0493 0.0645 0.0560 0.7662 0.0561 0.0677 0.0676
400 0.0498 0.0500 0.0997 0.0494 0.0506 0.0495 0.0522 0.0553 0.3036 0.0475 0.0513 0.0533
1000 0.0531 0.0577 0.1026 0.0501 0.0495 0.0536 0.0652 0.0664 0.2717 0.0492 0.0481 0.0688

0.9 100 0.0549 0.1036 0.7117 0.0570 0.0557 0.0560 0.0571 0.1076 0.9963 0.0541 0.0597 0.0584
400 0.0493 0.0781 0.2552 0.0545 0.0513 0.0495 0.0525 0.1663 0.9231 0.0657 0.0556 0.0528
1000 0.0570 0.0821 0.2350 0.0586 0.0509 0.0548 0.0674 0.1367 0.7254 0.0633 0.0505 0.0681

Notes: This table reports the finite-sample rejection rates of two-sided tests at the 5% significance level. The parameters for DGP in (28) are
(ω, α, β) = (0.00000858, 0.072, 0.925) and γ1 = γ2 = δ

T1−2/3.2 . The estimator of the tail index of [58] is 3.2. The simulation studies are based on
10,000 replications.
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Table 4

Rejection rates under AR(2 + 5)-GARCH(1, 1) model

Model averaging Single model and model selection
δ T MTMA EW AR(2) AR(3) AR(4) AR(5) AR(6) AR(7) MTMS

Panel A: μ(ϑ0) = ρ1,0 = 0.5 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0494 0.0514 0.0988 0.0538 0.0502 0.0486 0.0473 0.0494 0.0492
400 0.0509 0.0525 0.0897 0.0502 0.0522 0.0528 0.0518 0.0513 0.0505
1000 0.0485 0.0450 0.0764 0.0464 0.0466 0.0460 0.0473 0.0467 0.0479

Panel B: μ(ϑ0) = ρ2,0 = 0.3 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0537 0.0485 0.1311 0.0598 0.0474 0.0480 0.0539 0.0543 0.0549
400 0.0512 0.0514 0.1438 0.0586 0.0471 0.0480 0.0484 0.0506 0.0520
1000 0.0530 0.0492 0.1355 0.0554 0.0470 0.0488 0.0484 0.0493 0.0544

Panel C: μ(ϑ0) = ρ1,0 + ρ2,0 = 0.8 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0619 0.0496 0.9615 0.0582 0.0529 0.0516 0.0529 0.0647 0.0632
400 0.0508 0.0547 0.5787 0.0633 0.0509 0.0510 0.0510 0.0518 0.0514
1000 0.0661 0.0545 0.4304 0.0594 0.0494 0.0521 0.0517 0.0527 0.0694

Panel D: μ(ϑ0) = ρ1,0/ρ2,0 = 5/3 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0516 0.0559 0.0867 0.0643 0.0454 0.0450 0.0488 0.0517 0.0513
400 0.0476 0.0498 0.0868 0.0586 0.0436 0.0471 0.0462 0.0445 0.0465
1000 0.0523 0.0504 0.0821 0.0560 0.0453 0.0436 0.0445 0.0448 0.0523

Notes: This table reports the finite-sample rejection rates of two-sided tests at the 5% sig-
nificance level. The parameters for DGP in (30) are (ω, α, β) = (0.00000858, 0.072, 0.925)
and γ1 = γ2 = γ3 = γ4 = γ5 = δ

T1−2/3.2 . The estimator of the tail index of [58] is 3.2.
The simulation studies are based on 10,000 replications.

Table 5

Rejection rates under AR(2 + 3)-GARCH(1, 1) model

Model averaging Single model and model selection
δ T MTMA EW AR(2) AR(3) AR(4) AR(5) AR(6) AR(7) MTMS

Panel A: μ(ϑ0) = ρ1,0 = 0.5 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0533 0.0534 0.0602 0.0519 0.0520 0.0527 0.0549 0.0536 0.0535
400 0.0539 0.0539 0.0547 0.0544 0.0532 0.0530 0.0537 0.0525 0.0520
1000 0.0463 0.0460 0.0533 0.0469 0.0495 0.0474 0.0485 0.0461 0.0472

Panel B: μ(ϑ0) = ρ2,0 = 0.3 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0574 0.0491 0.0881 0.0565 0.0528 0.0535 0.0579 0.0573 0.0580
400 0.0492 0.0483 0.0735 0.0477 0.0495 0.0481 0.0508 0.0498 0.0492
1000 0.0498 0.0462 0.0779 0.0492 0.0476 0.0469 0.0477 0.0470 0.0503

Panel C: μ(ϑ0) = ρ1,0 + ρ2,0 = 0.8 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0662 0.0604 0.5864 0.0608 0.0652 0.0678 0.0653 0.0690 0.0685
400 0.0527 0.0486 0.2183 0.0514 0.0538 0.0543 0.0540 0.0530 0.0540
1000 0.0601 0.0505 0.1912 0.0510 0.0541 0.0528 0.0523 0.0525 0.0637

Panel D: μ(ϑ0) = ρ1,0/ρ2,0 = 5/3 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0509 0.0577 0.0803 0.0598 0.0474 0.0455 0.0512 0.0503 0.0497
400 0.0454 0.0470 0.0658 0.0524 0.0428 0.0447 0.0441 0.0445 0.0463
1000 0.0497 0.0478 0.0640 0.0504 0.0471 0.0447 0.0439 0.0448 0.0488

Notes: This table reports the finite-sample rejection rates of two-sided tests at the 5% sig-
nificance level. The parameters for DGP in (29) are (ω, α, β) = (0.00000858, 0.072, 0.925)
and γ1 = γ2 = γ3 = δ

T1−2/3.2 . The estimator of the tail index of [58] is 3.2. The simula-
tion studies are based on 10,000 replications.
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Table 6

Rejection rates under AR(2 + 3)-GARCH(1, 1) model

Model averaging Single model and model selection
δ T MTMA EW AR(2) AR(3) AR(4) AR(5) MTMS

Panel A: μ(ϑ0) = ρ1,0 = 0.5 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0549 0.0537 0.0594 0.0539 0.0552 0.0554 0.0543
400 0.0507 0.0499 0.0584 0.0501 0.0516 0.0497 0.0504
1000 0.0487 0.0478 0.0550 0.0474 0.0489 0.0489 0.0473

Panel B: μ(ϑ0) = ρ2,0 = 0.3 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0554 0.0545 0.0916 0.0567 0.0566 0.0561 0.0555
400 0.0484 0.0467 0.0711 0.0488 0.0486 0.0503 0.0477
1000 0.0494 0.0517 0.0796 0.0487 0.0467 0.0476 0.0479

