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1. Introduction

Modeling data using exponential family distributions on the vertices of a graph is
a standard task in statistics and artificial intelligence. Examples include satellite
images or photographs, traffic or mobility patterns, communications networks,
spatiotemporal data, and many others. Suppose we observe yi ∈ R for i =
1, . . . , n on the nodes of a graph and assume that they independently follow a
natural exponential family with density of the form

p(yi | θ∗i ) = h(yi) exp {yiθ∗i − ψ(θ∗i )} , (1)

for functions h : R → [0,∞) and ψ : Θ → R and natural parameter θ∗i ∈
Θ. The maximum likelihood estimator for θ∗ is easily shown to be ψ′−1(y)
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Fig 1. Estimates of the instantaneous temperature variance for 1 January 2010 over Canada.
The top row shows the absolute centered data, 0th-order trend filter, and 2nd-order trend
filter, in the latter 2 cases, with reasonable values of the tuning parameter. The bottom row
shows the 1st-order trend filter for different tuning parameters, with the left most map, labeled
“optimal”, corresponding to the estimate when the degrees-of-freedom is chosen by minimizing
an unbiased risk estimate.

where we apply the function component wise. Unfortunately, this estimator
fails to respect the known graphical structure (relationships between “neigh-
bouring” observations yi), and therefore has high estimation risk. For example,
E‖ψ′−1(y) − θ∗‖2

2 ∝ n for the Gaussian family. In this paper, we imagine that
the natural parameter vector θ∗ ∈ Θn ⊆ R

n is smooth on the graph in a total
variation sense described below. We study methods to filter (estimate) the true
parameter vector θ∗, given observations y ∈ R

n subject to this structure.
As an example, Figure 1 shows estimates for the instantaneous variance (that

is, imagining yi ∼ N(0, σ2
i )) of the temperature for New Year’s Day 2010 over a

grid for Canada using maximum likelihood and a few configurations of the main
family of estimators we investigate. The smoothness imposed by the grid of
neighbouring locations leads to predictable patterns in the estimate that follow
topographical features like mountain ranges and bodies of water. We will revisit
this example in more detail in Section 6. Before describing our methodology
more carefully, we define notation.

Notation. Throughout this paper, we will focus on lattice graphs in d di-
mensions, though we note that our main theoretical results can be extended to
arbitrary graphs with appropriate conditions on the graph-Laplacian. We define
a graph difference operator D that is crucial for defining our estimators. In one
dimension, on a chain graph, the difference operator D

(1)
n,1 is defined by

(D(1)
n,1θ)i = θi+1 − θi for all i ∈ [n− 1], θ ∈ R

n,

where n > 1. We use the notation [m] to denote the set {1, 2, . . . ,m} for
positive integers m. The (k + 1)th order (forward) difference matrix D

(k+1)
n,1 ∈
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R
(n−k−1)×n is defined with the recurrence relation

D
(k+1)
n,1 = D

(1)
n−k,1D

(k)
n,1 for k > 0, n > k.

For example, the 3rd-order differences look like: (D(3)
n,1θ)i = θi+3−3θi+2+3θi+1−

θi. For a general graph, let D(1) denote its incidence matrix. That is, if edge e

connects vertices i and j, then D
(1)
ei = 1 and D

(1)
ej = −1. In d > 1 dimensions, we

focus on lattice graphs with a length of N on each side and with a total number
of vertices n = Nd. In our estimators, unless otherwise specified, we penalize the
variation of signals only along axis-parallel directions. To make this concrete,
consider two dimensional grid graphs. We apply a univariate difference operator
D

(k1+1)
N,1 on all rows and another univariate operator D

(k2+1)
N,1 on all columns.

Concretely, the two dimensional difference operator of order (k1 + 1, k2 + 1) is
defined using Kronecker products of identity and univariate difference operators
D

(k1+1)
N,1 , D

(k2+1)
N,1 . For an N ×N grid, with k1, k2 ≥ 0, N ≥ k1, k2, and y, θ ∈

R
N×N stacked column-wise as vec(θ),

D
(k1+1,k2+1)
n,2 =

[
D

(k1+1)
N,1 ⊗ IN

IN ⊗D
(k2+1)
N,1

]
.

More generally, For d-dimensional grids, let (k + 1) denote the d-vector (k1 +
1, . . . , kd + 1), and define

D
(k+1)
n,d =

⎡⎢⎢⎢⎢⎣
D

(k1+1)
N,1 ⊗ IN ⊗ · · · ⊗ IN

IN ⊗D
(k2+1)
N,1 ⊗ · · · ⊗ IN

...
IN ⊗ IN ⊗ · · · ⊗D

(kd+1)
N,1

⎤⎥⎥⎥⎥⎦ ,

where the Kronecker products consist of d terms each, one term for each di-
mension. In such cases, we adopt the convention that y and θ ∈ R

N×···×N are
stacked such that they vary fastest along the first dimension and slowest along
the dth. In the following, we suppress the subscripts and superscripts of the
difference operator when they are clear from the context.

Define ‖·‖2 to be the usual Euclidean norm and ‖·‖n = n−1/2‖·‖2 to be the em-
pirical norm. We will similarly denote other �p norms with an appropriate sub-
script, where, to be explicit, we write ‖x‖inf = maxj |xj | and ‖x‖0 = |{j : xj �=
0}|. When there is no chance of confusion, we will assume that the ψ function
in (1) applies component-wise. We use a⊗ b to denote the Kronecker product of
vectors a and b, a� b to denote the elementwise product, and 〈a, b〉 = aTb to be
the dot product. When clear, we will use f ′, f ′′ to denote componentwise first
and second derivatives of the function f . We use ∨/∧ for maximum/minimum
respectively and (x)+ = x ∨ 0; while 1{A} is the indicator of the event A, tak-
ing the value one if true and zero otherwise. We use an � bn to mean an ≤ cbn
eventually for some constant c > 0, an = Ω(bn) to mean that an ≥ cbn eventu-
ally, and Yn = OP(an) to mean that the sequence of random variables Yn/an is
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bounded in probability eventually. We will also use Yn = ÕP(an) to mean that
∃c > 0 such that Yn = OP(logc(n) an). Finally, for the graph difference operator,
we will write the singular value decomposition (SVD) of D = UΣV T ∈ R

m×n

where U ∈ R
m×m, Σ ∈ R

m×n and V ∈ R
n×n, and we write the null-space of D

as N = N (D).

1.1. Estimators

We consider two canonical estimators. The first filters the natural parame-
ter θ∗ based on maximizing the likelihood while the second filters the mean
β∗ := ψ′(θ∗) directly. This distinction is important with respect to the nature
of the expected smoothness. If we were to consider the data without regard
for the graphical structure, then there is a direct correspondence between these
two: the MLE for β∗ is given by applying ψ′ to the MLE for θ∗. Furthermore,
this equivalence holds trivially for estimating the mean of a Gaussian because
β∗ = θ∗. However, any requirement for smoothness over the graph destroys this
relation for general exponential families.

Penalized MLE. We minimize negative log-likelihood with a smoothness im-
posing penalty:

θ̂ = argmin
θ

1
n

n∑
i=1

−yiθi + ψ(θi) + λ ‖Dθ‖1 . (2)

Here λ is a parameter for balancing fidelity to any anticipated smoothness over
the graph, as encoded by D, with fit to the data y. Taking λ → 0 will result in
the minimum occurring at θ̂ = ψ′−1(y) while letting λ → ∞ gives the Kullback–
Leibler projection of y on to N (D) (Bauschke and Borwein, 1997):

θ̂ = argmin
θ∈N (D)∩dom(ψ)

1
n

n∑
i=1

−yiθi + ψ(θi).

By the likelihood principle, θ̂ is the natural estimator to use when we expect
that θ∗ is smooth with respect to the graph. However, as we will demonstrate,
this estimator can have high excess estimation risk when ψ′′(θ∗) approaches 0.
In Section 2.1 we will argue that this issue can be addressed by adding a penalty
on the null-space component of θ. Specifically, the MLE with TF and null space
penalty is

θ̂ = argmin
θ

1
n

n∑
i=1

−yiθi + ψ(θi) + λ1‖Dθ‖1 + λ2‖PN θ‖2 (3)

where λ1, λ2 ≥ 0 are regularization parameters and PN is the projection opera-
tor on to N (D).
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Mean Trend Filter. When the expected smoothness is in the mean rather
than the natural parameter, it may be more appropriate to penalize the rough-
ness in mean directly. For such a scenario, we consider the trend filtering esti-
mator:

β̂ = argmin
β

1
2n ‖y − β‖2

2 + λ ‖Dβ‖1 . (4)

As before, λ balances data fidelity with smoothness, but here, the interpretation
as λ → ∞ is more straightforward. In this case, the minimum occurs at the
orthogonal projection onto the null space of D: β̂ = (I −DT(DDT)−1D)y. This
estimator was proposed in Steidl, Didas and Neumann (2006), Kim et al. (2009)
and statistically analyzed in Tibshirani (2014), Wang et al. (2016) and others.
We provide a thorough overview of previous work on mean trend filtering in a
later section.

To understand the nature of the penalty in the above formulations, it is
clearly important to understand its null space. Sadhanala et al. (2017) showed
that the null space of D consists of Kronecker products of polynomials. We give
a generalized version of their Lemma 1 here.
Lemma 1.1. A basis for the null space of D is given by the family of polynomials

{p(x) = xa1
1 ⊗ xa2

2 ⊗ · · · ⊗ xad

d : aj ∈ {0, . . . , kj}}
where xj = (1, . . . , N)T, ∀j. Note that p(x) ∈ R

n, and ⊗ is the Kronecker
product. The dimension of the null space is nullity(D) =

∏d
j=1(kj + 1).

Therefore, writing P as the matrix formed by the evaluations of this collection
of polynomials over the grid, we can also write the Euclidean projection onto
the null space of D as PN := P (PTP )−1PT.

Characterizing the null space defines the vectors θ∗ that have ‖Dθ∗‖1 =
0, but it does not say anything about vectors with bounded trend filtering
penalty. Consider the �0 penalty instead, ‖Dθ‖0, for k1 = · · · = kd = k. This
is small when there are few changepoints, which are the indices j1, . . . , jM at
which the kth derivative is non-zero, (Dθ∗)j1,...,jM �= 0. Because the �1 penalty
tends to produce sparse vectors with small ‖Dθ̂‖0, the reconstructed signals are
piecewise polynomials with a few changepoints that are automatically selected.
The result is that trend filtering produces estimators that are locally adaptive,
which means that the reconstructed signal is not oversmooth in regions of high
signal variability (in θ∗) and not undersmooth in regions of low variability. In
short the filter does not have one fixed resolution or bandwidth, but adapts
the resolution to the observed signal. For a more complete explanation of this
phenomenon, see Wang et al. (2016); Bassett and Sharpnack (2019). To simplify
the theoretical exposition below, we will assume that k1 = · · · = kd = k, but
our results are easily modified for other situations.

1.2. Properties of exponential families

In this section, we review properties of exponential families, many of which
will play a key role in our theoretical development. Considering the univariate
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random variable Y with density of the form in (1), we define the domain Θ =
{θ ∈ R : ψ(θ) < ∞} and assume that Θ has a non-empty interior. Recall that the
mean and variance of the distributions p(· | θ) are ψ′(θ) and ψ′′(θ) respectively,
for natural parameter θ ∈ Θ. Therefore, ε := Y − ψ′(θ∗) has mean zero and a
simple expression for its moment generating function (MGF)

E [esε] = exp {ψ(θ∗ + s) − ψ(θ∗) − sψ′(θ∗)}

for s in a neighborhood of 0. Furthermore, ψ is convex and all its derivatives
exist for all θ ∈ Θ (see Brown 1986).

We say that a random variable X with mean 0 is sub-exponential if there are
non-negative parameters ν, b such that

E [exp{tX}] ≤ exp{ν2t2/2} for all |t| < 1/b.

For shorthand, we also say X is SE(ν2, b). We can show that random variables
following exponential family distributions are sub-exponential in this sense.

Lemma 1.2. Fix θ∗ in interior(Θ), and let Y be from a univariate exponential
family with parameter θ∗. Then Y −ψ′(θ∗) is sub-exponential with parameters ν
and b. Specifically, for any δ > 0, there exist parameters ν(δ) and b(δ) depending
on θ∗ such that for all |s| < 1/b the Taylor remainder of the second-order
expansion ψ(s + θ∗) around θ∗ is bounded by δ. In this case, ν satisfies ν2 =
ψ′′(θ∗) + δ.

Table 1 gives the log-partition function ψ(θ) and sub-exponential parameters
for Gaussian, Poisson, exponential, and χ-squared families. These calculations
and the proof of Theorem 1.2 are in Appendix A. In each of the examples in
Table 1, ν2 is selected to be a multiple of the variance, but these are not the
only choices of (ν, b) that would constitute valid sub-exponential parameters.
Theorem 1.2 is not surprising given the form of the MGF, but seems not to
be well-known. Related results can be seen in Brown (1986) or Kakade et al.
(2010). Note that many exponential families have tails which decay faster (e.g.,
Gaussian or Binomial distributions), but all exponential families have at least
sub-exponential tails. Finally, we note that in three of these examples (Poisson,

Table 1

Sub-exponential parameters for some exponential family distributions

Distribution ψ(θ) ν2, b

Gaussian (common variance σ2) 1
2 θ

2 σ2, 0
Poisson (mean = μ) eθ 2μ, 0.55
Exponential (mean = μ) − log(−θ) 4μ2 log 4

e
, 2μ

χ2
k (mean = k) log

(
Γ(θ + 1)2θ+1) 4k, 4

exponential, χ-square) the variance, and hence the curvature of ψ(θ∗) depends
on θ∗, resulting in heteroskedasticity. This is one of the main complications of
the exponential family setting that we consider in this paper. Along with the
heavy-tailed residuals, this setting is a major departure from the sub-Gaussian
homoskedastic setting of most prior work.
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KL divergence. The Kullback–Leibler (KL) divergence between exponential
distributions of the same family has a simple algebraic form in terms of ψ; see
Wainwright and Jordan (2008). The KL divergence with parameter vectors θ0
and θ1 ∈ R

n is

KL(p(y | θ0) ‖ p(y | θ1)) = KL(θ0 ‖ θ1) :=
∫

p(y | θ0) log p(y | θ0)
p(y | θ1)

dy. (5)

In the asymptotic setting with n → ∞, it makes more sense to examine the
average divergence per coordinate. Thus we define KL(θ0 ‖ θ1) := 1

nKL(θ0 ‖ θ1).
For an exponential family as in (1), the KL divergence is the Bregman divergence
of ψ,

KL(θ0 ‖ θ1) = ψ(θ1) − ψ(θ0) − (θ1 − θ0)Tψ′(θ0).

1.3. Summary of our contributions

Most of the existing work on trend filtering referenced above assumes sub-
Gaussian noise, that is,

yi = βi + εi,

for i ∈ [n] where εi is mean-zero and sub-Gaussian with common variance σ2.
For general exponential families of the form in (1), yi − Eyi has heavier than
sub-Gaussian tails. Furthermore, for general exponential families, the variance,
as well as higher moments, are tied to the mean parameter. Therefore, consid-
eration of heteroskedasticity is a necessary and fundamental component of our
analysis.

Direct analysis for specific exponential families, such as Poisson (Bassett
and Sharpnack, 2019) are rare. Van de Geer (2020) analyses a penalized MLE
for the logistic family. However, the logistic family has sub-Gaussian tails and
uniformly bounded variance which allows key parts of the analysis to work: most
importantly for the theoretical results the Dudley entropy integral bound holds.
In other words, the theoretical approach there cannot generalize to arbitrary
exponential families.

Our results here apply to the entire exponential family. However, due to this
generality, the results are necessarily weaker than could potentially be achieved
under additional, more stringent conditions (such as by assuming Gaussian or
logistic distributions, or requiring additional bounds on higher moments).

A key ingredient for previous analyses in the sub-Gaussian setting is that
the Bregman divergence ψ(θ̂) − ψ(θ∗) − (θ̂ − θ∗)Tψ′(θ∗), can be lower bounded
by a multiple of ‖θ̂ − θ∗‖2

2, because ψ is strongly convex. However, for general
exponential families, ψ is not strongly convex, even if ‖Dθ∗‖1 is well-controlled,
unless θ∗ satisfies additional conditions. Without such assumptions, ψ′′(θ∗) can
be arbitrarily small. If we make the (rather implausible) assumption that both
the estimate θ̂ and the parameter θ∗ are bounded, then we recover this strong
convexity in the relevant region where θ̂ and θ∗ lie. In this case, we can apply
the same techniques used to analyze the sub-Gaussian case. We derive these
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bounds in Appendix B.7. However, without such an assumption, analysis re-
quires entirely different techniques, and we show these results in Section 2.2.

Our main contributions are the following.
1. We derive error bounds on excess KL-risk for the penalized maximum

likelihood estimator for general exponential families with sub-exponential
noise (Section 2). We argue that there is a need to constrain the component
of the natural parameter vector that lies in the null space of D as in
equation (3).

2. We delineate two types of heteroskedasticity that are relevant under gen-
eral assumptions: strong heteroskedasticity and mild heteroskedasticity.
We show how our general KL-bounds behave under these regimes and
how the heteroskedasticity interacts with the smoothness constraints and
the dimensionality of the problem.

3. For k = 0, we show that the mean trend filter and the MLE with penalty
are equivalent estimators, and hence, results for the mean trend filter
apply immediately in this special case (though under different smoothness
assumptions; Section 3).

4. We show that the mean trend filter nearly achieves the minimax opti-
mal rate under squared error loss for mildly heteroskedastic data and all
smoothness levels k and lattice dimensions d (Section 3). This result in
fact holds for general sub-exponential noise ε, not just for the exponential
families we consider in the paper. We incur an additional logn factor in
the error bound for sub-exponential noise. It is specific to distributions
where the mean parameter has bounded trend filtering penalty.