Panel C: μ(ϑ0) = ρ1,0 + ρ2,0 = 0.8 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0676 0.0550 0.5897 0.0605 0.0635 0.0692 0.0688
400 0.0539 0.0523 0.2193 0.0487 0.0545 0.0566 0.0575
1000 0.0589 0.0521 0.2003 0.0521 0.0495 0.0509 0.0601

Panel D: μ(ϑ0) = ρ1,0/ρ2,0 = 5/3 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0471 0.0586 0.0823 0.0615 0.0465 0.0454 0.0456
400 0.0450 0.0490 0.0659 0.0509 0.0434 0.0443 0.0445
1000 0.0515 0.0505 0.0669 0.0514 0.0460 0.0463 0.0505

Notes: This table reports the finite-sample rejection rates of two-sided tests at the 5% sig-
nificance level. The parameters for DGP in (29) are (ω, α, β) = (0.00000858, 0.072, 0.925)
and γ1 = γ2 = γ3 = δ

T1−2/3.2 . The estimator of the tail index of [58] is 3.2. The simula-
tion studies are based on 10,000 replications.

has been rejected more in the narrow model, especially in the case of μ(ϑ0) =
ρ1,0 + ρ2,0. The simulation for the case of μ(ϑ0) = ρ1,0 + ρ2,0 is an application
of Lemma 3 since ρ1,0 + ρ2,0 can be written as s(ρ1,0, ρ2,0), where s(x1, x2) =
x1 + x2 is a smooth function.

Next, we run the tests based on nested models AR(2 + q)-GARCH (1, 1), for
0 ≤ q ≤ 3 in Table 6 when the true model is AR(2 + 3)-GARCH (1, 1). In
many cases, we do not know what the true model is, namely, we are not able
to know q. Therefore, we include more models in the pool of candidate models:
AR(2 + q)-GARCH (1, 1), where 0 ≤ q ≤ 5. The results by using the above
pool for true model AR(2+3)-GARCH (1, 1) are shown in Table 5. Under these
set-ups, MTMS, MTMA, EW, and the richest model (i.e., model with greatest
q in the pool of models) perform similarly, and model averaging method seems
to be a little bit better than the single model for the case of ρ1,0/ρ2,0.

Remind that δ = 0 means that the true model has no auxiliary regressors.
In Table 7, we consider the cases δ = 0 versus δ = 0.6. When δ = 0, the narrow
model performs better; when δ = 0.6, the rejection rates of the narrow model
works poorly. Overall, when δ is large, the rejection rates of the narrow model
are liberal, particularly when μ(ϑ0) = ρ1,0 + ρ2,0.

One might notice that the rejection rates of MTMA are all near 0.05, which
shows the advantage of the model averaging approach and in turn strengthens
our Theorem 1. Besides, the rejection rates of MTMS are very close to the 5%
significance level. This, together with MTMA, can overcome the model uncer-
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Table 7

Rejection rates under AR(2 + 2)-GARCH(1, 1) model

Model averaging Single model and model selection
δ T MTMA EW Narrow Middle Full MTMS

Panel A: μ(ϑ0) = ρ1,0 = 0.6 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.6, 0.3)′

0 100 0.0499 0.0534 0.0564 0.0492 0.0493 0.0496
400 0.0475 0.0494 0.0512 0.0488 0.0462 0.0461
1000 0.0468 0.0465 0.0470 0.0491 0.0486 0.0477

0.6 100 0.0452 0.0475 0.0812 0.0484 0.0456 0.0459
400 0.0512 0.0519 0.0817 0.0493 0.0484 0.0502
1000 0.0483 0.0471 0.0722 0.0454 0.0482 0.0493

Panel B: μ(ϑ0) = ρ2,0 = 0.3
0 100 0.0497 0.0544 0.0605 0.0534 0.0492 0.0495

400 0.0516 0.0554 0.0553 0.0526 0.0491 0.0515
1000 0.0437 0.0460 0.0502 0.0477 0.0469 0.0421

0.6 100 0.0447 0.0550 0.1065 0.0551 0.0453 0.0454
400 0.0508 0.0656 0.1614 0.0567 0.0484 0.0496
1000 0.0526 0.0628 0.1600 0.0511 0.0473 0.0563

Panel C: μ(ϑ0) = ρ1,0 + ρ2,0 = 0.9
0 100 0.0637 0.0651 0.0457 0.0742 0.0648 0.0636

400 0.0513 0.0555 0.0488 0.0589 0.0566 0.0515
1000 0.0373 0.0495 0.0475 0.0495 0.0503 0.0355

0.6 100 0.0649 0.0574 0.9935 0.0517 0.0667 0.0674
400 0.0602 0.1038 0.9734 0.0534 0.0547 0.0610
1000 0.0940 0.0898 0.9138 0.0485 0.0495 0.1056

Panel D: μ(ϑ0) = ρ1,0/ρ2,0 = 2
0 100 0.0400 0.0407 0.0406 0.0415 0.0394 0.0402

400 0.0451 0.0428 0.0456 0.0471 0.0460 0.0458
1000 0.0458 0.0445 0.0468 0.0456 0.0467 0.0460

0.6 100 0.0473 0.0699 0.0968 0.0624 0.0461 0.0462
400 0.0488 0.0630 0.1108 0.0586 0.0465 0.0486
1000 0.0553 0.0589 0.1014 0.0546 0.0460 0.0547

Notes: This table reports the finite-sample rejection rates of two-sided tests
at the 5% significance level. The parameters for DGP in (28) are (ω, α, β) =
(0.00000858, 0.072, 0.925) and γ1 = γ2 = δ

T1−2/3.2 . The tail index is 3.2. The
simulation studies are based on 10,000 replications.

tainty. Our method can be applied to more general μ(ϑ0) of AR-G/GARCH
models under model uncertainty.

Note the method in [62]; hence our method can be applied only to the case
of ρ1,0 = 0; see Section 4 of [62], given the requirement of the zero median
condition. The estimator in each submodel causes bias (non-zero median), as
does the averaging model. However, our MTMA method proposed in Section 4.1
works well for DGPs. Therefore, it may be that the zero-median condition is
unnecessary. We observe that the performance of MTMA is very close to that of
EW in most configurations through experiments. In addition, the performance
of MTMS is very close to the performance of MTMA and EW in many cases.
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Fig 1. Power plots under AR(2 + 2)-GARCH(1, 1) model when sample size n = 100, ρ2,0 =
0.3, and ρ1,0 varies

Next, we examine the power properties of the statistics. We consider several
null ρ1,0 taking values from 0.3 to 0.6 with the true coefficients (ρ1,0, ρ2,0) =
(0.3, 0.3) of the model AR(2 + 2)-GARCH (1, 1). Here we present the results
according to sample size T = 100, 400 and δ = 0, 0.6. Figures 1 and 2 contain
the power curves for MTMA, EW, MTMA, and three signal-model methods.
For these results, it seems that the type of the smooth function μ(·) profoundly
impacts the power of test. For example, in the case of μ(ϑ0) = ρ1,0/ρ2,0, the nar-
row model method dominates others, however we have opposite consequences in
the case of μ(ϑ0) = ρ1,0 +ρ2,0. We observe that the power properties are similar
under the same hypothesis test except for μ(ϑ0) = ρ1,0 + ρ2,0 of the narrow
model when δ = 6; see Figures 1 and 2. We explain why we have this exception
in the following. Remind that the narrow model has no auxiliary regression co-
efficients, i.e., γ1 = γ2 = 0, but the model for DGP AR(2 + 2)-GARCH(1, 1)
has the local-to-zero auxiliary regression coefficients γ1 = γ2 = 6/T 1−2/λ where
T = 100 in Figure 1 and T = 400 in Figure 2. As long as we adopt the above
DGP to test ρ1,0 + ρ2,0 by using the narrow model, it probably causes overesti-
mation or underestimation and, in turn, makes power curves so different than
other models. Due to the local-to-zero assumption, the effect of the auxiliary re-
gressors decreases if the data size T increases. Therefore, the power curve of the
narrow model for ρ1,0 + ρ2,0 in Figure 1 (T = 100) is more discrepant than the
power curve of the narrow model for ρ1,0+ρ2,0 in Figure 2 (T = 400). Moreover,
we actually observe that the power curve in the case of ρ1,0 is also different from
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Fig 2. Power plots under AR(2 + 2)-GARCH(1, 1) model when sample size n = 400, ρ2,0 =
0.3, and ρ1,0 varies

other models; the case of ρ2,0 should have a similar phenomenon as well. Both
together, in synergy, strengthen the effects on the case of ρ1,0 + ρ2,0. However,
we do not see this phenomenon in the case of ρ1,0/ρ2,0 probably because of
canceling the effects of overestimation or underestimation for ρ1,0 and ρ2,0.

In summary, the proposed MTMA and MTMS methods are robust in our
simulation study under the AR-GARCH model where GARCH noise is known
to be heavy-tailed. Moreover, power curves of proposed MTMA and MTMS
somehow show the capability and good performance of the test.

5.2. Robustness

Besides the model with polynomial GARCH noise, we also consider exponential
GARCH noise. So we employ the DGP (31). The outcomes of simulation by
using EGARCH specified in (31) are reported in Table 8. These tables clearly
show that the rejection rates using MTMA, EW, and MTMS are very close
to 0.05. Through the experiment of DGP (28), we find that MTMA, EW, and
MTMS are very close to 0.05 even if we do not know the accurate tail index,
see Table 9. Table 8 shows that MTMA and MTMS outperform EW. This
observation supports the merit of our proposed criteria in that they will pick
a weight informed by the DGP. In addition, in this simulation, the proposed
method also accounts for exponential GARCH noise, even if we do not have any
tail index information.
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Table 8

Rejection rates under AR(2 + 2)-EGARCH(1, 1) model

Model averaging Single model and model selection
δ T MTMA EW Narrow Middle Full MTMS

Panel A: μ(ϑ0) = ρ1,0 = 0.5 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′

0.3 100 0.0492 0.0496 0.0481 0.0480 0.0498 0.0492
400 0.0428 0.0430 0.0464 0.0420 0.0425 0.0423
1000 0.0547 0.0537 0.0541 0.0542 0.0548 0.0549

0.5 100 0.0479 0.0489 0.0656 0.0457 0.0475 0.0484
400 0.0418 0.0428 0.0563 0.0423 0.0421 0.0421
1000 0.0546 0.0546 0.0650 0.0537 0.0540 0.0538

0.9 100 0.0486 0.0559 0.1433 0.0512 0.0493 0.0494
400 0.0424 0.0545 0.1490 0.0439 0.0431 0.0428
1000 0.0539 0.0643 0.1385 0.0546 0.0544 0.0546

Panel B: μ(ϑ0) = ρ2,0 = 0.3
0.3 100 0.0566 0.0531 0.0542 0.0534 0.0564 0.0568

400 0.0505 0.0490 0.0563 0.0472 0.0509 0.0500
1000 0.0499 0.0495 0.0701 0.0502 0.0500 0.0500

0.5 100 0.0522 0.0521 0.0948 0.0507 0.0523 0.0535
400 0.0514 0.0548 0.0881 0.0497 0.0525 0.0520
1000 0.0496 0.0557 0.1123 0.0522 0.0498 0.0497

0.9 100 0.0480 0.0583 0.1524 0.0572 0.0481 0.0480
400 0.0495 0.0747 0.2632 0.0551 0.0503 0.0506
1000 0.0494 0.0805 0.2720 0.0582 0.0490 0.0493

Panel C: μ(ϑ0) = ρ1,0 + ρ2,0 = 0.8
0.3 100 0.0587 0.0439 0.1402 0.0619 0.0599 0.0602

400 0.0517 0.0498 0.1258 0.0528 0.0516 0.0512
1000 0.0541 0.0564 0.1471 0.0529 0.0541 0.0548

0.5 100 0.0656 0.0538 0.7430 0.0545 0.0675 0.0680
400 0.0477 0.0606 0.3012 0.0519 0.0501 0.0494
1000 0.0543 0.0739 0.3230 0.0529 0.0543 0.0541

0.9 100 0.0593 0.1057 0.9950 0.0511 0.0609 0.0599
400 0.0498 0.1646 0.8971 0.0653 0.0505 0.0508
1000 0.0532 0.1638 0.7893 0.0665 0.0536 0.0539

Notes: This table reports the finite-sample rejection rates of two-sided tests
at the 5% significance level. The parameters for DGP in (31) are (ω, α, β) =
(−0.00127, 0.11605, 0.95) and γ1 = γ2 = δ

T1−2/3.2 . The tail index is 3.2. The
simulation studies are based on 10,000 replications.