5. We give an algorithm for solving all of these cases for arbitrary likelihood,
smoothness levels, and dimension, with the goal of operating on large data
(Section 4).

6. We give a simple estimator for the out-of-sample prediction risk (at the
original grid locations) to enable tuning parameter selection without re-
quiring complicated forms of cross validation or other re-estimation pro-
cedures (Section 5).

It is important to note that the results for MLE trend filtering and mean trend
filtering are not directly comparable because they make different assumptions.
The former constrains the natural parameter, while the latter constrains the
mean parameter. These only coincide in the Gaussian case. We present empirical
results demonstrating our methods on synthetic and real datasets in Section 6.
We conclude with a discussion of the results. The remainder of this section gives
a concise overview of our theoretical contributions and a thorough discussion of
related work.

1.4. Overview of theoretical contributions

We provide a theoretical characterization of two different estimators (the pe-
nalized MLE and the mean trend filter) across all single parameter exponential
family distributions, smoothness levels k, and dimensions d. For the mean trend
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filter, we will measure the estimation risk with the mean squared error of the
mean parameter. This is natural as it matches both the empirical loss, and stan-
dard results in the Gaussian setting. However, for the penalized MLE, we prefer
to use KL(θ∗ ‖ θ). This preference is for two main reasons. First, KL matches
the log-likelihood loss function used in the optimization problem. Second, it
captures the curved geometry of the probability spaces accurately, collapsing to
MSE in the Gaussian (constant variance) case. And third, as in Equation (5),
the KL between the distributions in the same exponential family simplifies to a
convenient functional form depending only on the natural parameters.

To better fix the context for our results, we provide here a concise de-
scription of these in the simplest cases (more precise statements are in Sec-
tions 2 and 3). Define α = (k + 1)/d, and define the “canonical scaling” as
‖Dθ∗‖1 � n1−α. The canonical scaling is called such because it holds for evalu-
ations of Hölder functions—functions where the kth order partial derivatives are
Lipschitz continuous—at the grid locations. Under the canonical scaling, it is
shown (Sadhanala et al., 2021) that for Gaussian data and �2 loss, the minimax
rate over this class is given by

MSE(Θ) =
{

Ω(n−α) α ≤ 1/2,
Ω
(
n− 2α

2α+1
)

α > 1/2,

where MSE(Θ) = inf θ̂ supθ∈Θ
1
nE‖θ̂ − θ‖2

2. Furthermore, the mean trend filter
is rate optimal up to logarithmic factors in the Gaussian case.

Because, for Gaussian data, KL(θ0 ‖ θ1) ∝ ‖θ0 − θ1‖2
2, the above immedi-

ately provides a lower bound for KL(Θ) = inf θ̂ supθ∈Θ
1
nKL(θ ‖ θ̂) where the

supremum is taken over all exponential families. We show that, under additional
boundedness conditions on Θ and similar constraints on the estimator, the MLE
trend filter in Equation (2) achieves this rate up to additional logarithmic fac-
tors, and is thus minimax rate optimal. The case of the MLE trend filter with-
out the artificial boundedness constraint described above is more complicated
(Section 2.2). With the additional penalty on the null space in Equation (3),
an addition we prove necessary for consistency, we can achieve the minimax
rate for α ≤ 1/2. For α > 1/2, the upper bound is weaker than for Gaussian
noise: we can show only that KL(θ∗ ‖ θ̂) = OP(n−1/2). While we are able to show
consistency in this setting, we suspect that this bound is loose.

We also show that, under homoskedastic sub-exponential noise, the mean
trend filter achieves the minimax rate up to additional logarithmic factors. The
homoskedasticity condition can be relaxed, and this is examined in Section 3.
We consolidate these results in Tables 2 and 3.

1.5. Related work

Much is known about trend filtering in one dimension (1d). The trend filtering
method in (4) was proposed in Steidl, Didas and Neumann (2006); Kim et al.
(2009) for 1d problems. Tibshirani (2014) connected trend filtering to locally



Exponential family trend filtering 1759

Table 2

Overview of theoretical results for the Penalized MLE under canonical scaling. Logarithmic
factors are ignored with Õ notation, and additional details are described in Section 2.

Conditions Regime Lower bound Upper bound Literature

Gaussian α ≤ 1/2 Ω(n−α) ÕP(n−α) Sadhanala et al. (2021)
α > 1/2 Ω(n− 2α

2α+1 ) ÕP(n
− 2α

2α+1 )

Exponential family α ≤ 1/2 Ω(n−α) ÕP(n−α) Theorem B.3
(bounded) α > 1/2 Ω(n− 2α

2α+1 ) ÕP(n
− 2α

2α+1 )

Exponential family α ≤ 1/2 Ω(n−α) ÕP(n−α) Theorem 2.3
(null-space penalty) α > 1/2 Ω(n− 2α

2α+1 ) ÕP(n−1/2)

Table 3

Overview of theoretical results for the Mean Trend Filter under canonical scaling.
Logarithmic factors are ignored with Õ notation, and additional details are described in

Section 3.

Conditions Regime Lower bound Upper bound Literature

Gaussian α ≤ 1/2 Ω(n−α) ÕP(n−α) Sadhanala et al. (2021)
α > 1/2 Ω(n− 2α

2α+1 ) ÕP(n
− 2α

2α+1 )

sub-exponential noise α ≤ 1/2 Ω(n−α) ÕP(n−α) Theorem 3.3
(mild heteroskedasticity) α > 1/2 Ω(n− 2α

2α+1 ) ÕP(n
− 2α

2α+1 )

sub-exponential noise d = 2, k = 0 Ω(1) not consistent Theorem 3.7

adaptive regression splines, proposed in Mammen and van de Geer (1997), and
analyzed its statistical properties. Tibshirani (2022) gives an in-depth back-
ground of the key ideas that make trend filtering and related methods work.
Johnson (2013); Kim et al. (2009); Ramdas and Tibshirani (2016) propose meth-
ods to solve the convex optimization problem in 1d trend filtering. Trend filtering
with k = 0, or total variation (TV) regularization, is an important technique for
denoising images (two dimensions). TV methodology and computation was stud-
ied in Rudin, Osher and Faterni (1992); Tibshirani et al. (2005); Condat (2013);
Barbero and Sra (2018). Trend filtering over general graphs was first proposed
in Wang et al. (2016), and subsequently, other variants of trend filtering have
been studied, for example depth-first search TV regularization (Madrid Padilla
et al., 2018), kNN TV denoising (Madrid Padilla et al., 2020), quantile trend
filtering (Madrid Padilla and Chatterjee, 2021), and sequential TV denoising
(Baby and Wang, 2021). These methods use squared error loss, with the excep-
tion of Madrid Padilla and Chatterjee (2021), and so are not necessarily suitable
for general exponential families. Zhang and Chatterjee (2023) addresses the spe-
cific case of Fused Lasso, though under convex loss, allowing for an extension
to heavy-tailed noise.

General exponential family distributions have a long history in statistics.
Brown (1986) is a definitive treatment for studying the properties of exponen-
tial families while McCullagh and Nelder (1989) covers the details of general-
ized linear models. Direct analysis of trend filtering in this setting is more rare



1760 V. Sadhanala et al.

than for Gaussian loss. Van de Geer (2020) derived error bounds for estimat-
ing Bernoulli family parameters with bounded variation in 1d. In contrast to
most other results, the theory applies without assuming boundedness of the
estimated natural parameter. Khodadadi and McDonald (2019) examine com-
putational approaches for variance estimation on spatiotemporal grids. Kakade
et al. (2010) discuss strong convexity of general exponential families and use
the results to analyze �1-penalized maximum likelihood. Vaiter et al. (2017)
examine the geometry of penalized generalized linear models and derive impor-
tant results for general regularizers that we use for specialized risk estimation
in Section 4. Bassett and Sharpnack (2019) provides a bound on the Hellinger
error for total variation denoising for the estimation of densities over edge seg-
ments in a general graph. Our results here are the first to analyze trend filtering
over lattice graphs for general exponential families.

An important distinction exists between two varieties of theoretical results
for trend filtering examined in the literature: (1) nearly parametric rates under
sparsity assumptions with ‖Dθ∗‖0 bounded; and (2) non-parametric rates for
signals with bounded trend filtering norm ‖Dθ∗‖1. In general, these bounds are
difficult to compare because they hold under different conditions, and either
bound can be tighter for specific signals. Rinaldo (2009); Harchaoui and Levy-
Leduc (2010); Lin et al. (2017); Guntuboyina et al. (2020); Ortelli and van de
Geer (2021) give more general and tighter error bounds when the true signal is
sparse (bounded L0 norm). Throughout this work, we will focus on establishing
non-parametric rates with trend filtering norm bounds.

Mammen and van de Geer (1997) provide one of the earliest theoretical results
on 1d trend filtering. In higher dimensions and on general graphs, researchers
have typically confined their theory to special cases—e.g., specific dimensions,
graph structure, and trend filtering order. Hütter and Rigollet (2016); Sad-
hanala, Wang and Tibshirani (2016) derive error bounds for total variation de-
noising (trend filtering with k = 0) on lattice graphs. Chatterjee and Goswami
(2021); Ortelli and van de Geer (2020) show stronger error bounds when the
signal has axis-parallel patches. Sadhanala et al. (2017, 2021), extend the anal-
ysis to higher-order trend filtering on lattice graphs of arbitrary dimension. All
of the aforementioned works study squared error loss with sub-Gaussian noise.
Wang et al. (2016) analyze error bounds for graph trend filtering for specific
cases (lattice graphs with a specific trend filtering order). In that work, the
“eigenvector incoherence” technique is developed as a tool to analyze the mean
squared error of any graph trend filtering problem. In this work, we adapt this
technique to work with general exponential families.

2. Penalized MLE

In this section, we provide general results for trend filtering on d-dimensional lat-
tice graphs with exponential family observations. As mentioned above, general
exponential families have two interesting features. First, the distributions can
be more heavy tailed than Gaussians, and as we have seen, they are generally
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sub-exponential. This is reflected in rates that are typically worse than in the
Gaussian case. Second, the variance (as well as the sub-exponential parameters
ν, b) is a function of the natural parameter, which results in heteroskedasticity.
We find that our bounds rely heavily on the “level” of this heteroskedasticity.
However, this reliance is most salient with respect to two asymptotic regimes.

We say mild heteroskedasticity occurs when both sub-exponential parame-
ters, ν, b, are bounded as n increases. Henceforth, let ν, b denote the vectors
(νi), (bi) for i ∈ [n] where these are the sub-exponential parameters of centered
Y . That is, if there exists an ω such that ‖ν‖∞, ‖b‖∞ ≤ ω for all n, we say that
the problem is only mildly heteroskedastic. Analysis in this case turns out to be
largely similar to the standard homoskedastic setting. We say that strong het-
eroskedasticity occurs whenever it is not mild, however, typically we can measure
the strength via ‖ν‖∞/‖ν‖n. When this is close to 1, there is little variation of ν
across coordinates. However, when ‖ν‖∞/‖ν‖n is close to

√
n, only a few coor-

dinates dominate. Importantly, smoothness of θ∗ (such as a bound on ‖Dθ∗‖1)
does not generally have any implications for the level of heteroskedasticity, and
furthermore, it is not generally possible to determine the level from data. Thus,
considering both situations is necessary for a complete understanding.

Much of the difficulty for both estimation and theoretical analysis in the
exponential family setting is that the negative log-likelihood is not strongly
convex in general. If we assume that ψ′′(θ∗i ) > 1/K for all i, then we can add
this constraint to Equation (2) which will ensure strong convexity. We provide an
analysis of this approach in Appendix B.7, which is tight (minimax rate optimal)
up to logarithmic factors, see, for example, Sadhanala et al. (2021). Similar
results were already derived in the literature, for example, in Prasad et al.
(2020). As we will see, however, bounding the curvature in this way excludes
important cases, and cannot be verified from data. Nonetheless, this assumption
has a long history in statistics. For example, the standard approach to proving
estimation consistency in low-dimensional generalized linear models is much the
same (McCullagh and Nelder, 1989).

An alternative method to address the lack of strong convexity would be to
add an �2 (or squared �2) penalty on θ. Such a modification is similar to the
motivation for Tikhonov regularization as a stabilization for ill-posed problems:
inhibiting θ → ±∞ enforces strong convexity. However, note that θ = (I −
PN )θ+PN θ and ‖Dθ‖1 already prevents divergence due to the first part. Thus,
it is only necessary to control divergence of θ in the null-space of D. Our main
theoretical results in this section demonstrate that this penalty is sufficient for
estimation consistency.

2.1. Additional penalty on the null space component of θ

The boundedness constraint discussed above is not desirable for at least two
reasons. The first is that it is difficult to calibrate the constraint using data.
The second is that strong convexity is an indirect way to get control of the
nullspace of D, which is what we actually need. We now argue why this is the
case.
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Let the empirical and population risks at a parameter θ be

Rn(θ) = 1
n

n∑
i=1

ψ(θi) − yiθi, and R(θ) = 1
n

n∑
i=1

ψ(θi) −E[Yi]θi,

respectively, and note that KL(θ0 ‖ θ1) = R(θ1) − R(θ0). For Gaussian data,
minimization of the empirical risk, the ‖Dθ‖1 constraint, and the fact that
the likelihood is strongly convex, together control the discrepancy between the
empirical risk and the population risk. The reason is that strong convexity
controls behaviour of θ̂ in the nullspace of D. But outside this setting, we no
longer have strong convexity, and unfortunately, the penalty alone does not give
sufficient control to guarantee the existence of a solution. The result is that,
for non-Gaussian data, supθ∈Θ |Rn(θ)−R(θ)| can become arbitrarily large with
high probability, even in simple settings, despite bounds on ‖Dθ‖1. Suppose
Θ = {θ : ‖Dθ‖1 ≤ 1} where D = D

(1)
n,1.

Remark (Degenerate Poisson example). Consider the Poisson family, let n ≥ 1,
and define the true parameter to be θ∗ ∈ R

n such that θ∗j = −2 logn. This θ∗j is
constant, so that (Dθ∗)j = 0,∀j, that is θ∗ ∈ N (D). Then, the probability that
all yi’s are 0 is e−1/n → 1. On this event (where yi = 0 ∀i), for any λ ≥ 0,

inf
θ

n∑
i=1

eθi − yiθi + λ‖Dθ‖1 = inf
θ

n∑
i=1

eθi + λ‖Dθ‖1 = 0,

because limc→−∞
∑n

i=1 e
c + λ‖Dc1‖1 = 0. Furthermore, observe that as c →

−∞, R(c1) → ∞ even though Rn(c1) → 0. Notice that, here, ψ′′(θ∗i ) = n−2, so
the strong convexity bound is diminishing with n.

In this example, as n → ∞, y will be identically 0 with increasingly high
probability, in which case the MLE will be θ̂j = −∞, and the penalized MLE
will result in the same outcome. However θ∗j → −∞ relatively slowly, so our
estimates become increasingly inaccurate. The trend filtering penalty, ‖Dθ‖1,
does fix this issue. Therefore, we must impose additional constraints on the
null space component PN θ to guarantee a (finite) solution to the optimization
problem. The trend filtering penalty ignores any part of θ ∈ N (D), so, as long
as that component is asymptotically bounded, the negative loglikelihood will
be bounded as well. But if the null-space component is unbounded, then this
estimator will fail, because the MLE will be infinite, and the penalty doesn’t
compensate.

One can observe similar behaviour for the logistic family whenever θ∗ ap-
proaches the boundary of Θ. Consider the same θ∗ and verify that all yi’s are 0
with probability

(
1 + n−2)−n ≈ e−1/n. The MLE with only the ‖Dθ‖1 penalty

behaves similarly to the Poisson example described above.
In both cases, signals θ∗ which have pathological behaviour in the null space

of D are unaffected by the trend filter penalty. Furthermore, this phenomenon
is not restricted to the high-dimensional setting. Rather it is a consequence of
minimizing the negative log-likelihood and can be easily demonstrated in the
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univariate setting. Consider a single Poisson random variable, X with intensity
eθ and natural parameter θ. Then the MLE for θ is θ̂ := logX, which is −∞ with
a non-zero probability and, hence, has no mean or variance. This unfortunate
behaviour can be mitigated by reqularizing the problem with an additional ridge
penalty (−�(θ;X) + λθ2 where λ > 0). The solution to this problem satisfies
eθ̂ = X − 2λθ̂ which is finite for all X, guaranteeing the existence of an estimator
with finite risk. Unfortunately, the trend filter penalty alone can not avoid this
pathology.

While artificially imposing strong convexity addresses this issue, it is both
more direct and results in a more tractable estimator to constrain the component
of θ in the null space of D. With this additional constraint, we can show the
following risk bound. The proof is in Appendix B.3.

Proposition 2.1. Let Θ = {θ ∈ R
n : ‖PN θ‖n ≤ an, ‖Dθ‖1 ≤ cnn

1−α} where
N = null(D) and α = (k + 1)/d. Suppose εi is zero mean sub-exponential with
parameters (ν2

i , bi) for i ∈ [n]. Assume ‖ν‖∞, ‖b‖∞ ≤ c where c is a constant.
Then

sup
θ∈Θ

|Rn(θ) −R(θ)| = OP

(
an logn√

n
+ cnγ logn

nα∧1/2

)

where γ = log1/2 n if 2α = 1 and 1 otherwise.

For the above example of degenerate Poisson, we can set an = 2 logn, cn = 0
to see that the right hand side converges to 0 as n → ∞. This motivates us
to penalize the null space component of θ in the MLE and use the estimator
defined in (3) rather than that in (2). In the following, we call this estimator (3),
the MLE and define α = (k + 1)/d. The minimizer in the optimization problem
is unique because ψ is strictly convex.

2.2. Error bounds for penalized MLE

Generally, there are three degrees of freedom when stating results: (1) the trend
filtering order k, (2) the dimension d, and (3) the exponential family and re-
sulting sub-exponential parameters (ν, b). There is a natural trade-off between
generality and interpretability of the results presented here, so we will prefer to
present specific interpretable results as corollaries.

We introduce some additional notation to state our results. Let ρ�, � ∈ [N ] be
the eigenvalues of DT

1D1 where D1 = D
(k+1)
N,1 , N = n1/d, ordered in from largest

to smallest. Abbreviate D = D
(k+1)
n,d and let ξ2

i : i = (i1, . . . , id) ∈ [N ]d be the
eigenvalues of DTD ordered from smallest to largest. Due to the Kronecker-sum
structure of DTD, we have ξ2

i =
∑d

j=1 ρij . Let κ = (k+1)d denote the nullity of
DTD. A nonzero vector x ∈ R

n is said to be incoherent with a constant μ ≥ 1
if ‖x‖∞/‖x‖n ≤ μ. Note that, for arbitrary nonzero x ∈ R

n, ‖x‖∞/‖x‖n ∈
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[1,
√
n]. For J ⊂ [N ]d containing [k + 1]d, define

LJ,p =

⎛⎝μ2

n

n∑
i∈[N ]d\J

1
ξpi

⎞⎠1/p

(6)

where μ is the constant with which the left singular vectors of D are incoherent.
We can derive the following error bound on the excess risk of the estimator
in (3).

Theorem 2.2. Let yi = β∗
i + εi where εi are independent, have zero mean,

and are sub-exponential with parameters (ν2
i , bi) for i ∈ [n]. Let L be as defined

in (6). For t ≥ 1, abbreviate An=2tμ
√

κ/n
(
‖ν‖2∨‖b‖∞

)
, Bn=2t (min {‖ν‖∞Lκ,2,

‖ν‖2Lκ,1} ∨ ‖b‖∞Lκ,1) where Lκ,p = L[k+1]d,p for p ≥ 1. Let θ̂ be our estimate
in (3) with parameters λ2 = 2An/n and λ1 = 2Bn/n. Then, with probability at
least 1 − 4nde−t,

KL(θ∗ ‖ θ̂) ≤ 3
n

(
An‖PN θ∗‖2 + Bn‖Dθ∗‖1

)
, and

An‖PN θ̂‖2 + Bn‖Dθ̂‖1 ≤ 3
(
An‖PN θ∗‖2 + Bn‖Dθ∗‖1

)
.

See the proof in Appendix B.1.

Remark. Theorem 2.2 is general. As mentioned in Section 1, it applies not
only when Yi is (single parameter) exponential family, but also to the case
that it comes from any distribution with sub-exponential tails under arbitrary
heteroskedasticity. Furthermore, replacing D with Δ(k+1), the kth order graph-
difference operator as defined by Wang et al. (2016, Equation 6), results in the
same bound. However, controlling Lκ,p for other graphs is outside the scope
of this paper, and we do not pursue it here. Along the same lines, contrary
to the Gaussian case, conditions for good behaviour of ‖ν‖2, ‖ν‖∞, and ‖b‖∞
requires specialized treatment for the specific distribution of Y . The corollaries
that follow are all special cases of this main theorem, treating specific cases
where we can provide precise and interpretable rates of convergence.

For regular grids, Theorem B.6 (in Appendix B.9) controls the magnitude of
Lκ,1, Lκ,2 and hence the bounds in Theorem 2.2. Applying the lemma to the
expression for Bn in Theorem 2.2, we get the following corollary for regular
grids.

Corollary 2.3. Assume canonical scaling ‖Dθ∗‖1 � n1−α, and ‖PN θ∗‖n � 1.
Then for t ≥ 1,

KL(θ∗ ‖ θ̂) = OP(rn logn),
with

rn =

⎧⎪⎨⎪⎩
(‖ν‖∞ + ‖b‖∞)n−α α < 1/2

‖b‖∞n−αγ1 + min{‖ν‖∞n− 1
2 γ2, ‖ν‖2n

−αγ1} α ∈ [1/2, 1]
1
n

(
‖ν‖2 + ‖b‖∞

)
α > 1

and γp = (logn)1/p1(pα = 1) for p ≥ 1.
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As for Theorem 2.2, this result applies to data with sub-exponential tails,
and therefore also the subclass of (single-parameter) exponential family distri-
butions. For the special case of Gaussian errors with ν = σ1, b = 0, we recover
minimax optimal rates where α ≤ 1/2 up to logarithmic factors (see for example
Sadhanala et al. 2021). However, we get suboptimal rates when α > 1/2.

2.3. Penalized MLE in special cases

We now illustrate Theorem 2.3 in a few special cases to provide intuition. As
above, we focus on grid graphs with Poisson and Exponential distributions, and
we assume that these are all of width N and dimension d, so that n = Nd.
Recall that for natural parameter θ∗, the Poisson distribution has mean β∗ =
exp(θ∗), while the Exponential distribution has mean β∗ = −1/θ∗. For the
Poisson distribution, an additive change in θ∗ results in a multiplicative change
in the mean, and ν2 = 2β∗, which can easily result in strong heteroskedasticity.
Only in special cases does a constraint on ‖Dθ∗‖1 result in a bound on ν2, and
generally, ‖ν‖∞ will depend on the signal in question. The specific choices of k
below allow us to vary d and illustrate the effects via α = (k + 1)/d.

The first result is an example of weak heteroskedasticity, where the natural
parameter is uniformly bounded.

Corollary 2.4. Consider the Poisson distribution where the natural parameter
vector θ∗ satisfies ‖θ∗‖∞ = O(1). Let k = 1 and assume that θ∗ satisfies the
canonical scaling, ‖Dθ∗‖1 = O(n1−2/d). Then, we have the following rate bound
for penalized MLE trend filtering.

KL(θ∗ ‖ θ̂) = OP(rn logn), where rn =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n−1/2, d = 1
n−1/2 logn, d = 2
n−1/2, d = 3
n−1/2 log1/2 n, d = 4
n−2/d, d > 4.

A simple example of such a signal is θ∗i = 2
N

∑d
j=1 |ij − N/2|, where i =

(i1, . . . , id) ∈ [N ]d. For a proof, see Appendix B.2.
The next example demonstrates Theorem 2.3 under strong heteroskedasticity.

Corollary 2.5. Consider any exponential family on a d-dimensional grid (d >
1) with a natural parameter that satisfies ‖ν‖∞, ‖b‖∞ = O(nc) and ‖ν‖2 =
O(nc) for some c > 0. Under the canonical scaling for k = 0, ‖Dθ∗‖1 =
O(n1−1/d), then

KL(θ∗ ‖ θ̂) = OP(rn logn), where rn =

⎧⎪⎨⎪⎩
nc−1/2, d = 1
nc−1/2 log1/2 n, d = 2
nc−1/d, d > 2.
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An example of a signal satisfying these conditions is the Exponential distri-
bution with θ∗i = −n−c1{i = 0}−n1−1/d1{i �= 0}. The proof is in Appendix B.2.

In this case, ‖ν‖∞ is diverging, and so we have strong heteroskedasticity. The
level of heteroskedasticity, parameterized by c, determines the rate of conver-
gence and for c > 1/d we cannot guarantee convergence.

3. Error bounds for the Mean Trend Filter

When k = 0, remarkably, it turns out that the penalized MLE in (2) is equivalent
to the mean trend filtering estimator (4). In fact, this equivalence between the
two estimators holds over arbitrary graphs, not just grids.

Theorem 3.1. Suppose k = 0 and let D be the graph incidence matrix. Then,
the penalized MLE θ̂ in (2) and the least squares estimator β̂ in (4) satisfy
β̂ = ψ′(θ̂).

The proof is elegant and short, relating the Karush–Kuhn–Tucker conditions
for the two optimization problems, and is deferred to Section B.4. Therefore,
in the case k = 0, the penalized MLE can be solved quickly by solving the
equivalent mean trend filter problem. This fact was also noted by Vu (2018)
and Dümbgen and Kovac (2009) though the proofs and goals are quite different.

For k ≥ 1, equivalence between the two estimators need not hold in general,
with the exception of the mean parameterized Gaussian family, where it holds
trivially. The remainder of this section will focus on the general case. For the
estimator in (4), we derive the following error bound.

Theorem 3.2. Let yi = β∗
i + εi where εi is zero mean sub-exponential with pa-

rameters (ν2
i , bi) for i ∈ [n]. Let J ⊂ [N ]d and L be as defined in (6). For t ≥ 1,

abbreviate An = 2tμ
√

|J|/n
(
‖ν‖2∨‖b‖∞

)
, Bn = 2t (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1}∨

‖b‖∞LJ,1). For any J ⊂ [Nd] containing [k + 1]d, the estimator (4) with
λ = Bn/n, satisfies

1
n
‖β̂ − β∗‖2

2 ≤ 4A2
n

n
+ 8Bn

n
‖Dβ∗‖1

with probability at least 1 − 4nde−t for t ≥ 1.

The set of indices J can be chosen to minimize the bound. The proof is
in Appendix B.5 and follows an approach similar to that in Wang et al. (2016).
Tail bounds on sums of sub-Gaussian variables in their results are replaced
with those on sums of sub-exponential variables. This results in additional logn
factors in the error bound compared to the sub-Gaussian setting.

The proof technique for Theorem 3.2 relies on the properties of D. A potential
alternative route to get error rates is via bounding the empirical process 1

nε
T(θ̂−

θ∗) with the Dudley entropy integral. However, the empirical process in our case
is not sub-Gaussian and we could only derive a trivial upper bound in this way.
This should not be entirely surprising however, because the entropy method was
also used in Wang et al. (2016) in the sub-Gaussian noise setting, and it also
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failed to give a tight characterization in that context. We note, as above, that
this theorem is general, applying equally to the case of graphs by replacing D
with Δ(k+1). We do not pursue this generality further.

3.1. Error bounds with canonical scaling

We simplify this bound in some special cases. Assuming that ν, b are uniformly
bounded, we get the following result for regular grids. Denote γp = log1/p(n) if
pα = 1 and 1 otherwise.

Corollary 3.3. Assume ‖ν‖∞ ≤ ω, ‖b‖∞ ≤ ω. Let α = (k + 1)/d. For d-
dimensional grids, assume that ‖Dβ∗‖1 � n1−α. Then there is a choice of λ
such that for α ≤ 1/2,

1
n
‖β̂ − β∗‖2

2 = OP

(
ω2 log2 n

n
+ ωγ2 logn

nα

)
and for α > 1/2 and n−α ≤ ω logn � √

n

1
n
‖β̂ − β∗‖2

2 = OP

((ω2 log2 n

n

) 2α
2α+1 + ωγ1 logn

nα

)
.

The proof is in Appendix B.6. This corollary does not discuss the case where
α > 1/2 and ω logn is outside of [n−α,

√
n]. In that case, when the noise is high

(ω logn � √
n), the polynomial projection estimator β̂ = PN y gives the tightest

bound, and, when the noise is low (ω logn < n−α), the identity estimator gives
the tightest bound.

The following corollary examines this result for some special cases.

Corollary 3.4. Consider the both Poisson and Exponential distributions on a d-
dimensional grid (d > 1) where the mean parameter is constrained. Specifically,
suppose that ‖β∗‖∞ = O(1) such that the canonical scaling holds with k = 1.
Then mean trend filter satisfies

1
n
‖β̂ − β∗‖2

2 = OP(rn) where rn =

⎧⎪⎨⎪⎩
(n/ log2 n)−4/(4+d), d = 1, 2, 3
n−1/2 log3/2 n, d = 4
n−2/d logn, d > 4.

This result matches with rates in the homoskedastic Gaussian case up to
logarithmic factors, shown for example in Sadhanala et al. (2021). An example
of a signal satisfying the conditions is a grid graph with width N and dimension
d, so that n = Nd and β∗

i = d
N + 2

N

∑d
j=1 |ij − N

2 |, where i = (i1, . . . , id) ∈ [N ]d.
The proof is given in Appendix B.6.

While the previous result treated the (effectively) homoskedastic case by
controlling the largest components of ν, b, the following corollary specializes
Theorem 3.2 to canonical scaling under strongly heteroskedastic noise.
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Corollary 3.5. Let σ = (‖ν‖2 ∨ ‖b‖∞)/
√
n, σ∞ = ‖ν‖∞ ∨ ‖b‖∞. Suppose

‖Dβ∗‖1 � n1−α, and assume σ2 � n/ log2 n and σ∞ � nα/(γ1γ2 logn). Then,
the estimator β̂ in Theorem 3.2 satisfies

1
n
‖β̂ − β∗‖2

2 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
OP

(
σ2 log2 n

n + σ∞γ2 logn
nα

)
, α ≤ 1/2

OP

(
σ2 log2 n

n + min{σ∞, σγ1n
1−α} logn

n1/2

)
, 1/2 < α ≤ 1,

OP

((
σ2 log2 n

n

) 2α−1
2α + σ∞ logn

nα

)
, α > 1.

This result is most useful under strong heteroskedasticity where σ∞/σ ∝ √
n,

and slightly stronger rates with weaker heteroskedasticy can be obtained in
the 1/2 < α ≤ 1 case (see Theorem B.2 in Appendix B.6). Suppose εi in
Theorem 3.2 is mean-zero Laplace noise with standard deviation parameter τi
and that ‖Dβ∗‖1 satisfies canonical scaling. For this case, νi = bi = cτi for a
constant c independent of β∗

i , while σ = c ‖τ‖n and σ∞ = c ‖τ‖∞ with the natu-
ral constraint that σ∞/

√
n ≤ σ ≤ σ∞. For α < 1, the scaling requirement on σ∞

is stronger, meaning that the estimator can only tolerate heteroskedasticity on
the order of σ∞/σ ∝ nα <

√
n. On the other hand, for α > 1/2, the constraint

on σ is stronger, meaning that we can tolerate σ∞/σ ∝ √
n. The associated

rates of convergence will necessarily be much slower than in the homoskedastic
sub-Gaussian case.

Importantly, Theorem 3.5 illustrates that without control of the amount of
heteroskedasticity, we cannot guarantee convergence of the estimator. In other
words, while the estimator can tolerate strong heteroskedasticity as we have
defined it here, it cannot tolerate arbitrary heteroskedasticity. Simply controlling
‖Dβ∗‖1 is not generally enough to guarantee estimation consistency. In the next
section, we make this precise, illustrating that in certain settings, there is no
estimator that can achieve consistency without additional constraints.

3.2. Lower bounds for mean trend filtering

We now show that the upper bound in Theorem 3.3 is minimax optimal up to
logarithmic factors. Consider the observation model

yi = βi + εi, i ∈ [n] (7)

where β ∈ R
n is the true signal and εi, i ∈ [n] are mean-zero noise terms. For

a set S ⊂ R
n denote its minimax risk

MSE(S) = inf
β̂

sup
β∈S

E
[
‖β̂ − β‖2

n

]
where β̂ is measurable in the observations y ∈ R

n. Consider the Kronecker total
variation (KTV) set

T k
n,d(Cn) =

{
β : ‖D(k+1)

n,d β‖1 ≤ Cn

}
,
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for integers k ≥ 0, d ≥ 1, n ≥ (k + 1)d and Cn ≥ 0. Let Lap(μ, σ) denote the
Laplace distribution centered at μ ∈ R and with scale parameter σ > 0 with
density p(x) = 1

2σ e
−|x−μ|/σ over R.

Proposition 3.6. Consider the observation model in (7) where εi, i ∈ [n] are
i.i.d.Lap(0, σ) for a parameter σ > 0. Then,

MSE
(
T k
n,d(Cn)

)
= Ω

(
σ2

n
+ σCn

n
log

(
σn

Cn

)
+

(
Cn

n

) 2
2α+1 (

σ
4α

2α+1 ∧ σ2
))

where the Ω notation absorbs constants depending only on k, d.

The first term in the bound is due to the null space of D. To derive the second
term, we embed an �1 ball in T k

n,d(Cn) and adapt arguments from Birge and
Massart (2001). The final term is obtained similarly to Sadhanala et al. (2017,
Theorem 4), by embedding a Hölder ball of appropriate size in T k

n,d(Cn). The
proof is in Appendix C.1.

Let us compare the lower bound in Theorem 3.6 with the upper bound in
Theorem 3.3. The Laplace distribution with scale parameter σ is sub-exponential
with parameters ν = cσ, b = cσ for some constant c > 0. Plugging in Cn = n1−α

in the lower bound, and ω = cσ in the upper bound stated in Theorem 3.3, we
can verify that the bounds match up to logarithmic factors.

The lower bound in Theorem 3.6 is for homoskedastic noise. When the noise
is heteroskedastic, the estimation can be harder, in the sense that the minimax
risk can be larger. Specifically, we can show the following lower bound on a TV
class of signals for the Exponential family.

Proposition 3.7. Assume Cn > 1. Consider the class of signals over a 2d grid

Θ(Cn) =
{
β ∈ R

n : ‖D(1)
n,2β‖1 ≤ Cn, ‖β‖∞ ≤ 2Cn

}
and the observation model yi ∼ Exp(mean = βi) for i ∈ [n]. Then

MSE
(
Θ(Cn)

)
≥ 3

256
C2

n

n
.

The proof is in Appendix C.2. With canonical scaling Cn � n1−α =
√
n, this

means a lower bound of Ω(1). In other words, there is no consistent estimator
for the class of signals Θ(

√
n). This result also hints at the difficulty of handling

various regimes of noise parameters ν, b.

4. Algorithmic implementation

In this section, we discuss our algorithmic implementation, focusing on the mul-
tivariate setting for the MLE trend filter for which there are not currently generic
procedures. For the Mean Trend Filter, there are many standard approaches that
can apply immediately since this is a quadratic program. In the one dimensional
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case with k = 0, Kim et al. (2009) use a Primal-Dual Interior-Point method.
Ramdas and Tibshirani (2016) examine a fast ADMM algorithm for k > 0.
Wang et al. (2016) develop ADMM and Newton methods for general graphs
and arbitrary k. We follow the approach of Khodadadi and McDonald (2019)
for the MLE trend filter (2) and use an algorithm called linearized ADMM. We
focus on (2) rather than (3) for simplicity and to provide intuition. A more
complete description is given in Appendix D. Note that the necessary changes
to solve (3) are minor.