We also show that the proposed methods are still robust even when the
estimated tail index is not sharp. We have shown that the scaling in Section 4
depends upon the range of index parameter λ. Therefore, improper scaling might
occur if we estimate the tail index inaccurately. Under the setup of [58], the tail
index λ is estimated to be 3.2; thus suitable scaling should be approximately
T 1− 2

3.2 . In our simulation, we experiment with several λ �= 3.2 to see the effect of
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Table 9. Rejection rates under AR(2 + 2)-GARCH(1, 1) model with various wrong λ

Model averaging Single model Model averaging Single model Model averaging Single model
λ T MTMA EW Narrow Middle Full MTMA EW Narrow Middle Full MTMA EW Narrow Middle Full

Panel A: μ(ϑ0) = ρ1,0 = 0.5 with ϑ0 = (ρ1,0, ρ2,0)′ = (0.5, 0.3)′ Panel B: μ(ϑ0) = ρ2,0 = 0.3 Panel C: μ(ϑ0) = ρ1,0 + ρ2,0 = 0.8
2.8 100 0.0491 0.0487 0.0486 0.0471 0.0500 0.0569 0.0533 0.0567 0.0555 0.0566 0.0599 0.0463 0.1570 0.0632 0.0630

400 0.0459 0.0451 0.0465 0.0460 0.0450 0.0503 0.0481 0.0562 0.0477 0.0508 0.0508 0.0465 0.1230 0.0509 0.0515
1000 0.0484 0.0499 0.0487 0.0521 0.0510 0.0534 0.0484 0.0629 0.0513 0.0507 0.0615 0.0510 0.1205 0.0487 0.0466

3.0 100 0.0494 0.0487 0.0486 0.0471 0.0500 0.0566 0.0533 0.0567 0.0555 0.0566 0.0605 0.0463 0.1570 0.0632 0.0630
400 0.0462 0.0451 0.0465 0.0460 0.0450 0.0504 0.0481 0.0562 0.0477 0.0508 0.0489 0.0465 0.1230 0.0509 0.0515
1000 0.0475 0.0499 0.0487 0.0521 0.0510 0.0515 0.0484 0.0629 0.0513 0.0507 0.0556 0.0510 0.1205 0.0487 0.0466

3.4 100 0.0493 0.0487 0.0486 0.0471 0.0500 0.0564 0.0533 0.0567 0.0555 0.0566 0.0571 0.0463 0.1570 0.0632 0.0630
400 0.0449 0.0451 0.0465 0.0460 0.0450 0.0496 0.0481 0.0562 0.0477 0.0508 0.0507 0.0465 0.1230 0.0509 0.0515
1000 0.0479 0.0499 0.0487 0.0521 0.0510 0.0455 0.0484 0.0629 0.0513 0.0507 0.0483 0.0510 0.1205 0.0487 0.0466

3.6 100 0.0502 0.0487 0.0486 0.0471 0.0500 0.0572 0.0533 0.0567 0.0555 0.0566 0.0560 0.0463 0.1570 0.0632 0.0630
400 0.0456 0.0451 0.0465 0.0460 0.0450 0.0496 0.0481 0.0562 0.0477 0.0508 0.0510 0.0465 0.1230 0.0509 0.0515
1000 0.0515 0.0499 0.0487 0.0521 0.0510 0.0489 0.0484 0.0629 0.0513 0.0507 0.0475 0.0510 0.1205 0.0487 0.0466

4.0 100 0.0497 0.0487 0.0486 0.0471 0.0500 0.0577 0.0533 0.0567 0.0555 0.0566 0.0567 0.0463 0.1570 0.0632 0.0630
400 0.0460 0.0451 0.0465 0.0460 0.0450 0.0500 0.0481 0.0562 0.0477 0.0508 0.0510 0.0465 0.1230 0.0509 0.0515
1000 0.0500 0.0499 0.0487 0.0521 0.0510 0.0495 0.0484 0.0629 0.0513 0.0507 0.0471 0.0510 0.1205 0.0487 0.0466

4.0 100 0.0512 0.0487 0.0486 0.0471 0.0500 0.0527 0.0533 0.0567 0.0555 0.0566 0.0628 0.0463 0.1570 0.0632 0.0630
(log T ) 400 0.0351 0.0451 0.0465 0.0460 0.0450 0.0408 0.0481 0.0562 0.0477 0.0508 0.0415 0.0465 0.1230 0.0509 0.0515

1000 0.0486 0.0499 0.0487 0.0521 0.0510 0.0517 0.0484 0.0629 0.0513 0.0507 0.0689 0.0510 0.1205 0.0487 0.0466

Notes: This table reports the finite-sample rejection rates of two-sided tests at the 5% significance level. The parameters for DGP in (28) are
(ω, α, β, δ) = (0.00000858, 0.072, 0.925, 0.3) and γ1 = γ2 = 0.3

T1−2/3.2 . The simulation studies are based on 10,000 replications. Scaling that is not

specified is T 1− 2
λ .
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using the wrong λ. For the wrong λ = 4, we use both log T and T 1− 2
4 as scaling

in our simulations: the experimental results of the DGP (28) are displayed in
Table 9.

We remind the reader that in Table 9, only MTMA and MTMS require the
scaling parameter λ. Model averaging, EW, and model selection approaches
perform similarly, with rejection rates near 0.05, which are better than the full
model, even though we know the full model is the true DGP.

6. Conclusion

In this paper, we consider the AR-G/GARCH model and propose a robust test
of a hypothesis for the MTMA and MTMS approaches over models with various
lag period explanatory variables under model uncertainty. We use Monte Carlo
experiments to demonstrate that the MTMA and MTMS methods work well
for testing smooth functions of autocoefficients in the AR-G/GARCH models.
In our method, we combine the limiting distribution of the averaging estimator
with fixed weights and the Mallows-type criterion for choosing weights. The
contribution in the asymptotic results of this paper is effective even when the
Mallows-type criterion is replaced by any other suitable criterion. When testing
the null hypothesis

H0 : μ(ϑ) = μ(ϑ0)

against H1 : μ(ϑ) �= μ(ϑ0), to simplify the choice of weights in empirical work,
our simulations suggest that the EW method might be a good option.

It would be interesting to extend the same asymptotic optimality proper-
ties for the AR(∞) model in [30] with GARCH-type noise. Another possible
extension is to forecast averaging by extending the result in [31] to the AR-
GARCH model. As indicated by the associate editor, a general GARCH order
is undoubtedly crucial for this literature; this could thus be a fruitful avenue for
future research. Reference to this general framework can be found in, e.g., [61].

Appendix A: Proof of Lemma 1

Proof. The proof is adapted from [10] and [80]
First, by [29], we obtain

lim
y→∞

yαP
[
Λ(h2

1) > y
]

= c0,

where

c0 =
E
[(
g(z1) + c(zt)Λ(h2

1)
)α −

(
c(zt)Λ(h2

1)
)α]

αE
[
(c(zt−1))α log+(c(zt))

] .
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Next, we have

P [h1 > x] = P
[
Λ(h2

1) > Λ(x2)
]
∼ c0

(
Λ(x2)

)−α

for large x. In addition, the condition E[(c(zt−1))k0 log+(c(zt))] < ∞ and α ∈
(0, k0] imply E|z1|α < ∞.

Finally, by Lemma A.2 of [10], we have

P [|ε1| > x] ∼ c0E|z1|α
[
Λ(x2)

]−α

for large x.

Appendix B: Proof of Lemma 2

Proof. Before we prove Lemma 2, we need the following observation:

ϑ̂m =(X′
mXm)−1 X′

mY

=(X′
mXm)−1 X′

m

[
Ȳ1,pρ + Ȳ1−p,qΠ′

mΠmγ + Ȳ1−p,q (Iq − Π′
mΠm)γ + ε

]
=(X′

mXm)−1 X′
mXmϑm + (X′

mXm)−1 X′
mȲ1−p,q (Iq − Π′

mΠm)γ

+ (X′
mXm)−1 X′

mε

=ϑm + (X′
mXm)−1 S′

mX′XS0 (Iq − Π′
mΠm)γ

+ (X′
mXm)−1 S′

mX′ε.

The case of λ ∈ (0, 2).

Denote a
(λ)
T =

(
c
(λ)
0 E|z1|λT

)1/λ
, where c

(λ)
0 is defined in Remark 1. From

[80], we have
1(

a
(λ)
T

)2 X′X p→ Σ(λ/2)

and
1(

a
(λ)
T

)2 X′ε
d→ S1(λ/2).

Since matrix Sm is non-random with elements either 0 and 1, for the m-th
submodel we have

1(
a
(λ)
T

)2 X′
mXm

p→ Σλ/2
m ,

where Σ(λ/2)
m = S′

mΣ(λ/2)Sm is nonsingular.
Hence, by the continuous mapping theorem, we obtain

ϑ̂m − ϑm =

⎛
⎜⎝ 1(

a
(λ)
T

)2 X′
mXm

⎞
⎟⎠

−1 ⎛
⎜⎝ 1(

a
(λ)
T

)2 S′
mX′XS0

⎞
⎟⎠ (Iq − Π′

mΠm)γ(λ)
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+

⎛
⎜⎝ 1(

a
(λ)
T

)2 X′
mXm

⎞
⎟⎠

−1

S′
m

⎛
⎜⎝ 1(

a
(λ)
T

)2 X′ε

⎞
⎟⎠

d→
(
Σ(λ/2)

m

)−1
S′
mΣS0 (Iq − Π′

mΠm)γ(λ) +
(
Σ(λ/2)

m

)−1
S′
mS1(λ/2)

=:A(λ/2)
m δ(λ) + B(λ/2)

m S1(λ/2),

where A(λ/2)
m =

(
Σ(λ/2)

m

)−1
S′
mΣS0 (Iq − Π′

mΠm) and B(λ/2)
m =

(
Σ(λ/2)

m

)−1
S′
m.

Note that the other cases use the same idea, with the only differences being
the scaling. For the sake of completeness, we include them below.

The case of λ = 2.
Thanks to [80], we have

1
c
(2)
0 T log T

X′X p→ Σ(1)

and
1

c
(2)
0 T

X′ε
d→ S1(1).

Since matrix Sm is non-random with elements either 0 and 1, for the m-th
submodel, we have

1
c
(2)
0 T log T

X′
mXm

p→ Σ(1)
m ,

where Σ(1)
m = S′

mΣ(1)Sm is nonsingular.
Similarly, by the continuous mapping theorem, we obtain

(log T )(ϑ̂m − ϑm) =
(

1
c
(2)
0 T log T

X′
mXm

)−1 (
1

c
(2)
0 T log T

S′
mX′XS0

)

× (Iq − Π′
mΠm) (log T )γ(2)

+
(

1
c
(2)
0 T log T

X′
mXm

)−1

S′
m

(
1

c
(2)
0 T

X′ε

)

d→
(
Σ(1)

m

)−1
S′
mΣ(1)

m S0 (Iq − Π′
mΠm) δ(2) +

(
Σ(1)

m

)−1
S′
mS1(1)

=:A(1)
m δ(2) + B(1)

m S1(1),

where A(1)
m =

(
Σ(1)

m

)−1
S′
mΣ(1)

m S0 (Iq − Π′
mΠm) and B(1)

m =
(
Σ(1)

m

)−1
S′
m.

The case of λ ∈ (2, 4).
Again, from [80] (or [46]), we have

1
T

X′X a.s.→ Σ as T → ∞
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and
T−2/λX′ε

d→ S1(λ/2) as T → ∞.

Since matrix Sm is non-random with elements either 0 and 1, for the m-th
submodel we have

1
T

X′
mXm

a.s.→ Σm as T → ∞,

where Σm = S′
mΣSm is nonsingular.

The continuous mapping theorem gives us

T 1−2/λ(ϑ̂m − ϑm) =
(

1
T

X′
mXm

)−1 ( 1
T

S′
mX′XS0

)
(Iq − Π′

mΠm)T 1−2/λγ

+
(

1
T

X′
mXm

)−1
S′
m

(
T−2/λX′ε

)
d→ (Σm)−1 S′

mΣS0 (Iq − Π′
mΠm) δ(λ) + (Σm)−1 S′

mS1(λ/2)
=:Amδ(λ) + BmS1(λ/2),

where Am = (Σm)−1 S′
mΣS0 (Iq − Π′

mΠm) and Bm = (Σm)−1 S′
m.

The case of λ = 4.
From [80], we have

1
T

X′X a.s.→ Σ

and
1√

T log T
X′ε

d→ N(0,Ω),

where Ω is defined in Proposition 2. Since matrix Sm is non-random with ele-
ments either 0 and 1, for the m-th submodel we have

1
T

X′
mXm

a.s.→ Σm.

Similarly, by the continuous mapping theorem, we obtain
√
T

log T (ϑ̂m − ϑm) =
(

1
T

X′
mXm

)−1 ( 1
T

S′
mX′XS0

)
(Iq − Π′

mΠm)
√
T

log T γ(λ)

+
(

1
T

X′
mXm

)−1

S′
m

(
1√

T log T
X′ε

)
d→ (Σm)−1 S′

mΣS0 (Iq − Π′
mΠm) δ(4) + (Σm)−1 S′

mN(0,Ω)
=:N(Amδ(4), (Σm)−1Ωm(Σm)−1)′,

where Am = (Σm)−1 S′
mΣS0 (Iq − Π′

mΠm) and Ωm = S′
mΩSm. The proof is

complete.
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Appendix C: Proof of Lemma 3

Proof. Define γ
(λ)
mc = {γ(λ)

j : γ
(λ)
j /∈ γ

(λ)
m , for j = 1, . . . , q}, where γ

(λ)
mc is the

set of parameters γ
(λ)
j that are not included in submodel m. We write μ(ϑ) :=

μ(ρ,γ(λ)
m ,γ

(λ)
mc ) and μ(ϑm) := μ(ρ,γ(λ)

m ,0).