First, rewrite Equation (2) (substituting x for θ) as

min
Dx=z

1
n

∑
ψ(xi) − yixi + λ ‖z‖1 .

This is equivalent to (2) but with additional variables. The scaled form of the
augmented Lagrangian for this problem is

Lρ(x, z, u) = 1
n

∑
ψ(xi) − yixi + λ ‖z‖1 + ρ

2 ‖Dx− z + u‖2
2 − ρ

2 ‖u‖2
2 .

The scaled ADMM algorithm iteratively solves this problem by minimizing over
x, then z and then updating u with gradient ascent. However the x solution
involves a matrix inversion due to the quadratic in Dx which is best avoided
when n is large. So we linearize Lρ(x, z, u) around the current value xo resulting
in the following update for x

x ← argmin
x

1
n

∑
ψ(xi) − yixi + ρ

(
DTDxo −DTz + DTu

)T
x + μ

2 ‖x− xo‖2
2 ,

(8)
where μ is chosen as the largest eigenvalue of DTD. To include the null space
penalty, the changes only impact the x update, and (8) is adjusted accordingly:

x ← argmin
x

1
n

∑
ψ(xi) − yixi + ρ

(
DTDxo −DTz + DTu

)T
x

+ λ2(g(xo))Tx + μ

2 ‖x− xo‖2
2 ,

where g(v) is a subgradient of the function v �→ ‖PN v‖2 given by g(v) =
PN v/‖PN v‖2 when PN v �= 0 and g(v) = 0 when PN v = 0.

The solution for the z-update is easily shown to be given by elementwise soft-
thresholding, and the u-update is simply vector addition. Solving the x-update
is potentially more challenging. Note that the form of (8) is the same for each
i, so we can solve n one-dimensional problems. The KKT stationarity condition
requires

0 = (ψ′(xi) − yi) + ρ
(
DT (Dxo − z + u)

)
i
+ μ(xi − xo

i ).

Therefore, for any negative loglikelihood as given by ψ, we want to solve ψ′(xi)+
μxi = bi, for each i ∈ [n]. For many functions ψ, the solution has a closed form.
The binomial distribution with ψ(x) = log(1 + ex) is an exception, though
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Algorithm 1 Linearized ADMM for the MLE trend filter
1: Input: y, φ,D, λ1 > 0, λ2 ≥ 0
2: Set: xo = φ′ −1(y), ρ = λ1, z = u = 0, μ = λmax(DTD)
3: while Not converged do
4: Set b = y − ρDT(Dxo − z + u) + μxo + λ2PNxo/‖PNxo‖2
5: Update x by solving ψ′(xi) + μxi = bi for i ∈ [n].
6: Update z ← Softλ/ρ(Dx + u) with Softa(v) = sign(v)(|v| − a)+.
7: Update u ← u + Dx− z
8: end while
9: return z

standard root finding methods have no difficulties. To include the nullspace
penalty, the x update changes slightly, but the logic is the same. This pro-
cedure is shown in Algorithm 1. In practice, we have found the algorithm to
converge quickly when initialized from a small value of λ1 (because the solution
will be close to the MLE) and then calculated for an increasing sequence with
the solution at smaller λ1 used as a warm start. This is the opposite of most
coordinate descent-style procedures which use a decreasing sequence of λ1. In
terms of computational complexity, this ADMM algorithm is linear in n for
each iteration. Careful implementations, customized to both a particular lattice
and a specific exponential family, could yield PDIP or other alternatives with
linear per-iteration complexity in n as well (due to the structure of D). Our
implementation is easily generalizable across these conditions, though it may
be empirically slower in individual cases. In practice, we have found that our
algorithm requires more iterations, though each iteration is much faster than
alternatives.

5. Degrees of freedom and tuning parameter selection

We describe an unbiased estimator for the KL divergence between the es-
timate and the truth for the purposes of tuning parameter selection. Addi-
tional justification and description of its derivation are given in Appendix E. If
Y ∼ N(θ∗, σ2), a now common method of risk estimation makes use of Stein’s
Lemma. The utility of this result comes from examining the decomposition of
the mean squared error of θ̂(Y ) as an estimator of θ∗.

E
[
‖θ∗ − θ̂(Y )‖2

2

]
= E

[
‖Y − θ̂(Y )‖2

2

]
− nσ2 + 2 tr Cov(Y, θ̂(Y ))

= E
[
‖Y − θ̂(Y )‖2

2

]
− nσ2 + 2σ2E

[
trJθ̂(z)

∣∣
Y

]
,

where J denotes the Jacobian. This characterization motivates the definition
of degrees-of-freedom for linear predictors: df := 1

σ2 trJθ̂(z)
∣∣
y

(Efron, 1986),
where θ̂(y) = Hy. Using Stein’s Lemma, assuming σ2 is known, we have Stein’s
Unbiased Risk Estimator

SURE(θ̂) = ‖y − θ̂‖2
2 − nσ2 + 2σ2 tr

(
Jθ̂(z)

∣∣
y

)
,
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which satisfies E[SURE(θ̂)] = E‖θ∗ − θ̂(Y )‖2
2. Note that this is the risk for es-

timating the n-dimensional parameter θ∗. This estimator is appropriate for the
mean trend filter, but, for the MLE trend filter, we prefer “Stein’s Unbiased
KL” estimator due to Deledalle (2017) that applies to continuous exponential
families.

Lemma 5.1 (simplified from Theorem 4.1 in Deledalle 2017). For the MLE
trend filter, whenever h is weakly differentiable,

SUKL(θ̂) =
〈
θ̂ + ∇h(y)

h(y) , β̂
〉

+ tr
(
Jβ̂(z)

∣∣
y

)
− ψ(θ̂)

is unbiased for E[KL(θ̂(Y ) ‖ θ∗)] − ψ(θ∗).

Because ψ(θ∗) does not depend on θ̂, we can ignore it for the purposes of
choosing λ1, λ2 in the MLE trend filter. Note that for any continuous expo-
nential family, h is weakly differentiable. To evaluate SUKL(θ̂) we need an ex-
pression for Jβ̂(y). This is given in the following result (the proof is deferred to
Appendix E).

Theorem 5.2. For the MLE trend filter, the divergence of β̂(y), defined to be
the trace of the Jacobian of y �→ β̂(y), written as tr

(
Jβ̂(y)

)
, is given by

tr
(
Jβ̂(y)

)
= tr

(
diag

(
ψ′′(θ̂)

)
PN (D̆)

(
PN (D̆) diag

(
ψ′′(θ̂)

)
PN (D̆) + λ2PN

)†
PN (D̆)

)
,

where PN (D̆) is the projection onto the null-space of D̆, and D̆ contains the rows
of D such that Dθ̂ = 0.

Unfortunately, estimating the risk in this manner is not known to be possible
for general discrete exponential families, though a few specific cases are possible.
One such is the Poisson distribution. The following result more closely resembles
an empirical derivative of β̂ rather than the theoretical expression for Jβ̂(y) used
in the previous results.

Lemma 5.3 (Theorem 4.2 in Deledalle 2017). Assume Y is Poisson with inde-
pendent coordinates conditional on θ. Then

PUKL(θ̂) = ‖β̂‖1 − 〈y, log β̂↓(y)〉,

is unbiased for E[KL(θ∗ ‖ θ̂(Y ))] − z(θ∗) where [β̂↓(y)]i = [β̂(y − ei)]i, where ei
is the ith standard basis vector, and z is a known function of the true parameter.

With these expressions in hand, we can select the tuning parameters λ1, λ2
with minimal additional computations by minimizing SUKL(θ̂) or PUKL(θ̂) as
appropriate.
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6. Empirical results

We demonstrate the performance of both the MLE and the Mean trend filter
estimators in a small scale simulation designed to compare the two in challenging
settings. We also examine two applications: modeling hospital admissions by age
due to COVID-19 in Davis, California; and describing changes in temperature
measurements for the Northern hemisphere. Code to reproduce all results is
available on GitHub.

6.1. Simulation study

We briefly investigate the relative performance of the Mean Trend Filter and
the MLE Trend Filter on a few synthetic examples. Our intention is to push the
limits of both, thereby illustrating that the user should choose between the two
based on whether smoothness is desired in the mean or in the natural parameter.
We focus on one dimension for ease of visualization and k = 1. We examine both
the exponential distribution and the Poisson distribution.

To create the true signal, we begin with a v-shaped function on the unit
interval:

fn(x) = 1
n

+
(

1 − 2
n

) ∣∣∣∣x− 1
2

∣∣∣∣
Evaluating this at n equally-spaced points for any n gives a signal such that
‖Dfn(x)‖1 has the canonical scaling 1/n.

For the exponential distribution, we set either θ∗ or β∗ equal to fn(x) and
evaluate both the Mean Trend Filter and the MLE Trend Filter on sample data.
When θ∗ is controlled, the mean at x = 0.5 approaches infinity as n grows, mak-
ing estimation very challenging. The reverse occurs if β∗ is controlled. For the
Poisson, because the mapping from natural parameter to mean is exponential,
controlling one does not particularly challenge the opposite procedure with the
above fn. To increase the discrepancy, we use gn(x) = 0.5 − fn(x) + log(n). The
signal should create more discrepancy between the estimators as n grows, but
results are less dramatic than those in the exponential case.

Figure 2 shows estimation accuracy for both trend filters across four different
scenarios. In all cases, we generated data using the signals described above for
20 values of n ranging from 20 to 1000. The values are evenly spaced on the
logarithmic scale. For each n, we repeated the experiment 10 times. The left
column (panel A) shows results for both distributions when the mean is smooth
(mean is given by the smooth functions above) and error is measured using
the mean-squared error between the estimate and the truth. In the exponential
case, the mean trend filter is slightly more accurate for larger n, but the overall
error also decreases with n since the problem is becoming easier. In the Poisson
case, the estimates (and therefore their errors) are nearly the same. The right
column (panel B) shows results when the natural parameter is smooth. Here,
for both distributions, the MLE trend filter performs better (as measured by
KL divergence), but the difference is again more pronounced for the exponential

https://github.com/dajmcdon/tflattices
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Fig 2. Estimation accuracy for both types of trend filters. The left column (panel A) compares
the estimators when the mean is smooth. The right column (panel B) compares the estimators
when the natural parameter is smooth. Solid lines show the average error across replications
while the points show the error for each replication.

distribution. Figure 3 shows all the estimates for all four scenarios when n = 104.
In the left two panels, for the exponential distribution, it is clear that whether
the mean or natural parameter is smooth makes a substantial difference for the
accuracy of the estimator. For the Poisson case (right two panels), there is much
less discrepancy. In the case that the mean is smooth, both estimators appear
relatively poor, though the MSE remains small in both cases. The reason is
that the mean and the variance are the same, and both nearly constant. The
difficulty is further exacerbated due to the discreteness of the data and only a
small handful of values with non-negligible probability. Therefore, this setting
is actually quite challenging. For context, on the typical dataset, the average
absolute difference between observations at neighbouring points is about 2.5
compared with a 0.01 change in the signal.

6.2. Example applications

We apply the Penalized MLE to two real-world datasets for illustrative pur-
poses. The first examines Poisson trend filtering for estimating the age-time
hospitalization rates due to COVID-19 in the University of California system.
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Fig 3. Estimates from both trend filters for the 4 scenarios when n = 104.

The second estimates the instantaneous temperature variability over the North-
ern hemisphere from publicly available observations.

6.2.1. UC COVID-19 hospitalization data

We analyzed the COVID-19 hospitalization rate within five hospitals in the
University of California system: UC Davis, UC Los Angeles, UC Irvine, UC San
Diego, and UC San Francisco. The data is based on 4,730 patients, all 18 years
old or greater, that were admitted between February 12, 2020 to January 6,
2021. We aggregate the hospitalization counts at the weekly level—there are 48
weeks in total—and by age (in 15 bins of 5 years each). This results in noisy and
sparse hospitalization counts at the week-by-age level with an average count-
per-bin of 6.57. The data was obtained from the authors of Nuño et al. (2021),
where they perform a more comprehensive analysis. It is used under a data
use agreement and has not been made available to the public due to privacy
concerns.

We apply k = 1 trend filtering with the Poisson exponential family in 2 dimen-
sions to COVID-19 hospitalizations. We set λ2 = 0 and tune λ1 by minimizing
PUKL(θ̂). One can see the results in Figure 4, where the smoothed version is on
the left. Due to the low average count per bin, trends in hospitalization rate are
much more clearly visible after applying trend filtering. Using k = 1 makes it
easy to identify local extrema in the estimated signal, and we have marked the
local maxima in the smoothed signal which produces only 4 points—this would
not have been possible in the raw data.

Some broad trends are clearly visible from Figure 4. First, we can see two dis-
tinct waves for COVID-19 hospitalizations in summer 2020 and winter 2020–2021.
Moreover, we can see that the highest hospitalization rates within the summer
2020 wave are among those aged 50–65, while in the winter 2020–2021 wave the
highest rates are both within the 50–65 age range but also the 80 + age range.
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Fig 4. Estimated daily hospitalization rate due to COVID-19 by 5 year age group and week
in five UC hospitals. We apply the Penalized MLE with k = 1 the Poisson exponential family
(left) to the raw count data (right).

This suggests that the age distribution is not stationary, and changes with suc-
cessive waves. This may be due to a number of factors, such as behavioral shifts
and holiday effects.

6.2.2. Temperature variability

Trends in temperature variability (rather than in mean) have direct implica-
tions for plant and animal life (Huntingford et al., 2013), because changes in
variability also impact the probability of extreme weather events (Vasseur et al.,
2014). Hansen, Sato and Ruedy (2012) and Huntingford et al. (2013) suggest
that adaptation to extremes is more difficult than to gradual increases in the
mean temperature. Nevertheless, research examining trends in the volatility of
spatio-temporal climate data is relatively scarce. Hansen, Sato and Ruedy (2012)
studied changes in the standard deviation (SD) of surface temperatures at each
spatial location relative to that location’s SD over a base period and showed that
these estimates are increasing. Huntingford et al. (2013) took a similar approach
for a different data set. They argued that, while there is an increase in the SDs
from 1958-1970 to 1991-2001, it is much smaller than found by Hansen, Sato
and Ruedy (2012). Huntingford et al. (2013) also computed the time-evolving
global SD from the detrended time-series at each position and argued that the
global SD has been stable.

The first row in Figure 5 shows the change in mean temperature averaged
over the winter and summer months separately in the 1960s relative to the 2000s
using the ERA 20C dataset (Poli et al., 2016). It shows strong increases in av-
erage temperatures in both periods over the majority of the hemisphere. The
second row shows the estimated standard deviations from the Penalized MLE
over the same period. We use k = 1 in the temporal dimension and k = 2 spa-
tially. These estimated SDs are then averaged over the two periods for summer
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Fig 5. Panel A shows the change in average temperatures observed in the northern hemisphere
from the 1960s relative to the 2000s in degrees Celsius. Panel B shows the change in estimated
standard deviation (using the Penalized MLE with k = 1 in the temporal dimension and k = 2
over space) from the 1960s relative to the 2000s. Standard deviations were estimated at each
spatio-temporal grid location before being averaged separately over winter / summer months
over the appropriate decade.

and winter separately and we plot the difference. There is a slight decrease in
the SD during the summer and a more pronounced pole-ward decrease during
the winter with the exception of Siberia which shows a dramatic increase over
both periods.

7. Discussion

We studied estimation error bounds for two estimators with a trend filtering
penalty on grid graphs. One estimator minimizes squared distance from the
mean and the other maximizes log likelihood. The bounds are more involved,
compared to, say, the homoskedastic sub-Gaussian noise case. Such cumbersome
bounds are due to the fact there are many more parameters that influence the
estimation error. We illustrated the bounds in several interesting regimes of
signals with heteroskedastic and homoskedastic noise. We analyzed two datasets
with our models showing the applicability of our methodology to real world
problems. We showed that both estimators achieve minimax optimal error rates
in some scenarios, though unfortunately, addressing all cases remains for future
work.

Because our analysis examines the entire class of observations corrupted by
sub-exponential noise, the result is a general bound on the error for all expo-
nential families. But, this is a large class, and far from the only way to study
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the estimation error. More specific analysis in specific cases will likely result
in sharper bounds. For example, van de Geer (2020) gets sharper rates for the
Bernoulli family and Brown, Cai and Zhou (2010) examines a set of 6 families
where the variance can be written as a quadratic function of the mean. However,
those analyses are much less comprehensive than ours.

While it is not settled how to define piecewise polynomials in multiple dimen-
sions, one way is to consider signals with ‖Dθ‖0 ≤ s0 and ‖θ‖2 ≤ s2. Then this
naturally leads to a bound on ‖Dθ‖1. However, the bound that one would obtain
by embedding the �0 class to the �1 class may not be optimal. Hence, while this
work provides some results and intuition for the behavior under piecewise poly-
nomial signals, these are likely far from optimal for the piecewise polynomial
class.

It may be of interest to examine the risk of the penalized MLE under �p loss,
rather than KL, as undertaken here. One way to relate our results to the �p
case is to note that, up to two terms, the Taylor expansion of the KL loss is
the Fisher Information Metric: �2 weighted by the Fisher Information Matrix.
From this perspective, if we think of Θ as a curved manifold determined by
the probability measure, then KL is natural captures this curvature correctly.
Using the Fisher Metric has similar behavior, due to the weighting, while �p will
be flat, and ignore the manifold. Whether one metric is more appropriate than
another is not clear, but we suspect that in order to give bounds in �p (or even
just �2, without the Fisher weighting) would require stronger conditions on Θ,
particularly for heavy tailed distributions. We leave this for future work.

Other possible extensions are “mixed” loss and penalties. One could try to
penalize the mean parameter combined with likelihood loss or the opposite.
Preliminary investigations into the first case revealed similar issues as with the
penalty on the natural parameter, namely an inability to control the error in the
null space of D. Another natural avenue for future work would note that all of
these (the estimators examined here and the mixed versions) have connections
to state space models in time series. So the relationship between trend filtering
and Kalman-type filters may yield new theoretical insights and computational
algorithms.