The case of λ ∈ (0, 2).
Note that γ(λ) does not depend on the sample size T . We apply Taylor’s

theorem on μ(ϑ) at (ρ,γ(λ)
m ,0) to obtain

μ(ρ,γ(λ)
m ,γ

(λ)
mc ) = μ(ρ,γ(λ)

m ,0) + D′
γmcγ

(λ)
mc + h(ρ,γ(λ)

m ,γ
(λ)
mc )|Πmcγ(λ)|

= μ(ρ,γ(λ)
m ,0) + D′

γ (Iq − Π′
mΠm)γ(λ) + h(ϑ)|Πmcγ(λ)|.

Hence
μ(ϑ) − μ(ϑm) = D′

γ (Iq − Π′
mΠm)γ(λ) + h(ϑ)|Πmcγ(λ)|.

Next, by Assumption 2 and Lemma 2, together with the delta method, we
obtain

μ(ϑ̂m) − μ(ϑ) =
(
μ(ϑ̂m) − μ(ϑm)

)
− (μ(ϑ) − μ(ϑm))

d→D′
ϑm

[
A(λ/2)

m γ(λ) + B(λ/2)
m S1(λ/2)

]
− D′

γ (Iq − Π′
mΠm)γ(λ) − h(ϑ)|Πmcγ(λ)|

=
[
D′

ϑSm

(
S′
mΣ(λ/2)Sm

)−1
S′
mΣ(λ/2)S0 − D′

ϑS0

]
× (Iq − Π′

mΠm)γ(λ)

− h(ϑ)|Πmcγ| + D′
ϑSm

(
S′
mΣ(λ/2)Sm

)−1
S′
mS1(λ/2)

=:D′
ϑC(λ/2)

m γ(λ) − h(ϑ)|Πmcγ(λ)| + D′
ϑV(λ/2)

m S1(λ/2),

where C(λ/2)
m =

(
VmΣ(λ/2) − Ip+q

)
S0 (Iq − Π′

mΠm) with V(λ/2)
m = Sm(

S′
mΣ(λ/2)Sm

)−1 S′
m. Again, other cases are similar to the case of (0, 2) and

proofs are given below for completeness.

The case of λ = 2.
In this case, γ(2) = O (1/ log T ). Again, by Taylor’s theorem of μ(ϑ) at

(ρ,γ(2)
m ,0), we have

μ(ϑ) = μ(ρ,γ(2)
m ,0) + D′

γ
(2)
mc

γ
(2)
mc + O

(
1/(log T )2

)
= μ(ρ,γ(2)

m ,0) + D′
γ (Iq − Π′

mΠm)γ(2) + O
(
1/(log T )2

)
,

so
μ(ϑ) − μ(ϑm) = D′

γ (Iq − Π′
mΠm)γ(2) + O

(
1/(log T )2

)
.
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Next, by Assumption 2, Lemma 2 and the delta method, we obtain

(log T )(μ(ϑ̂m) − μ(ϑ)) = (log T )
(
μ(ϑ̂m) − μ(ϑm)

)
− (log T ) (μ(ϑ) − μ(ϑm))

d→D′
ϑm

[
A(1)

m δ(2) + B(1)
m S1(1)

]
− D′

γ (Iq − Π′
mΠm) δ(2)

=
[
D′

ϑSm

(
S′
mΣ(1)Sm

)−1
S′
mΣ(1)S0 − D′

ϑS0

]
× (Iq − Π′

mΠm) δ(2)

+ D′
ϑSm

(
S′
mΣ(1)Sm

)−1
S′
mS1(1)

=:D′
ϑC(1)

m δ(2) + D′
ϑV(1)

m S1(1),

where V(1)
m = Sm

(
S′
mΣ(1)Sm

)−1 S′
m and C(1)

m =
(
VmΣ(1) − Ip+q

)
S0(Iq −

Π′
mΠm).

The case of λ ∈ (2, 4).
Recall that γ(λ) = O

(
T

2
λ−1

)
. We apply Taylor’s Theorem on the function

μ(ϑ) at (ρ,γ(λ)
m ,0) to obtain

μ(ϑ) = μ(ρ,γ(λ)
m ,0) + D′

γmcγ
(λ)
mc + O(T 4

λ−2)

= μ(ρ,γ(λ)
m ,0) + D′

γ (Iq − Π′
mΠm)γ(λ) + O(T 4

λ−2).

Therefore,

μ(ϑ) − μ(ϑm) = D′
γ (Iq − Π′

mΠm)γ(λ) + O(T 4/λ−2).

Next, by Assumption 1 together with the delta method, we have

T 1−2/λ
(
μ(ϑ̂m) − μ(ϑ)

)
=T 1−2/λ

(
μ(ϑ̂m) − μ(ϑm)

)
− T 1−2/λ (μ(ϑ) − μ(ϑm))

d→D′
ϑm

[
Amδ(λ)+BmS1(λ/2)

]
−D′

γ (Iq − Π′
mΠm) δ(λ)

=
[
D′

ϑSm (S′
mΣSm)−1 S′

mΣS0 − D′
ϑS0

]
× (Iq − Π′

mΠm) δ(λ)

+ D′
ϑSm (S′

mΣSm)−1 S′
mS1(λ/2)

=:D′
ϑCmδ(λ) + D′

ϑVmS1(λ/2),

where Cm = (VmΣ − Ip+q)S0 (Iq − Π′
mΠm) and Vm = Sm (S′

mΣSm)−1 S′
m.

The case of λ = 4.
Recall that γ(4) = O

(√
log T/T

)
. Applying Taylor’s theorem on μ(ϑ) at

(ρ,γ(4)
m ,0) gives

μ(ϑ) = μ(ρ,γ(4)
m ,0) + D′

γmcγ
(4)
mc + O(log T/T )

= μ(ρ,γ(4)
m ,0) + D′

γ (Iq − Π′
mΠm)γ(4) + O(log T/T ).
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Namely,

μ(ϑ) − μ(ϑm) = D′
γ (Iq − Π′

mΠm)γ(4) + O(log T/T ).

Next, Assumption 1 and the delta method give
√
T/ log T

(
μ(ϑ̂m) − μ(ϑ)

)
=
√

T/ log T
(
μ(ϑ̂m) − μ(ϑm)

)
−
√
T/ log T (μ(ϑ) − μ(ϑm))

d→D′
ϑm

[
Amδ(4) + BmN(0,Ω)

]
− D′

γ (Iq − Π′
mΠm) δ(4)

=
[
D′

ϑSm (S′
mΣSm)−1 S′

mΣS0 − D′
ϑS0

]
× (Iq − Π′

mΠm) δ(4)

+ D′
ϑSm (S′

mΣSm)−1 S′
mN(0,Ω)

=N(D′
ϑCmδ(4),D′

ϑVmΩV′
mDϑ).

The proof is complete.

Appendix D: Proof of Lemma 4

Proof. Note that a weighted average of the stable (or normal) distributions is
again a stable (or normal respectively) distribution; see Remark 4.

The case of λ ∈ (0, 2).
Recall the fact that the asymptotic distribution of the averaging estimator is

a stable distribution if each submodel estimator has a stable distribution. An
easy calculation gives

μ̂(w) − μ(ϑ) =
M∑

m=1
wm

(
μ(ϑ̂m) − μ(ϑ)

)

d→
M∑

m=1
wm

[
D′

ϑC(λ/2)
m γ(λ) − h(ϑ)|Πmcγ(λ)| + D′

ϑV(λ/2)
m S1(λ/2)

]

= D′
ϑC(λ/2)(w)γ(λ)−h(ϑ)

M∑
m=1

wm|Πmcγ(λ)|

+ D′
ϑV(λ/2)(w)S1(λ/2),

where C(λ/2)(w) =
∑M

m=1 wmC(λ/2)
m and V(λ/2)(w) =

∑M
m=1 wmV(λ/2)

m . Con-
stants D′

ϑC(λ/2)(w)γ(λ) − h(ϑ)
∑M

m=1 wm|Πmcγ(λ)| and D′
ϑV(λ/2)(w) repre-

sent location and scale, respectively.
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The case of λ = 2.
Similar to the case of λ ∈ (0, 2) except for the scaling, we obtain

log T (μ̂(w) − μ(ϑ)) =
M∑

m=1
wm log T

(
μ(ϑ̂m) − μ(ϑ)

)

d→
M∑

m=1
wm

[
D′

ϑC(1)
m δ(2) + D′

ϑV(1)
m S1(1)

]
= D′

ϑC(1)(w)δ(2) + D′
ϑV(1)(w)S1(1),

where C(1)(w) =
∑M

m=1 wmC(1)
m and V(1)(w) =

∑M
m=1 wmV(1)

m .

The case of λ ∈ (2, 4).
Again, we have the following:

T 1−2/λ (μ̂(w) − μ(ϑ)) =
M∑

m=1
wmT 1−2/λ

(
μ(ϑ̂m) − μ(ϑ)

)

d→
M∑

m=1
wm

[
D′

ϑCmδ(λ) + D′
ϑVmS1(λ/2)

]
= D′

ϑC(w)δ(λ) + D′
ϑV(w)S1(λ/2),

where C(w) =
∑M

m=1 wmCm and V(w) =
∑M

m=1 wmVm.

The case of λ = 4.
The following is true:

√
T/ log T (μ̂(w) − μ(ϑ)) =

M∑
m=1

wm

√
T/ log T

(
μ(ϑ̂m) − μ(ϑ)

)

d→
M∑

m=1
wmN(D′

ϑCmδ(4),D′
ϑVmΩVmDϑ)

=:
M∑

m=1
wmRm.

Similarly, the asymptotic distribution of the averaging estimator is a weighted
average of normal distributions, which is still a normal distribution.

Simple calculation gives us the mean and variance. The mean is

E

[
M∑

m=1
wmRm

]
=

M∑
m=1

wmE [Rm] =
M∑

m=1
wmD′

ϑCmδ(4)

=D′
ϑ

M∑
m=1

wmCmδ(4) =: D′
ϑC(w)δ(4),
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where C(w) =
∑M

m=1 wmCm, and the covariance between any two submodels
is

Cov (Rm, Rk) = E [(Rm − E[Rm]) · (Rk −E[Rk])]
= E

[
D′

ϑVmR(D′
ϑVkR)−1]

= D′
ϑVmE [RR′]V′

kDϑ

= D′
ϑVmΩV′

kDϑ,

where R d= N(0,Ω). Therefore, the variance is

Var
(

M∑
m=1

wmRm

)
=

M∑
m=1

w2
mVar (Rm) + 2

∑∑
m �=k

wmwkCov (Rm, Rk)

=
M∑

m=1
w2

mD′
ϑVmΩVmDϑ + 2

∑∑
m �=k

wmwkD′
ϑVmΩVkDϑ

=: V (w),

which completes the proof.

Appendix E: Proof of Remark 8

In this section, we show two equalities of Remark 8:

ε̂′mε̂ = ε̂′ε̂

and

ε̂′mε̂l − ε̂′ε̂ = (ε̂m − ε̂)′(ε̂l − ε̂).

Proof. We observe

ε̂′mε̂ =(Y − Xmϑ̂m)′(Y − Xϑ̂)
=Y′Y − Y′Xmϑ̂m − Y′Xϑ̂ + ϑ̂′

mX′
mXϑ̂,

and

ϑ̂′
mX′

mXϑ̂ =Y′Xm (X′
mXm)−1 X′

mX (X′X)−1 X′Y

=Y′Xm (X′
mXm)−1 S′

m

[
X′X (X′X)−1

]
X′Y

=Y′Xm

[
(X′

mXm)−1 S′
mX′Y

]
=Y′Xmϑ̂m,

and similarly,
ϑ̂′X′Xϑ̂ = Y′Xϑ̂.
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So, we have

ε̂′mε̂ = Y′Y − Y′Xϑ̂ = Y′Y − Y′Xϑ̂− Y′Xϑ̂ + ϑ̂′X′Xϑ̂ = ε̂′ε̂.

Therefore, for each m, l < M , we have

ε̂′mε̂l − ε̂′ε̂ = (ε̂m − ε̂)′(ε̂l − ε̂).

Appendix F: Proof of Theorem 1

Proof. Minimizing w′ζ
(λ)
T w over w is a convex minimization problem due to

its quadratic form; hence it has a unique minimizer ŵ(λ). The minimizer ŵ(λ)

converges in distribution to the minimizer w∗(λ) of w′ζ∗(λ)
T w by Theorem 2.7

of [45].

The case of λ ∈ (0, 2).
Note that ζ

(λ)
m,l =

(
a
(λ)
T

)−2
(ε̂m − ε̂)′(ε̂l − ε̂). Therefore, we obtain

ζ
(λ)
m,l = (Smϑ̂m − ϑ̂)′

[(
a
(λ)
T

)−2
X′X

]
(Slϑ̂l − ϑ̂).