Appendix A: Proofs for preliminary results

A.1. Proof of Theorem 1.2

Proof of Theorem 1.2. Without loss of generality assume Y has mean zero. We
have

E[esY ] =
∫

esyh(y)eyθ
∗−ψ(θ∗) dy

=
∫

h(y)ey(s+θ∗)−ψ(s+θ∗)+ψ(s+θ∗)−ψ(θ∗) dy

= eψ(s+θ∗)−ψ(θ∗)
∫

h(y)ey(s+θ∗)−ψ(s+θ∗) dy
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Since θ∗ ∈ interior(Θ), there is b such that |s| < 1
b gives h(y)ey(s+θ∗)−ψ(s+θ∗)

is a member of the exponential family and hence integrates to 1. Therefore the
above display equals eψ(s+θ∗)−ψ(θ∗). A Taylor expansion of ψ(s+ θ∗)−ψ(θ∗) is
possible because θ is infinitely differentiable (Brown, 1986):

ψ(s + θ∗) − ψ(θ∗) = ∇ψ(θ∗)s + 1
2∇

2ψ(θ∗)s2 + 1
2R(θ∗, s)s2

where lims→0 R(θ∗, s) → 0. Combined with the fact that E[Y ] = ∇ψ(θ∗) = 0,
we have that

ψ(s + θ∗) − ψ(θ∗) = 1
2
(
∇2ψ(θ∗) + R(θ∗, s)

)
s2

Fixing δ > 0, we can then choose a b, which depends on δ, such that
sup|s|< 1

b
|R(θ∗, s)| < δ. We conclude that there exists a b (where we increase

b from our previous choice guaranteeing s + θ∗ ∈ Θ as necessary) such that for
all |s| < 1

b

1
2
(
∇2ψ(θ∗) − δ

)
s2 ≤ ψ(s + θ∗) − ψ(θ∗) ≤ 1

2
(
∇2ψ(θ∗) + δ

)
s2.

This gives the second claim of the lemma. Taking ν2 = ∇2ψ(θ∗) + δ gives
E[esY ] ≤ e

s2ν2
2 and proves the result.

A.2. Sub-exponential parameters for some standard distributions

For a Poisson random variable X with mean μ, note that for s ∈ R,

Ees(X−μ) = eμ(es−s−1).

Therefore Ees(X−μ) ≤ eμs
2 for s satisfying es−1−s ≤ s2. Let s∗ be the non-zero

solution to ex = 1 + x + x2. Then s∗ ≈ 1.793. From this, we can show that

X − μ is SE(ν2, b) with ν2 = 2μ, b = 1/s∗ ≤ 0.55.

For exponential distribution, we can do a similar calculation to get the results
in Table 4. For an exponential variable X with mean μ, for s ∈ R,

Ees(X−μ) = e−μs

1 − μs
.

Table 4

Sub-exponential parameters for some exponential family distributions

Distribution ψ(θ) ν2, b

Poisson (mean = μ) eθ 2μ, 0.55
Exponential (mean = μ) − log(−θ) 4μ2 log 4

e
, 2μ

χ2
k (mean = k) log

(
Γ(θ + 1)2θ+1) 4k, 4
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We can verify that X − μ is sub-exponential with parameters (ν2, b) given in
Table 4. To arrive at these parameters, we set b = 2μ and find the ν2 of the
form cμ2 for a constant c such that Ees(X−μ) ≤ eν

2s2/2 for |s| ≤ 1/b. In a
similar fashion, one can also verify the sub-exponential parameters for the χ2

distribution specified in the bottom row of the table.

A.3. Some properties of sub-exponentials

Tail bounds on linear combinations of sub-exponentials

We use the following tail bound for sums of sub-exponential variables at multiple
places in our proofs.
Lemma A.1. Let ν and c be vectors such that εi is sub-exponential with pa-
rameters (νi, ci). Given a matrix A ∈ R

n×r, assume we have K and H such
that supi=1,..,r‖ν � Ai‖2 ≤ K and supi=1,..,r‖c � Ai‖∞ ≤ H, where A1, . . . , Ar

are the columns of A. Then

P
(
‖ATε‖∞ ≥ t

)
≤

⎧⎨⎩2r exp
(
− t2

2K2

)
t < K2

H

2r exp
(
− t

H + K2

2H2

)
t ≥ K2

H

The proof is similar to that of Bernstein inequality from Theorem 2.8.1 in (Ver-
shynin, 2018).

Proof of Theorem A.1. We have

logE
[
exp

(
s‖ATε‖∞

)]
= logE

[
exp

(
smax{|AT

1 ε|, . . . , |AT
r ε|}

)]
≤ logE

[
exp

(
s

r∑
i=1

|AT
i ε|

)]
= logE

⎡⎣exp

⎛⎝s
∑
i

|
n∑

j=1
aijεj |

⎞⎠⎤⎦ .

Note that AT
i ε is mean zero with parameters (‖ν ⊗Ai‖2, ‖c⊗Ai‖∞). This is

because

logE
[
exp(sAT

i ε)
]

= logE
[

exp
(
s
∑
j

aijεj
)]

=
∑
j

logE [exp(saijεj)] ,

by independence of εj . When |s| < 1
aijcj

for all j, which is satisfied when |s| <
1

‖c⊗Ai‖∞
,

∑
j

logE [exp(saijεj)] ≤
∑
j

ν2
j (saij)2

2 = ‖ν ⊗Ai‖2
2s

2

2 .

Therefore, for |s| < 1
supi=1,...,r ‖c⊗Ai‖∞

,

logE
[
exp(s‖ATε‖∞)

]
= logE

[
exp

(
smax{|AT

1 ε|, . . . , |AT
r ε|}

)]
≤ log

r∑
i=1

E
[
exp

(
s|AT

i ε|
)]
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≤ log
∑
i

E
[
exp

(
sAT

i ε
)

+ exp
(
−sAT

i ε
)]

≤ log
(

2
r∑

i=1
exp

(
‖ν ⊗Ai‖2s2

2

))
.

Therefore, using the Chernoff bound, we have

P
(
‖ATε‖∞ > t

)
≤ exp(−ts)

(
2

r∑
i=1

exp
(
‖ν ⊗Ai‖2s2

2

))

for |s| < 1
supi=1,...,r ‖vi⊗c‖∞

, which we minimize in s to get our bound. This is
intractable, so we require ‖ν ⊗Ai‖2 ≤ K and ‖c⊗Ai‖∞ ≤ H for all i ∈ [r]. We
then have

P (‖ATε‖∞ > t) ≤ 2
r∑

i=1
exp

(
−ts + ‖ν ⊗Ai‖2s2

2

)
≤ 2r exp

(
−ts + K2s2

2

)
.

Minimizing in s, for |s| < 1
H , we have s = t/K2 or 1/H depending on which is

smaller. Therefore,

P
(
‖ATε‖∞ ≥ t

)
≤

⎧⎨⎩2r exp
(
− t2

2K2

)
t < K2

H

2r exp
(
− t

H + K2

2H2

)
t ≥ K2

H

We state a few convenient ways of using Bernstein’s tail bound inequality
on linear combinations of sub-exponential random variables. Denote the sub-
exponential tail bound function

φ(t; ν2, b) = 2 exp
(

− 1
2 min

{
t2

ν2 ,
t

b

})
(9)

for t ≥ 0 with parameters ν > 0, b > 0. Note that if P(|X| > t) ≤ φ(t; ν2, b) for
all t ≥ 0, then

|X| ≤ 2(ν ∨ b)u (10)

with probability at least 1 − 2e−u for u ≥ 1.

Lemma A.2. Let εi be independent, mean-zero, sub-exponential variates with
parameters (ν2

i , bi) for i ∈ [n]. Let a ∈ R
n be a fixed vector. Let φ be the sub-

exponential tail bound function defined in (9). Then for t ≥ 0,

P(|aTε| > t) ≤ φ
(
t;

n∑
i=1

a2
i ν

2
i ,max

i∈[n]
|ai|bi

)
(11)

≤ φ
(
t; ‖a‖2

2‖ν‖2
∞, ‖a‖∞‖b‖∞

)
(12)
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Also,
P(|aTε| > t) ≤ φ

(
t; ‖a‖2

∞‖ν‖2
2, ‖a‖∞‖b‖∞

)
. (13)

Further, if ν = b, then for t ≥ 1, with probability at least 1 − 2e−t, both the
following hold:

|aTε| ≤ 2‖a‖2‖b‖∞t (14)
|aTε| ≤ 2‖a‖∞‖b‖2t (15)

Proof of Theorem A.2. (11) follows by applying Bernstein’s inequality from
Theorem 2.8.1 in (Vershynin, 2018). The inequalities (12), (13) follow from (11)
by applying Hölder’s inequality to the first parameter in different ways.

From (10), observe that for t ≥ 1,

|aTε| ≤ 2
(
‖a� b‖2 ∨ ‖a� b‖∞

)
t ≤ 2‖a� b‖2t

holds with probability at least 1 − 2e−t, where a� b ∈ R
n with (a� b)i = aibi,

i ∈ [n]. By applying Hölder’s inequality in two different ways we get the high
probability bounds (14) and (15).

Tail bound on maximum of sub-exponentials

Lemma A.3. Suppose Xi are sub-exponential with parameters (ω2, ω) for i ∈
[m]. Then for t ≥ 1

P

(
max
i∈[m]

|Xi| ≤ 2ω(log 2m + t)
)

≥ 1 − 2e−t.

Proof of Theorem A.3. Denote Xm+j = −Xj for j ∈ [m]. By union bound, for
u > 0,

P

(
max
j∈[m]

|Xj | > u

)
= P

(
max
j∈[2m]

Xj > u

)
≤

2m∑
j=1

P(Xj > u)

≤ 4m exp
(
−

{ u2

2ω2 ∧ u

2ω

})
.

Set u = 2ω(log 2m + t) to get the desired bound.

Appendix B: Proofs of upper bounds

B.1. Proof of Theorem 2.2

We first state a basic inequality.
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Lemma B.1 (Basic inequality). Let R be as defined in Section 2.1 and let θ̂ be
the estimate in (3). Then,

R(θ̂)−R(θ∗) + λ2‖PN θ̂‖2 + λ1‖Dθ̂‖1 ≤ 1
n
εT(θ̂− θ∗) + λ2‖PN θ∗‖2 + λ1‖Dθ∗‖1.

Further, this inequality is true if we replace θ̂ with θ̂t = tθ̂ + (1 − t)θ∗ for any
t ∈ [0, 1].

Proof of Theorem B.1. Optimality of θ̂ and the equality Rn(θ)−R(θ) = − 1
nε

Tθ
gives

Rn(θ̂) + λ2‖PN θ̂‖2 + λ1‖Dθ̂‖1

≤ Rn(θ∗) + λ2‖PN θ∗‖2 + λ1‖Dθ∗‖1

⇔ R(θ̂) − 1
n
εTθ̂ + λ2‖PN θ̂‖2 + λ1‖Dθ̂‖1

≤ R(θ∗) − 1
n
εTθ̂∗ + λ2‖PN θ∗‖2 + λ1‖Dθ∗‖1

This is equivalent to the main statement in the lemma. The inequality for θ̂t
follows from the fact that θ �→ Rn(θ) + λ1‖Dθ‖1 + λ2‖PN θ‖2 is convex.

Proof of Theorem 2.2. For brevity, define the shorthand

τ(θ, λ1, λ2) = λ1‖Dθ‖1 + λ2‖PN θ‖2

for θ ∈ R
n, λ1, λ2 ≥ 0. From the basic inequality in Theorem B.1,

R(θ̂) −R(θ∗) + τ(θ̂, λ1, λ2) ≤ 1
n
εT(θ̂ − θ∗) + τ(θ∗, λ1, λ2).

Applying Theorem B.4 with J = [k + 1]d,

1
n
εT(θ̂ − θ∗) ≤ A

n
‖PN (θ̂ − θ∗)‖2 + B

n
‖D(θ̂ − θ∗)‖1

= τ(θ̂ − θ∗, B/n,A/n)

where

A = 2tμ
√

κ

n

(
‖ν‖2 ∨ ‖b‖∞

)
,

B = 2t (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1} ∨ ‖b‖∞LJ,1) ,

for t ≥ 1, on an event Ω(t) with probability at least 1− 2(m+ κ)e−t. Here m is
the number of rows of D and κ = (k + 1)d. Therefore, on the event Ω(t),

R(θ̂) −R(θ∗) + τ(θ̂, λ1, λ2)

≤ τ(θ̂ − θ∗, B/n,A/n) + τ(θ∗, λ1, λ2)

≤ τ(θ̂, B/n,A/n) + τ(θ∗, B/n,A/n) + τ(θ∗, λ1, λ2)
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where we used triangle inequality in the second line. If we choose λ1 ≥ 2B/n,
λ2 ≥ 2A/n, by linearity of τ in regularization parameters, we have

τ(θ,B/n,A/n) ≤ τ(θ, λ1/2, λ2/2) = 1
2τ(θ, λ1, λ2),

for any θ ∈ R
n. Therefore

R(θ̂) −R(θ∗) + 1
2τ(θ̂, λ1, λ2) ≤ 3

2τ(θ∗, λ1, λ2)

As θ∗ minimizes R, we should have R(θ̂) ≥ R(θ∗). That means, both the terms
R(θ̂) −R(θ∗) and 1

2τ(θ̂, λ1, λ2) are non-negative. Therefore,

R(θ̂) −R(θ∗) ≤ 3
2τ(θ∗, λ1, λ2) and

1
2τ(θ̂, λ1, λ2) ≤ 3

2τ(θ∗, λ1, λ2).

This completes the proof as these inequalities hold with probability P(Ω(t)) ≥
1 − 2(m + κ)e−t.

B.2. Proofs of Corollaries to Theorem 2.2

Proof of Theorem 2.4.. We have the following bounds,

‖ν‖2 = O(
√
n)

‖ν‖∞, ‖b‖∞ = O(1)

When d = 1 then α = 2, and so

1
n

(‖ν‖2 + ‖b‖∞) = O(n−1/2).

When d = 2, α = 1 and γ1 = logn, γ2 = 1, thus

‖b‖∞n−αγ1 + min{‖ν‖∞n−1/2γ2, ‖ν‖2n
−αγ1} = O(n−1/2 logn).

When d = 3 then α = 2/3 and γ1 = γ2 = 1,

‖b‖∞n−αγ1 + min{‖ν‖∞n−1/2γ2, ‖ν‖2n
−αγ1} = O(n−1/2).

When d = 4 then α = 1/2 and γ1 = 1, γ2 = log1/2 n and

‖b‖∞n−αγ1 + min{‖ν‖∞n−1/2γ2, ‖ν‖2n
−αγ1} = O(n−1/2 · log1/2 n).

Finally, when d > 4 then α = 2/d < 1/2 and

(‖ν‖∞ + ‖b‖∞)n−α = O(n−2/d).

Next we show that the example signal satisfies the necessary conditions.
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Consider the Poisson distribution where the natural parameter vector θ∗ is
constrained. For i = (i1, . . . , id) ∈ [N ]d, let

θ∗i = 2
N

d∑
j=1

|ij −N/2|.

Then the mean vector is

β∗
i =

d∏
j=1

exp
(

2
N

|ij −N/2|
)
.

Because the distribution is Poisson, we have ‖b‖∞ is constant while ν2
i = 2β∗

i

(see Table 1). Thus, ‖ν‖∞ =
√

2ed/2 which is achieved at i = (0, . . . , 0). The
canonical scaling holds for ‖Dθ∗‖1 � n1−α with k = 1 because there are on the
order of Nd−1 points at which the Laplacian is non-zero and they are on the
order of 1/N .

Proof of Theorem 2.5. For d = 1 we have that α = 1, and γ1 = logn, γ2 = 1,
thus

‖b‖∞n−αγ1 + min{‖ν‖∞n−1/2γ2, ‖ν‖2n
−αγ1} = O(nc−1/2).

For d = 2 we have that α = 1/2 and γ1 = 1, γ2 = log1/2 n and

‖b‖∞n−αγ1 + min{‖ν‖∞n−1/2γ2, ‖ν‖2n
−αγ1} = O(n−1/2 · log1/2 n).

For d > 2 we have that α = 1/d < 1/2 and γ1 = γ2 = 1, thus

(‖ν‖∞ + ‖b‖∞)n−α = O(nc−1/d).

To show that the specified signal satisfies the necessary properties, let d > 1,
k = 0, and c > 0. Consider the Exponential distribution with natural parameter

θ∗i = −n−c1{i = 0} − n1−1/d1{i �= 0}.

where i indexes the lattice. We have that for k = 0, ‖Dθ∗‖1 ≤ d(n1−1/d−n−c) �
n1−α, so the canonical scaling holds. We apply MLE trend filtering with k = 0.
From Table 1, we have that ‖ν‖∞, ‖b‖∞ ≤ 2nc and ‖ν‖2

2 ≤ 2(n2c +n1/d−1).

B.3. Uniform risk bound with null space penalty

Proof of Theorem 2.1. From the definitions of R,Rn,

|R(θ) −Rn(θ)| = 1
n
|εTθ|.

Applying Theorem B.4 with J = [k + 1]d, we get

|εTθ| ≤ An‖PN θ‖2 + Bn‖Dθ‖1
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where An = 2tμ
√

κ
n

(
‖ν‖2 ∨ ‖b‖∞

)
, Bn = 2t (min {‖ν‖∞LJ,2 , ‖ν‖2LJ,1} ∨

‖b‖∞LJ,1), with probability at least 1 − 4nde−t, for t ≥ 1. Here κ = (k + 1)d
and we used the fact that m < dn. By definition of Θ, θ should satisfy ‖Dθ‖1 ≤
cnn

1−α and ‖PN θ‖n ≤ an. Therefore,

|εTθ| ≤ Anan
√
n + Bncnn

1−α

From the assumptions ‖ν‖∞, ‖b‖∞ ≤ c, we can write A ≤ 2tμc
√
κ. From

Theorem B.6, for p ≥ 1, Lp
�,p ≤ c1n

(pα−1)+(logn)1{pα=1}. This yields the fol-
lowing bound on Bn:

Bn ≤ 2tc1cγn(α− 1
2 )+ .

Therefore, with probability at least 1 − 4nde−t,

1
n
|εTθ| ≤ c2tc

(
ann

− 1
2 + cnγn

−αn(α− 1
2 )+

)
= c2tc

(
ann

− 1
2 + cnγn

−min{α, 12}
)

for a constant c2 depending only on k, d. This is sufficient to show the desired
bound.

B.4. Proof of Theorem 3.1

Proof of Theorem 3.1. Writing the KKT conditions, θ̂ and β̂ are solutions to (2)
and (4) iff

ψ′(θ̂) − y + nλDTS(Dθ̂) � 0 (16)

β̂ − y + nλDTS(Dβ̂) � 0

where S(u) is the set of subgradients of x �→ ‖x‖1. S(u) depends only sgn(u).
As ψ′ is a strictly increasing function, for any a, b ∈ R, sgn(ψ′(a) − ψ′(b)) =
sgn(a− b). Therefore

sgn(Dψ′(θ̂)) = sgn(Dθ̂),
and hence the subgradients S(Dψ′(θ̂)) = S(Dθ̂). Plugging this in (16), we see
that the KKT conditions for the least squares problem are satisfied by ψ′(θ̂)
and therefore it is a solution to the least squares problem (4). The solution to
the least squares optimization problem (4) is unique because the objective is
strictly convex. Therefore, by definition of β̂, β̂ = ψ′(θ̂).

B.5. Proof of Theorem 3.2

Proof of Theorem 3.2. The proof follows the strategy in Theorem 6 in Wang
et al. (2016).

Abbreviate δ̂ = β̂ − β∗. From the optimality in the definition of β̂,

1
2n‖y − β̂‖2

2 + λ‖Dβ̂‖1 ≤ 1
2n‖y − β∗‖2

2 + λ‖Dβ∗‖1
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Rearranging and substituting y = β∗ + ε,

1
2n‖β̂ − β∗‖2

2 ≤ 1
n
εT(β̂ − β∗) + λ‖Dβ∗‖1 − λ‖Dβ̂‖1.

Bound the empirical process term on the right hand side using Theorem B.4.
By Theorem B.4, for t ≥ 1 and J ⊂ [N ]d, the following holds with probability
at least 1 − 2(m + |J |)e−t :

1
2n‖β̂ − β∗‖2

2

≤ A

n
‖PJ(β̂ − β∗)‖2 + B

n
‖D(β̂ − β∗)‖1 + λ‖Dβ∗‖1 − λ‖Dβ̂‖1

where

A = 2tμ
√

|J |
n

(
‖ν‖2 ∨ ‖b‖∞

)
,

B = 2t (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1} ∨ ‖b‖∞LJ,1) .

Applying Young’s inequality on the first term and setting λ ≥ B
n ,

1
2n‖β̂ − β∗‖2

2 ≤ 1
4n‖β̂ − β∗‖2

2 + A2

n
+ λ‖D(β̂ − β∗)‖1 + λ‖Dβ∗‖1 − λ‖Dβ̂‖1

≤ 1
4n‖β̂ − β∗‖2

2 + A2

n
+ 2λ‖Dβ∗‖1

We used triangle inequality on the penalty terms to get the second line. Can-
celing terms,

1
n
‖β̂ − β∗‖2

2 ≤ 4A2

n
+ 8λ‖Dβ∗‖1.

This bound holds with probability at least 1 − 2(m + |J |)e−t ≥ 1 − 4nde−t, and
so the proof is complete.

B.6. Proofs of Corollaries to Theorem 3.2

Denote σ2 = 1
n (‖ν‖2

2 ∨ ‖b‖∞). From Theorem 3.2, for any J ⊂ [N ]d containing
[k + 1]d, assuming the scaling ‖Dβ∗‖1 = O(n1−α),

1
n
‖β̂ − β∗‖2

2 = OP

(
|J |t2σ2

n
+ tBn

nα

)
(17)

where t = logn,

Bn = 2t (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1} ∨ ‖b‖∞LJ,1) . (18)

Compared to the bound in Theorem 3.2, additional logn factors are incurred
when translating from the high-probability statement to OP notation. Bn can be
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bound more explicitly by writing down bounds for LJ,1, LJ,2 using Theorem B.6.
For r ∈ [1, N

√
d], we can write

L2
J,2 ≤

{
cμ2γ2

2 α ≤ 1/2, J = [k + 1]d

cμ2(n/rd)2α−1 α > 1/2, J = {i ∈ [N ]d : ‖(i− k − 2)+‖2 < r}
(19)

and

LJ,1 ≤
{
cμ2γ1 α ≤ 1, J = [k + 1]d

cμ2(n/rd)α−1 α > 1, J = {i ∈ [N ]d : ‖(i− k − 2)+‖2 < r}.
(20)

where γp = log1/p(n) if pα = 1 and 1 otherwise.

Proof of Theorem 3.3. Case α ≤ 1/2: Set α ≤ 1/2, J = [k + 1]d in (20), (19),
plugin the resulting bounds for LJ,1, LJ,2 in equation (18):

Bn = O(min{‖ν‖∞γ2, ‖ν‖2γ1} ∨ ‖b‖∞γ1)t. (21)

Then use the assumptions ‖ν‖∞, ‖b‖∞ ≤ ω, to write Bn = O(tωγ2) where
t = logn. Plug this expression for Bn in (17), again use the assumption that
‖ν‖∞, ‖b‖∞ ≤ ω, to write

1
n
‖β̂ − β∗‖2

2 = OP

(
t2ω2

n
+ tωγ2

nα

)
.

Case α > 1/2: We can write

Bn = 2t (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1} ∨ ‖b‖∞LJ,1)
≤ 2t

(
‖ν‖∞LJ,2 + ‖b‖∞LJ,1

)
≤ 2tω(LJ,2 + LJ,1).

Let J = {i ∈ [N ]d : ‖(i − k − 2)+‖2 < r} for an r to be chosen later from
[1,

√
dN ]. Plugging in the bounds for LJ,1, LJ,2 from (20), (19) with α > 1/2,

and then using (17),

1
n
‖β̂ − β∗‖2

2 (22)

= OP

(
(r + k + 2)dt2

n
ω2 + t

nα

(
ω(n/rd)α−1/2γ2 + ω(n/rd)(α−1)+γ1

))
where t = logn. Select r such that

rdt2

n
ω2 � tω

nα
(n/rd)α−1/2.

Then the following is sufficient,

rd =
⌊
n(nαtω)−2/(2α+1)

⌋
.
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and the following condition ensures that this choice of r is in [1,
√
dN ]:

n−α ≤ tω ≤
√
n.

Plugging this choice of r, the first two terms in (22) are bounded by

c1
rdt2

n
ω2 = c2(tω)2(nαtω)−2/(2α+1) ≤ c2

(
t2ω2

n

)2α/(2α+1)

where c1, c2 are universal constants. The remaining term is bounded by

t

nα
ωγ1 if α ≤ 1 and n− 3α

2α+1 (ωt)
4α−1
2α+1 if α > 1.

When tω ≥ n−α, n− 3α
2α+1 (ωt)

4α−1
2α+1 ≤ (t2ω2/n)

2α
2α+1 and so the desired bound

holds.

Proof of Theorem 3.4. In both the Poisson and Exponential cases ‖ν‖∞, ‖b‖∞ =
O(1). For d = 1, 2, 3 we have that α > 1/2 and

(ω2 log2 n

n

) 2α
2α+1 + ωγ1 logn

nα
= O

((
log2 n

n

) 2α
2α+d

)
.

For d = 4, α = 1/2,

ω2 log2 n

n
+ ωγ2 logn

nα
= O

(
log3/2 n

nα

)
.

For d ≥ 5, α < 1/2,

ω2 log2 n

n
+ ωγ2 logn

nα
= O

(
logn
nα

)
.

To show that the example signal satisfies the conditions, consider the Poisson
and Exponential families where the mean parameter is constrained. Consider a
grid graph with width N and dimension d, so that n = Nd. For i = (i1, . . . , id) ∈
[N ]d, let

β∗
i = d

N
+ 2

N

d∑
j=1

|ij −N/2|.

For the Poisson distribution ν2
i � β∗

i hence ‖ν‖∞ = O(1). Similarly, for the
Exponential distribution ‖ν‖∞, ‖b‖∞ = O(1).

Corollary B.2. Let σ = max{‖ν‖2, ‖b‖∞}/√n, and σ∞ = max{‖ν‖∞, ‖b‖∞}.
Suppose ‖Dβ∗‖1 � n1−α. If α ≤ 1/2, then the estimator β̂ in Theorem 3.2 sat-
isfies

1
n
‖β̂ − β∗‖2

2 = OP

(
σ2 log2 n

n
+ σ∞γ2 logn

nα

)
.
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If α > 1/2 and σ2/σ∞ � √
n/ logn, then

1
n
‖β̂ − β∗‖2

2 = OP

([σ2 log2 n

n

] 2α
2α+1

[σ∞
σ

] 2
2α+1 + σ∞γ1 logn

nα

)
. (23)

Simultaneously, if α > 1/2,

1
n
‖β̂ − β∗‖2

2 (24)

=

⎧⎨⎩OP

(
σ2 log2 n

n + n−1/2
(
σ∞ ∧ σγ1n

1−α
)
logn

)
if α ≤ 1

OP

([
σ2 log2 n

n

]1− 1
2α + σ∞ logn

nα

)
if α > 1, σ2 � n/ log2 n.

In some situations we can get improved results using (24), particularly in
situations when σ � σ∞. This can happen for the Poisson family when the
signal β∗ is dominated by a few components.

Proof of Theorem B.2. Throughout let t = logn. Start from the bound (17):

1
n
‖β̂ − β∗‖2

2 = OP

(
|J |t2σ2

n
+ tBn

nα

)
In the case α ≤ 1/2, set J = [k + 1]d and recall the bound (21) for Bn. This
gives the desired result in this case. In the other case of α > 1

2 , we prove the
bounds (23) and (24) now. Set J = {i : ‖(i − k − 2)+‖2 < r} for an r that we
choose later.

Bound (23). Recall from (18) that

Bn = 2t (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1} ∨ ‖b‖∞LJ,1)
≤ 2t (‖ν‖∞LJ,2 ∨ ‖b‖∞LJ,1)

where we get the inequality by taking only the first term of the inner minimum.
Plug in the bounds for L terms from (19), (20) to write

Bn = O

(
‖ν‖∞

( n

rd

)α− 1
2 +

( n

rd

)(α−1)+
γ1

)
t.

Plug this back in (17) to get

1
n
‖β̂ − β∗‖2

2 (25)

= OP

(
(r + k + 2)dt2σ2

n
+ t

nα

{
‖ν‖∞

( n

rd

)α− 1
2 ∨ ‖b‖∞

( n

rd

)(α−1)+
γ1

})
For α �= 1, when possible we will choose r ∈ [1, N

√
d] such that

rdt2σ2

n
� t

nα
σ∞

( n

rd

)α− 1
2
.
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which is equivalent to

rd �
(√

nσ∞
tσ2

) 2
2α+1

.

Selecting this r when possible gives the bound in (23) and the assumption√
nσ∞
tσ2 � 1 ensures that we are not choosing an impossibly small r. When α = 1,

we can retrace the argument with the additional γ1 factor in (25) to get the
bound.

Bound (24). When α ≤ 1, set J = [k + 1]d to get the stated bound. Now
consider α > 1. Simplify (18) by taking only the second term of the minimum,
plug the bound for Bn in (17) to get

1
n
‖β̂ − β∗‖2

2 = OP

(
(r + k + 2)dt2σ2

n
+ tn−α+ 1

2σ
( n

rd

)α−1
)

When possible we will choose r ∈ [1, N
√
d] to balance the two terms above, that

is,
rdt2σ2

n
� tn−α+ 1

2σ
( n

rd
)α−1

which means,

rd �
( n

σ2t2

) 1
2α
.

This choice of r gives the desired bound. Our assumption that n
σ2t2 � 1 makes

sure that this choice of r is not impossibly small. This completes the proof.

Proof of Theorem 3.5. This is a direct result of Theorem B.2, simplifying the
cases.

B.7. Error rates assuming that the estimate is bounded

Consider the penalized maximum likelihood estimator (MLE)

θ̂ = argmin
θ

1
n

n∑
i=1

(ψ(θi) − yiθi) + λ‖Dθ‖1. (26)

The minimum may not be achieved at an interior point of the domain. In that
case, we set θ̂ to a limit point of a sequence on which the objective converges to
the infimum.

If we assume that θ̂ in (26) is constrained in such a way that ψ′′(θ̂) is bounded
away from 0, then the error bounding analysis essentially reduces to that in the
Gaussian family case. Consider the constrained estimator

θ̂ = argmin
θ∈Θ(K)n

n∑
i=1

−yiθi + ψ(θi) + λ‖Dθ‖1 (27)
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where Θ(K) = {θ ∈ R : ψ′′(θ) ≥ 1
K } for some K > 0. Assume that Θ(K) is

a convex set for any K > 0. This can be verified for Poisson, exponential and
logistic families. Suppose

θ̃ = argmin
θ∈Θ(K)n

n∑
i=1

−E[Yi]θi + ψ(θi)

is the best approximation of θ∗ within Θ(K)n. Also define β̃ = ∇ψ(θ̃). Then
the constrained estimator in (27) satisfies the following error bound.

Proposition B.3. Let yi = β∗
i + εi where εi is zero mean sub-exponential with

parameters (ν2
i , bi) for i ∈ [n]. Let LJ,p be as defined in (6) for J ⊂ [N ]d, p ≥ 1.

Abbreviate An = μ
√

|J|
n

(
‖ν‖2 ∨ ‖b‖∞

)
logn, and

Bn = (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1} ∨ ‖b‖∞LJ,1) logn.

Then the estimator (27) with λ = Bn

n , satisfies

KL(θ̃ ‖ θ̂) = 1
n
OP

(
KA2

n + Bn‖Dθ̃‖1 + K‖β̃ − β∗‖2
2
)
.

The proof is below. We choose J ⊂ [N ]d to minimize the bound. If we set
K = 1/vmin where vmin = mini∈[n] ψ

′′(θ∗i ), then θ̃ = θ∗, β̃ = β∗ and the above
bound reads

KL(θ∗ ‖ θ̂) = 1
n
OP

( A2
n

vmin
+ Bn‖Dθ∗‖1

)
.

Proof of Theorem B.3. Similar to the argument in Theorem 3.2, from the opti-
mality of θ̂, we have the basic inequality,

R(θ̂) −R(θ̃) ≤ 1
n
εT(θ̂ − θ̃) + λ‖Dθ̃‖1 − λ‖Dθ̂‖1 (28)

To lower bound the left hand side, we see that

nR(θ̂) − nR(θ̃) = 1Tψ(θ̂) − β∗θ̂ − 1Tψ(θ̃) + β∗θ̃

= 1Tψ(θ̂) − 1Tψ(θ̃) − β̃(θ̂ − θ̃) + (β̃ − β∗)T(θ̂ − θ̃)

≥ 1
2K ‖θ̂ − θ̃‖2

2 + (β̃ − β∗)T(θ̂ − θ̃)

≥ 1
2K ‖θ̂ − θ̃‖2

2 −K‖β̃ − β∗‖2
2 − 1

4K ‖θ̂ − θ̃‖2
2

= 1
4K ‖θ̂ − θ̃‖2

2 −K‖β̃ − β∗‖2
2

In the above display, the first inequality holds because both θ̂, θ̃ ∈ Θ(K)n and
Θ(K)n is convex. (For i ∈ [n], write ψ(θ̂i)−ψ(θ̃i)− β̃i(θ̂i− θ̃i) = ψ′′(ui)(θ̂i− θ̃i)2
for some ui between θ̂i and θ̃i. As Θ(K) is convex and ui lies between θ̂i and θ̃i,
we should have ui ∈ Θ(K) and so ψ′′(ui) should be at least 1/K.) The second
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inequality follows from the fact that 2ab ≥ −ca2 − 1
c b

2, for any a, b, c ∈ R with
c > 0. Applying this to half of the left hand side of (28),

1
2
(
R(θ̂)−R(θ̃)

)
+ 1

8nK ‖θ̂− θ̃‖2
2−

K

2n‖β̃−β∗‖2
2 ≤ 1

n
εT(θ̂− θ̃)+λ‖Dθ̃‖1−λ‖Dθ̂‖1

Rearranging,
1
2
(
R(θ̂)−R(θ̃)

)
− K

2n‖β̃−β∗‖2
2 ≤ − 1

8nK ‖θ̂−θ̃‖2
2+ 1

n
εT(θ̂−θ̃)+λ‖Dθ̃‖1−λ‖Dθ̂‖1

By Theorem B.4, for t ≥ 1 and J ⊂ [N ]d, the following holds with probability
at least 1 − 2(m + |J |)e−t,

1
2
(
R(θ̂) −R(θ̃)

)
− K

2n‖β̃ − β∗‖2
2

≤ − 1
8nK ‖θ̂ − θ̃‖2

2 + A

n
‖PJ(θ̂ − θ̃)‖2

+ B

n
‖D(θ̂ − θ̃)‖1 + λ‖Dθ̃‖1 − λ‖Dθ̂‖1

where

An = 2tμ
√

|J |
n

(
‖ν‖2 ∨ ‖b‖∞

)
,

Bn = 2t (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1} ∨ ‖b‖∞LJ,1) .

The sum of the first two terms on the right hand side can be bound by completing
squares:

− 1
8nK ‖θ̂ − θ̃‖2

2 + A

n
‖P[�](θ̂ − θ̃)‖2

≤ − 1
8nK ‖θ̂ − θ̃‖2

2 + A

n
‖θ̂ − θ̃‖2

≤ 2KA2

n
.