Thanks to Proposition 2 and Lemma 2, we have

(Smϑ̂m − ϑ̂) = Sm(ϑ̂m − ϑm) + (Smϑm − ϑ) − (ϑ̂− ϑ)
d→ SmA(λ/2)

m γ(λ) + SmB(λ/2)
m S1(λ/2) − S0 (Iq − Π′

mΠm)γ(λ)

−
(
Σ(λ/2)

)−1
S1(λ/2)

=
(
Sm

(
Σ(λ/2)

m

)−1
S′
mΣ(λ/2) − Ip+q

)
S0 (Iq − Π′

mΠm)γ(λ)

+
(
Sm

(
Σ(λ/2)

m

)−1
S′
m −

(
Σ(λ/2)

)−1
)
S1(λ/2)

= C(λ/2)
m γ(λ) +

(
V(λ/2)

m −
(
Σ(λ/2)

)−1
)
S1(λ/2)

d= Γ(λ)
m .

On the other hand, we have(
a
(λ)
T

)−2
X′X → Σ(λ/2). (F.1)

By Slutsky’s theorem, we obtain

ζ
(λ)
m,l

d→
(
Γ(λ)
m

)′
Σ(λ/2)Γ(λ)

l .

Finally, since each weight and submodel estimator both can be expressed in
terms of the same stable random vector, there is joint convergence in distribution
of all μ(ϑ̂m) and ŵ

(λ)
m , where ŵ

(λ)
m is the m-th element of ŵ(λ). Thus, the second

result holds due to (F.1) and Lemma 4.
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The case of λ = 2.
Note that ζ

(2)
m,l = logT

c
(2)
0 T

(ε̂m − ε̂)′(ε̂l − ε̂). Therefore, we obtain

ζ
(2)
m,l = log T (Smϑ̂m − ϑ̂)′

[
1

c
(2)
0 T log T

X′X
]

log T (Slϑ̂l − ϑ̂).

From Proposition 2 and Lemma 2, we have

log T (Smϑ̂m − ϑ̂) =Sm log T (ϑ̂m − ϑm) + log T (Smϑm − ϑ) − log T (ϑ̂− ϑ)
d→SmA(1)

m δ(2) + SmB(1)
m S1(1) − S0 (Iq − Π′

mΠm) δ(2)

−
(
Σ(1)

)−1
S1(1)

=
(
Sm

(
Σ(1)

m

)−1
S′
mΣ(1) − Ip+q

)
S0 (Iq − Π′

mΠm) δ(2)

+
(
Sm

(
Σ(1)

m

)−1
S′
m −

(
Σ(1)

)−1
)
S1(1)

=C(1)
m δ(2) +

(
V(1)

m −
(
Σ(1)

)−1
)
S1(1)

= Γ(2)
m ,

in which we use the fact that S0Π′
m = Sm

(
0′
p×qm , Iqm

)′. On the other hand,
we have

1
c
(2)
0 T log T

X′X → Σ(1).

Therefore,

ζ
(2)
m,l

d→
(
Γ(2)
m

)′
Σ(1)Γ(2)

l (F.2)

by Slutsky’s theorem. Finally, since each weight and submodel estimator both
can be expressed in terms of the same stable random vector, there is joint con-
vergence in distribution of all μ(ϑ̂m) and ŵ

(λ)
m , where ŵ

(λ)
m is the m-th element

of ŵ(λ). Thus, the second result holds by combining (F.2) and Lemma 4.

The case of λ ∈ (2, 4).
Note that ζ

(λ)
m,l = T 1−4/λ(ε̂m − ε̂)′(ε̂l − ε̂). Therefore, we obtain

ζ
(λ)
m,l = T 1−2/λ(Smϑ̂m − ϑ̂)′

[
T−1X′X

]
T 1−2/λ(Slϑ̂l − ϑ̂).

Thanks to Proposition 2 and Lemma 2, we have

T 1−2/λ(Smϑ̂m − ϑ̂) = SmT 1−2/λ(ϑ̂m − ϑm)
+ T 1−2/λ(Smϑm − ϑ) − T 1−2/λ(ϑ̂− ϑ)

d→ SmAmδ + SmBmS1(λ/2) − S0 (Iq − Π′
mΠm) δ(λ)
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− Σ−1S1(λ/2)
=

(
SmΣ−1

m S′
mΣ − Ip+q

)
S0 (Iq − Π′

mΠm) δ(λ)

+
(
SmΣ−1

m S′
m − Σ−1)S1(λ/2)

= Cmδ(λ) +
(
Vm − Σ−1)S1(λ/2)

= Γ(λ)
m .

We also have
T−1X′X → Σ.

By Slutsky’s theorem, we obtain

ζ
(λ)
m,l

d→
(
Γ(λ)
m

)′
ΣΓ(λ)

l . (F.3)

Finally, since the each weight and submodel estimator both can be expressed in
terms of the same stable random vector, there is joint convergence in distribution
of all μ(ϑ̂m) and ŵ

(λ)
m , where ŵ

(λ)
m is the m-th element of ŵ(λ). Thus, the second

result holds by combining (F.3) and Lemma 4.

The case of λ = 4.
Note that ζ

(4)
m,l = 1

logT (ε̂m − ε̂)′(ε̂l − ε̂). Therefore, we obtain

ζ
(4)
m,l =

√
T/ log T (Smϑ̂m − ϑ̂)′

[
T−1X′X

]√
T/ log T (Slϑ̂l − ϑ̂).

By 2 and Lemma 2, we have√
T/ log T (Smϑ̂m − ϑ̂) = Sm

√
T/ log T (ϑ̂m − ϑm) +

√
T/ log T (Smϑm − ϑ)

−
√
T/ log T (ϑ̂− ϑ)

d→ SmAmδ + SmBmN(0,Ω) − S0 (Iq − Π′
mΠm) δ(4)

− Σ−1N(0,Ω)
=

(
SmΣ−1

m S′
mΣ − Ip+q

)
S0 (Iq − Π′

mΠm) δ(4)

+
(
SmΣ−1

m S′
m − Σ−1)N(0,Ω)

= N(Cmδ(4),
(
Vm − Σ−1)Ω

(
Vm − Σ−1)′)

= Γ(4)
m .

On the other hand, we have

T−1X′X → Σ.

By Slutsky’s theorem, we obtain

ζ
(4)
m,l

d→
(
Γ(4)
m

)′
ΣΓ(4)

l . (F.4)

Finally, since the each weight and submodel estimator both can be expressed in
terms of the same normal random vector, there is joint convergence in distribu-
tion of all μ(ϑ̂m) and ŵ

(λ)
m , where ŵ

(λ)
m is the m-th element of ŵ(λ). Hence, the

second result holds due to the combination of (F.4) and Lemma 4.
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