Plug this into the bound in the previous display to get

1
2
(
R(θ̂) −R(θ̃)

)
− K

2n‖β̃ − β∗‖2
2 ≤ 2KA2

n
+ B

n
‖D(θ̂− θ̃)‖1 + λ‖Dθ̃‖1 − λ‖Dθ̂‖1

The argument from here is similar to that in the proof of Theorem 3.2.

B.8. Empirical process bound

Let D = D
(k+1)
n,d = UΣV T be the full singular value decomposition of D. For j ∈

[N ]d, let Vj denote Ṽj1 ⊗· · ·⊗Ṽjd where Ṽ� is the eigenvector of
(
D

(k+1)
N,1 )TD(k+1)

N,1
corresponding to its �th smallest eigenvalue. For J ⊂ [N ]d, let VJ denote a n×|J |
matrix formed by picking the columns of V corresponding to J . Let PJ = VJV

T
J

be the projection matrix onto those columns.
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Lemma B.4. Let yi = β∗
i + εi where εi is zero mean sub-exponential with

parameters (ν2
i , bi) for i ∈ [n]. Let J ⊂ [N ]d and L be as defined in (6). Let m

be the number of rows in D. For any J ⊂ [Nd] containing [k + 1]d, and t ≥ 1,
with probability at least 1 − 2(m+ |J |)e−t, the following holds uniformly for all
θ ∈ R

n:
|εTθ| ≤ A‖PJθ‖2 + B‖Dθ‖1

where

A = 2tμ
√

|J |
n

(
‖ν‖2 ∨ ‖b‖∞

)
,

B = 2t (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1} ∨ ‖b‖∞LJ,1) .

Proof of Theorem B.4. Decompose

|εTθ| = |εTPJθ + εT(I − PJ)θ|
= |εTPJθ + εT(I − PJ)D†Dθ|
≤ ‖PJε‖2‖PJθ‖2 + ‖(D†)T(I − PI)ε‖∞‖Dθ‖1

where we applied Hölder’s inequality on each of the two terms separately. We
give high probability bounds for ‖PJε‖2 and ‖(D†)T(I − PJ)ε‖∞ separately. A
union bound will yield the stated result.

Bounding ‖PJε‖2. For j ∈ J , V T
j ε is SE (‖ν � Vj‖2

2, ‖b� Vj‖∞). Therefore,
from (10),

|V T
j ε| ≤ 2t(‖ν � Vj‖2 ∨ ‖b� Vj‖∞)

should hold with probability at least 1−2e−t for any t ≥ 1. From the incoherence
property (‖Vj‖∞ ≤ μ√

n
), we get ‖ν�Vj‖2 ≤ μ√

n
‖ν‖2 and ‖b�Vj‖∞ ≤ μ√

n
‖b‖∞.

Therefore,
|V T

j ε| ≤ 2t μ√
n

(
‖ν‖2 ∨ ‖b‖∞

)
.

By union bound over j ∈ J , for any t ≥ 1,

‖PJε‖2
2 =

∑
j∈J

(V T
j ε)2 ≤ |J |

(
2t μ√

n

(
‖ν‖2 ∨ ‖b‖∞

))2

should hold with probability at least 1 − 2|J |e−t.
Bounding ‖(D†)T(I − PJ )ε‖∞. Rewrite this term as

‖(D†)T(I − PJ )ε‖∞ = max
j∈[m]

|gT
j ε|

where gj = (I − PJ)D†ej for j ∈ [m] and where m is the number of rows in D.
From Theorem A.2, one can deduce that

max
j∈[m]

|gT
j ε| ≤ 2t

(
max
j∈[m]

‖ν � gj‖2 ∨ ‖b� gj‖∞
)
.



Exponential family trend filtering 1795

holds with probability at least 1 − 2me−t for t ≥ 1. Observe that ‖b� gj‖∞ ≤
‖b‖∞‖gj‖∞ and

‖ν � gj‖2 ≤ min {‖ν‖∞‖gj‖2, ‖ν‖2‖gj‖∞} .

Therefore, substituting the bounds on ‖gj‖2, ‖gj‖∞ from Theorem B.5, we get

max
j∈[m]

|gT
j ε| ≤ 2t (min {‖ν‖∞LJ,2, ‖ν‖2LJ,1} ∨ ‖b‖∞LJ,1) .

with probability at least 1 − 2me−t.

Lemma B.5. Let J be a subset of [N ]d containing [k + 1]d. Define gj = (I −
PJ)D†ej for j ∈ [m] where m is the number of rows in D. Then for all j ∈ [m],

‖gj‖2 ≤ LJ,2,

‖gj‖∞ ≤ LJ,1.

Proof of Theorem B.5. Let Σ̃ ∈ R
m×n denote the diagonal matrix such that

Σ̃i,i = ξi for i ∈ J and 0 otherwise. Here we abuse the subscript notation: i is
a multi-index in [N ]d but we use it as an integer mapped to {1, 2, . . . , Nd} by
row-major order. Let Σ̇ = Σ − Σ̃, which is also diagonal m× n. Then

gj = V Σ̇†UTej .

Therefore, we can write

‖gj‖2
2 = ‖V Σ̇†UTej‖2

2 = ‖Σ̇†UTej‖2
2 =

∑
i∈[N ]d\J

U2
ij

1
ξ2
i

≤ μ2

n

∑
i∈[N ]d\J

1
ξ2
i

= L2
J,2.

Here also, we abuse the subscript notation for U by mapping i ∈ [N ]d to
{1, 2, . . . , Nd} with row-major order. The sole inequality in the above display
follows from the incoherence property of U . This shows the upper bound on the
�2 norms of gj , j ∈ [m].

For the �∞-norm bound, we write,

‖gj‖∞ = max
‖z‖1=1

zTgj = max
‖z‖1=1

zTV Σ̇†UTej ≤ max
‖z‖1=1

‖V Tz‖∞‖Σ̇†UTej‖1

using Hölder’s inequality. Because every entry of V is at most μ/
√
n, we have

max
‖z‖1=1

‖V Tz‖∞ ≤ μ√
n
.

From the incoherence property of U ,

‖Σ̇†UTej‖1 ≤ μ√
n

n∑
i=�+1

1
ξi
.

Therefore
‖gj‖∞ ≤ μ2

n

∑
i∈[N ]d\J

1
ξi

= LJ,1.
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B.9. Eigenvalue bounds

Lemma B.6. Let {ξ2
i : i = (i1, . . . , id) ∈ [N ]d} be the eigenvalues of DTD where

D = D
(k+1)
n,d and let p ≥ 1, α = (k + 1)/d. Then

∑
i∈[N ]d\[k+1]d

1
ξpi

≤ c

{
n if pα < 1
n logn if pα = 1

for large enough n, where c > 0 is a constant depending only on k, d. In the case
pα > 1, for any r0 ∈ [1,

√
dN ],∑

i∈[N ]d:‖(i−k−2)+‖2≥r0

1
ξpi

≤ cn(n/rd0)pα−1.

Proof of Theorem B.6. This is a generalization of Lemma 6 in Sadhanala et al.
(2021), which states the bound for only p = 2. In their proof, if we change the
power applied to the singular values in the summation to a general p ≥ 1 we
get (a) the bound in the second display and (b) a bound slightly weaker than
the first display: ∑

i∈[N ]d\[k+2]d

1
ξpi

≤ c

{
n pα < 1
n logn pα = 1

(29)

for large enough n, where c > 0 is a constant depending only on k, d. Notice that
the summation excludes indices in [k+2]d whereas the statement in Theorem B.6
requires only those in [k+1]d to be excluded. We claim that the additional terms
from indices [k+2]d\[k+1]d do not change the rates in the bound. Thanks to the
Kronecker-sum structure of DTD, we can write ξ2

i =
∑d

j=1 ρij where ρ1, . . . , ρN

are the eigenvalues of
(
D

(k+1)
N,1

)T
D

(k+1)
N,1 . Note that for i ∈ [N ]d \ [k+1]d, we can

write ξ2
i ≥ ρk+2. Therefore,∑

i∈[k+2]d\[k+1]d

1
ξpi

≤
∑

i∈[k+2]d\[k+1]d

1
ρ

p/2
k+2

≤
∑

i∈[k+2]d\[k+1]d
Np(k+1)

≤ ((k + 2)d − (k + 1)d)cnpα

where we used Theorem B.7 for the second inequality. In the case pα ≤ 1, this
and (29) are sufficient to prove the lemma.

Lemma B.7. For k ≥ 1, N > 2k + 2, the smallest eigenvalue of D(k)
N,1

(
D

(k)
N,1

)T

is at least c/N2k for some constant c > 0 depending only on k.

Proof. For the purpose of this lemma, let λi(A) denote the ith smallest eigen-
value of A.
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Case: k is odd. By Cauchy interlacing argument in Lemma 7 of Sad-
hanala et al. (2021), we have λ1(D(k)

N,1
(
D

(k)
N,1

)T) ≥ λ1(GGT) where G is the
graph trend filtering operator of order k on a chain of length N . Recall that
G = D

(1)
N,1L

(k−1)/2 where L is the graph Laplacian of a chain of length N .
Note that, for odd k, GTG = Lk. The set of nonzero eigenvalues of GGT

and GTG should be the same. We know that λ1(L) = 0, λ2(L) > 0 and so
λ1(GTG) = 0, λ2(GTG) > 0. GGT has full rank. Therefore,

λ1(GGT) = λ2(GTG) = λ2(Lk) =
(
λ2(L)

)k
.

Plugging in λ2(L) = 4 sin2 π/2N and using the inequality sinx ≥ x/2 for x ∈
[0, π/2], we have λ1(GGT) ≥ c/N2k. As λ1(D(k)

N,1
(
D

(k)
N,1

)T) ≥ λ1(GGT), we get
λ1(D(k)

N,1
(
D

(k)
N,1

)T) ≥ c/N2k.
Case: k is even. Apply Theorem B.8 to get the bound in this case.

Lemma B.8. let λi(A) denote the ith smallest eigenvalue of A. For k ≥ 1, and
N > 2k + 2,

λ2k+1
(
(D(2k)

N,1 )TD(2k)
N,1

)
≥

(
4 sin2 π

2N − 2
)2k

.

Proof. Let Lm denote the Laplacian of cycle graph with m vertices. It’s smallest
nonzero eigenvalue is 4 sin2 π/m. Its eigenvectors are given (v�)j = e2πi�j/m.

Let u ∈ R
N be the eigenvector of (D(2k)

N,1 )TD(2k)
N,1 corresponding to its (2k+1)th

eigenvalue. By Theorem B.9, there exists a v ∈ R
2N−2 satisfying the following

properties:

‖Lkv‖2
2 ≤ 2‖(D(2k)

N,1 u‖2
2,

〈v,1〉 = 0,
‖v‖2

2 ≥ 2.

With such a v,

λ2k+1
((
D

(2k)
N

)T
D

(2k)
N

)
= ‖D(2k)

N u‖2
2 ≥ 1

2‖L
kv‖2

2 ≥ 1
2λ2(L2k)‖v‖2

2 ≥ λ2k
2 (L).

The equality holds by definition of u. The three inequalities follow in order from
the three properties satisfied by v above. This is sufficient to complete the proof
because we know that λ2(L) = 4 sin2 π

2N−2 .

Lemma B.9. Let u ∈ R
N be the eigenvector of (D(2k)

N,1 )TD(2k)
N,1 corresponding

to its (2k + 1)th eigenvalue. There exists a v ∈ R
2N−2 satisfying the following

properties:

‖Lkv‖2
2 ≤ 2‖(D(2k)

N,1 u‖2
2,

〈v,1〉 = 0,
‖v‖2

2 ≥ 2.
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Proof. Define U = {u ∈ R
N : u1 = uN = 0}.

Δ and Δ−1: Define the following truncated discrete difference operator,

Δu = (0, (D(2)
N,1u)1, D(2)

N,1u)2, . . . , D(2)
N,1u)N−2, 0)

for u ∈ U so that Δ : U → U . We can write

Δ =

⎛⎜⎜⎜⎜⎜⎜⎝
0 0 0 . . . 0 0
−1 2 −1 0 . . . 0
0 −1 2 −1 . . . 0

. . .
0 . . . 0 −1 2 −1
0 0 0 0 0 0

⎞⎟⎟⎟⎟⎟⎟⎠ (30)

Then we can construct the inverse as the following truncated discrete integral
using the following: Let u ∈ U , and define the cumulative sum operator,

(Iu)i :=
i−1∑
j=1

jui−j , and a := 1
N − 1(Iu)N .

Define
zi := (i− 1)a− (Iu)i, i = 1, . . . , N,

and note that z1 = zN = 0. Then we have that Δz = u for u ∈ U . To see this
let i = 2, . . . , N − 1,

−(Δz)i = −(2ia− (i− 1)a− (i + 1)a) + 2(Iu)i − (Iu)i−1 − (Iu)i+1

= 2
i−1∑
j=1

jui−j −
i−2∑
j=1

jui−1−j −
i∑

j=1
jui−j+1

= 2
i−1∑
j=1

jui−j −
i−1∑
j=2

(j − 1)ui−j −
i−1∑
j=0

(j + 1)ui−j

= 2ui−1 − ui − 2ui−1 = −ui.

Also, (Δz)1 = (Δz)N = 0 = u1 = uN .
Constructing v: Construct ũ ∈ R

N such that

ũi = ui − u1 − uN − u1

N − 1 (̇i− 1), i = 1, . . . , N

Define w ∈ R
N such that wi = (Δkũ)i for i = 1, . . . , k and i = N,N−1, N−k+1;

and wi = 0 for other i ∈ [N ]. Define p = Δ−kw and note that w, p ∈ U . Let
ext(x) denote the periodic extension of x ∈ R

N , defined by y ∈ R
2N−2 where

y1:N = x, yN+i = −xN−i for i = 1, . . . , N − 2. Set

v = ext(ũ− p).
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Verifying the three properties: As ũ− p ∈ U , by Theorem B.10,

(Lkv)1:N = Δk(ũ− p) = [0k×1;D(2k)
N,1 u; 0k×1].

By construction of v via ext, (Lkv)2:N = −(Lkv)2N−2:N . So ‖(Lkv)N+1:2N−2‖2
2

= ‖(Lkv)1:N‖2
2. Therefore v satisfies the first desired property in the statement

of the lemma:
‖Lkv‖2

2 = 2‖D(2k)
N,1 u‖2

2.

As v = ext(ũ − p) and ũ − p ∈ U , we get 〈v,1〉 = 0 from the definition of ext.
Again due to the definition of ext, ‖v‖2

2 = 2‖ũ−p‖2
2. Write ũ−p = u+(ũ−u−p)

and note that u ⊥ N (D(2k)
N,1 ), ũ− u is linear and hence in N (D(2k)

N,1 ) and further
p ∈ N (D(2k)

N,1 ) by construction. (Note that if strip out the top and bottom k rows
from Δk, we get D(2k)

N,1 . So D
(2k)
N,1 p = (Δkp)k+1:N−k = wk+1:N−k = 0.) Therefore

we get the third desired property for v:

‖v‖2
2 ≥ 2‖u‖2

2 + 2‖ũ− u− p‖2
2 ≥ 2.

Therefore v satisfies all the three properties stated in the lemma.

Lemma B.10. Let U = {u ∈ R
N : u1 = uN = 0}. Let ext(u) denote the periodic

extension of u ∈ R
N , defined by v ∈ R

2N−2 where v1:N = u, vN+i = −uN−i for
i = 1, . . . , N − 2. Let L,Δ be as defined in Theorem B.9 and (30) respectively.
Then (Lkext(u))1:N = Δku for u ∈ U .

Proof. Let v := ext(u) and let S = {ext(u) : u ∈ U}. We need to show that
(Lkv)1:N = Δku for k ≥ 1. First notice that (Δu)i = 2ui − ui−1 − ui+1, i =
2, . . . , N − 1. Furthermore, (Δu)1 = (Δu)N = 0 because the first and last rows
of Δ are zeros and (Lv)1 = (Lv)N = 0 because v ∈ S. (As v ∈ S, v is anti-
symmetric around index 1, that is: v1 = 0, vi = −v2N−i for i = 2, 3, . . . , N
and so (Lv)1 = 0. Similarly vN−i = −vN+i for i = 0, 1, . . . , N − 2 and so
(Lv)N = 0.) So we have shown it for k = 1. Suppose the inductive hypothesis
Δk−1u = (Lk−1v)1:N . We have for i = 2, . . . , N − 1,

(Δku)i = 2(Δk−1u)i − (Δk−1u)i−1 − (Δk−1u)i+1

= 2(Lk−1v)i − (Lk−1v)i−1 − (Lk−1v)i+1 = (Lkv)i.

Furthermore, (Δku)1 = (Δku)N = 0 by construction and (Lkv)1 = (Lkv)N =
0 because of anti-symmetry of v around indices 1 and N . Thus, (Lkv)1:N =
Δku.

Appendix C: Proofs for lower bounds

C.1. Proof of Theorem 3.6

Denote the �p balls

Bp(r;Rn) = {x ∈ R
n : ‖x‖p ≤ r}
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for p ≥ 1, r ≥ 0, n ≥ 1. We simply refer to this Bp(r) when the dimension n is
clear from the context. Consider the set

B(r,m) =
{
β ∈ R

n : ‖β‖∞ ≤ r, ‖β‖0 ≤ m
}

(31)

which consists of signals with at most m non-zero components and with all
entries at most r in magnitude.

For β ∈ R and σ > 0, let Lap(β, σ) denote the Laplace distribution centered
at β with scale σ. For β ∈ R

n, let Lap(β, σ) denote the product distribution of
Lap(β1, σ), . . . ,Lap(βn, σ).

Proof of Theorem 3.6. The null space of D has a dimension of κ. Using Fano’s
lemma, similar to the way it is applied in Example 15.8 in Wainwright (2019),
we can show that

n ·RM

(
T k
n,d(Cn)

)
≥ κσ2

128 (32)

The main difference is in upper bounding for KL divergence, but from
Theorem C.2 we can show that

KL (Lap(a, σ),Lap(b, σ)) ≤ ‖a− b‖2
2/2σ2

for a, b ∈ R
n. This is sufficient to apply the argument in Example 15.8 in

Wainwright (2019).
Now we show the second lower bound. Note that

B1(Cn/ck) ⊆ T k
n,d(Cn)

where ck is the maximum �1 norm of columns of D. ck depends only on k, d.
Denote r1 = Cn/ck. For q ∈ Q := {1} ∪ {2m : 2m ≤ n/3}, set r = Cn/(qck) so
that B(r, q) is contained in B1(Cn/ck). From Theorem C.3,

n ·RM (B(r, q)) ≥ 1
12qa

2

where a = r∧σg−1(τ/6) where τ = log(en/8q). Therefore, from the containment
B(r, q) ⊂ T k

n,d(Cn),

n ·RM

(
T k
n,d(Cn)

)
≥ 1

12 sup
q∈Q

qmin
{
r2,

σ2

3 log en

8q ∨ σ2

36 log2 en

8q

}
= 1

12 sup
q∈Q

qmin
{
r2
1
q2 ,

σ2

3 log en

8q ∨ σ2

36 log2 en

8q

}
Choose q ∈ Q that maximizes this bound. Set q to the closest number in Q to

q∗ = r1
σ

(√
3 log−1/2 σn√

3r1
∨ 6 log−1 σn

6r1

)
where r1 = Cn/ck. This gives a lower bound of

c0σr1

(√
log c1σn

r1
∨ log c2σn

r1

)
(33)
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provided q∗ is within the range [1, n/3]. Two alternate bounds can be ob-
tained by plugging in q = 1 and q = 2�n/6 . With q = 1, the bound is
cmin

{
r2
1, σ

2 (log en
8 ∨ log2 en

8
)}

and with q=2�n/6 , the bound is cmin
{

r2
1
n , σ2

}
.

Finally, we derive the third term in the lower bound by embedding a Hölder
ball. We follow the proof of Theorem 2.5 in Tsybakov (2009). For k ≥ 0 and
L > 0, let H(k+1, L; [0, 1]d) denote the Hölder class of functions on [0, 1]d whose
kth order partial derivatives ∂kf/∂xα1

1 . . . ∂xαd

d with α1 + · · · + αd = k are L-
Lipschitz. Define the discrete Hölder set using evaluations of Hölder functions
on the grid:

Hk
n,d(L) = {θ ∈ R

n : θi = f(i1/N, . . . , id/n), f ∈ H(k + 1, L; [0, 1]d)}.

Sadhanala et al. (2017) shows that

Hk
n,d(cCnn

α−1) ⊂ T k
n,d(Cn)

for a constant c depending only k. Therefore, the minimax risk over T k
n,d(Cn) is

at least the minimax risk over Hk
n,d(Cn). Theorem C.1 gives a lower bound on

this risk:

RM (T k
n,d(Cn)) = Ω

((
σ2

n

) 2α
2α+1

(Cnn
α−1)

2
2α+1

)
.

This equation, together with (32), (33) gives the desired lower bound.

Lemma C.1. On the d-dimensional grid, consider the observation model yi =
f(xi) + εi for i ∈ [N ]d where f ∈ H(k + 1, L; [0, 1]d) and εi are i.i.d. Lap(0, σ).
Then

inf̂
f

sup
f0∈H(k+1,L;[0,1]d)

E‖f̂ − f0‖2
2 = Ω

((
σ2

n

) 2α
2α+1

L
2

2α+1

)
. (34)

Suppose there exists an h0 ≥ 0 such that, for any h ≥ h0, any ball of radius
ch/2 in [0, 1]d contains at least c1n(ch/2)d grid points, where c =

√
log2e 2 and

c1 > 0 is a constant may depend on d. Then the following lower bound in terms
of the empirical norm holds:

inf̂
f

sup
f0∈H(k+1,L;[0,1]d)

E‖f̂ − f0‖2
n = Ω

((
σ2

n

) 2α
2α+1

L
2

2α+1

)
. (35)

Proof of Theorem C.1. We adapt the proof of the univariate case in Section 2.6
of Tsybakov (2009). Partition [0, 1]d into r = !c0n1/(2α+1)" hypercubes of equal
size, where c0 is to be determined later. The side length of each hypercube
h = (1/r)1/d. Let zi, i ∈ [r] be the centers of these hypercubes. Define the bump
function

ϕ(x) = Lhk+1K

(
‖x‖2

h

)
for x ∈ [0, 1]d where K(u) = ae

−1
1−4u2 1

{
|u| < 1

2
}

for a constant a such that ϕ ∈ H(k + 1, 1). Note that ϕ(x) = 0 if ‖x‖2 ≥ h/2.
Define the bump functions ϕi(x) = ϕ(x − zi), centered around zi for i ∈ [r].
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These functions have disjoint support and so, they are orthogonal to each other
with respect to the L2 inner product and also the empirical inner product. Note
that

‖ϕ‖2
2 = L2h2k+2+d‖K‖2

2. (36)

By the Varshamov-Gilbert lemma (see Lemma 2.9 in Tsybakov, 2009), we
can get ω(0), . . . , ω(M) ∈ {0, 1}r such that ω

(0)
� = 0,∀�, M ≥ 2r/8 and for

i �= j ∈ {0, . . . ,M}, dH(ω(i), ω(j)) ≥ r/8 where dH calculates the Hamming
distance between two binary vectors of same size. Let

fi =
r∑

�=1

ω
(i)
� ϕ�

for i = 0, . . . ,M . For i �= j,

‖fi − fj‖2
2 =

r∑
�=1

1{ω(i)
� �= ω

(j)
� }‖ϕ�‖2

2

= dH(ω(i), ω(j))‖ϕ‖2
2

≥ r

8 · L2h2k+2+d‖K‖2
2 (37)

The last line is true because dH(ω(i), ω(j)) ≥ r/8 by construction of the bump
functions and (36).

Let x1, . . . , xn ∈ [0, 1]d denote the grid locations. For j ∈ {0, . . . ,M}, let Pj

denote the joint distribution of y1, . . . , yn given by yi = fj(xi) + εi with εi i.i.d.
Lap(0, σ). Then

KL(Pj , P0) =
n∑

i=1
KL

(
Lap(fj(xi), σ),Lap(0, σ)

)
≤

n∑
i=1

1
2σ2 f

2
j (xi)

≤
n∑

i=1

1
2σ2L

2a2h2k+2

= n

2σ2L
2a2h2k+2

= n

2σ2L
2a2r−2α

= 1
2σ2L

2a2rc
−(2α+1)
0 (38)

The second line is from Lemma C.2 and the third line is from the fact that fj is
a summation of bump functions with (a) disjoint supports and (b) a maximum
value of aLhk+1. The last two lines follow from the relations h = r−1/d, r =
!c0n1/(2α+1)".
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Now we choose a c0 (recall r = !c0n1/(2α+1)") such that

1
M

r∑
j=1

KL(Pj , P0) ≤ 1
8 log 4 logM.

From (38) and the fact that M ≥ 2r/8, it is sufficient to choose c0 such that
1

2σ2L
2a2rc

−(2α+1)
0 ≤ r

64 . So we choose

c0 =
(
32a2L2σ−2)1/(2α+1)

.

With this choice of c0, and the lower bound in (37) we can apply Theorem 2.5
in Tsybakov (2009) to get the bound in (34).

Lower bound in empirical norm. We follow the same approach to show
the lower bound in (35) in terms of the empirical norm. It is sufficient to show
a bound analogous to (37) in terms of the empirical norm. Let B(z, s) denote
an �2 ball of radius s centered at z.

For any � ∈ [r], by hypothesis, there are at least c1n(ch/2)d grid points in
B(z�, ch/2). For x ∈ B(z�, ch/2), ϕ(x) = Lhk+1K(‖x−z�‖2/h) ≥ Lhk+1K(c/2).
For our choice c =

√
log2e 2, K(c/2) ≥ K(0)/2e = a/2e. Therefore, for all

x ∈ B(z�, ch/2), ϕ�(x) ≥ a/2e · Lhk+1. Consequently,

‖ϕ�‖2
n ≥ 1

n
· c1n(ch/2)d · (a/2eLhk+1)2 = c2L

2h2k+2+d.

Recall that
‖ϕ�‖2

2 = L2h2k+2+d‖K‖2
2

and therefore
‖ϕ�‖2

n ≥ c3‖ϕ�‖2
2 (39)

for a constant c3 that may depend on d.

‖fi − fj‖2
n =

r∑
�=1

1
{
ω

(i)
� �= ω

(j)
�

}
‖ϕ�‖2

n

≥
r∑

�=1

1
{
ω

(i)
� �= ω

(j)
�

}
c3‖ϕ�‖2

2

=
r∑

�=1

1
{
ω

(i)
� �= ω

(j)
�

}
c3‖ϕ‖2

2

= dH(ω(i), ω(j))c3‖ϕ‖2
2

= c3
r

8 · L2h2k+2+d‖K‖2
2

Second line follows from (39). Now (35) can be derived similar to (34), by
applying Theorem 2.5 in Tsybakov (2009).
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Lemma C.2. For μ1, μ2 ∈ R, and σ > 0,

KL(Lap(μ1, σ),Lap(μ2, σ)) = e−δ + δ − 1 ≤ 1
2δ

2

where δ = |μ1 − μ2|/σ. Let g(x) = e−x + x− 1 for x ≥ 0. Then for y ≥ 0,

g−1(y) ≥ max{
√

2y, y}.

Proof of Lemma C.2. From a direction integration, as shown in Appendix A in
Meyer (2021),

KL(Lap(μ1, σ),Lap(μ2, σ)) = e−δ + δ − 1 = g(δ)

where δ = |μ1 − μ2|/σ. We can verify with elementary calculus that, for all
y ≥ 0,

g(y) < y and g(y) ≤ y2

2 .

Therefore for all y ≥ 0,

g(y) < y and g(
√

2y) ≤ y.

g is a strictly increasing function on [0,∞). Therefore,

y < g−1(y),
√

2y ≤ g−1(y) for all y ≥ 0.

Lemma C.3. Suppose n ≥ 6. Suppose q = 1 or q is even with q ≤ n/3. Then
for r > 0, the minimax risk of B(r, q) defined in (31) satisfies

n ·RM

(
B(r, q)

)
≥ 1

12qmin
{
r2,

σ2

3 log en

8q ∨ σ2

36 log2 en

8q

}
Proof of Theorem C.3. We will show a slightly stronger bound:

n ·RM

(
B(r, q)

)
≥ 1

12q
(
r ∧ σg−1

(
1
6 log en

8q

))2

where g(x) = e−x + x− 1 for x ≥ 0. From this and Theorem C.2, we get the
bound in Theorem C.3.

The proof is adapted from that of Theorem 5 in Birge and Massart (2001)
for Gaussian error model. We use Fano’s lemma from information theory.

Abbreviate τ = log en
8q .

• Let
Mq = {S ⊆ [n] : |S| = q}

Here |S| denotes the cardinality of a set S. Consider signals βS ∈ R
n

(βS)i = 1{i ∈ S}a

where a = r ∧ σg−1(τ/6). As q ≤ n/3, τ = log en
8q should be positive. g

is strictly increasing over x ≥ 0, limx→∞ g(x) = ∞ and so g−1(τ/6) is
well-defined.
We will pick sufficiently separated elements from Mq to construct signals
for Fano’s lemma.
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• Suppose q is even with q ≤ n/3. From Lemma 4 Birge and Massart (2001)
we can find a subset S of Mq such that

– for any distinct S, S′ ∈ S, |S ∩ S′| < q/2
–

log |S| > qτ

2 (40)

Note that when q = 1, S = Mq satisfies these two requirements.
Denote δ(S, S′) = |S ∪ S′| − |S ∩ S′| = |S|+ |S′| − 2|S ∩ S′|. For S, S′ ∈ S
we have δ(S, S′) = 2q − 2|S ∩ S′|. Therefore for distinct S, S′ ∈ S, as
|S ∩ S′| < q/2,

q < δ(S, S′) ≤ 2q.

• Consider the signals {βS : S ∈ S}. For any distinct S, S′ ∈ S
– From Theorem C.2,

KL(Lap(βS , σ),Lap(βS′ , σ)) = δ(S, S′)KL(Lap(0, σ),Lap(a, σ))
≤ 2q · g(a/σ) (41)

where g(x) = e−x + x− 1 for x ≥ 0.
– ‖βS − βS′‖2

2 = δ(S, S′)r2 > qa2

• From Proposition 9 of Birge and Massart (2001) and the KL divergence
bound in (41),

n ·RM

(
B(r, q)

)
≥ 1

4qa
2
[
1 −

(
2
3 ∨ 2qg(a/σ)

log |S|

)]
.

Applying the bound on log |S| from (40),

n ·RM

(
B(r, q)

)
≥ 1

4qa
2
[
1 −

(
2
3 ∨ 4g(a/σ)

τ

)]
By definition of a, 4g(a/σ)

τ ≤ 2
3 . Therefore

n ·RM

(
B(r, q)

)
≥ 1

12qa
2

Plug in the expression for a and then for τ to arrive at the desired bound.

C.2. Proof of Theorem 3.7

Proof of Theorem 3.7. We apply Le Cam’s method to derive the lower bound.
Define β(1), β(2) ∈ R

n as follows. β
(1)
i = β

(2)
i = 1 for all i ∈ [n − 1] and

β
(1)
n = 1 + Cn/4, β(2)

n = 1 + Cn/2. Observe that

1
n
‖β(1) − β(2)‖2

2 = C2
n

16n.
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Verify that β(1), β(2) ∈ Θ(Cn). From equation (15.14) in Wainwright (2019), we
can write

inf
β̂

sup
β∈Θ(Cn)

E‖β̂ − β‖2
n ≥ C2

n

64n (1 − ‖P1 − P2‖TV) (42)

where Pj is the product distribution of y1, . . . , yn with yi ∼ Exp(mean = β
(j)
i )

for i ∈ [n]. We can calculate ‖P1 − P2‖TV as follows.

‖P1 − P2‖TV

= 1
2

∫ ∣∣∣∣p(1)
1 (x1)p(1)

2 (x2) . . . p(1)
n (xn) − p

(2)
1 (x1)p(2)

2 (x2) . . . p(2)
n (xn)

∣∣∣∣ dx
= 1

2

∫
p
(1)
1 (x1)p(1)

2 (x2) . . . p(1)
n−1(xn−1)

∣∣p(1)
n (xn) − p(2)

n (xn)
∣∣ dx1 . . . dxn

= 1
2

∫ ∣∣p(1)
n (xn) − p(2)

n (xn)
∣∣ dxn

= 1
4

Here p(j)
i is the density of the exponential distribution with mean β

(j)
i for i ∈ [n].

The second line above is true because p
(1)
i = p

(2)
i for i ∈ [n− 1]. The calculation

for the last line is given in Theorem C.4. Plugging this back into (42), we get
the lower bound

inf
β̂

sup
β∈Θ(Cn)

E‖β̂ − β‖2
n ≥ 3C2

n

256n.

Lemma C.4. The total variation distance between two exponential distributions
with means β and 2β is 1

4 , for any β > 0.

Proof of Theorem C.4. The stated total variation distance is

1
2

∫ ∞

0

∣∣∣∣ 1β e−x/β − 1
2β e

−x/2β
∣∣∣∣ dx

= 1
2

∫ ∞

0
|2e−2y − e−y| dy

= 1
2

∫ log 2

0
(2e−2y − e−y) dy + 1

2

∫ ∞

log 2
(e−y − 2e−2y) dy

= 1
4 .

In the first line, the variable is changed (x → 2βy).

Appendix D: Algorithmic details

This section expands on the algorithmic implementation for the MLE trend
filter described in Section 4. First, rewrite Equation (2) (substituting x for θ)
as

min
Dx=z

1
n

∑
ψ(xi) − yixi + λ ‖z‖1 .
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This is equivalent to (2) but with additional variables. The Lagrangian for this
constrained minimization is given by

L(x, z, w) = 1
n

∑
ψ(xi) − yixi + λ ‖z‖1 + wT(Dx− z), (43)

and the augmented Lagrangian is

Lρ(x, z, w) = 1
n

∑
ψ(xi) − yixi + λ ‖z‖1 + wT(Dx− z) + ρ

2 ‖Dx− z‖2
2 .

The augmented Lagrangian effectively adds a quadratic term that penalizes
infeasibility. So for any feasible solution with Dx = z, the augmented Lagrangian
will be equal to (43). Rather than this form, we instead use the “scaled” form
for the augmented Lagrangian, as it makes the update steps a little simpler.
Defining u = w/ρ, then the augmented Lagrangian becomes

Lρ(x, z, u) = 1
n

∑
ψ(xi) − yixi + λ ‖z‖1 + ρ

2 ‖Dx− z + u‖2
2 − ρ

2 ‖u‖2
2 .

The scaled ADMM algorithm iteratively solves this problem by minimizing over
x then z then a dual ascent update on u:

x ← argmin
x

1
n

∑
ψ(xi) − yixi + ρ

2 ‖Dx− z + u‖2
2 , (44)

z ← argmin
z

λ ‖z‖1 + ρ

2 ‖Dx− z + u‖2
2 ,

u ← u + Dx− z.

The x update involves a matrix inversion which is best avoided when n is large.
So we linearize that problem (the x update only) around the current value xo

x ← argmin
x

1
n

∑
ψ(xi) − yixi + ρ

(
DTDxo −DTz + DTu

)T
x + μ

2 ‖x− xo‖2
2 .

(45)
To include the null space penalty, the changes only impact the x update. There-
fore, (44) becomes

x ← argmin
x

1
n

∑
ψ(xi) − yixi + ρ

2 ‖Dx− z + u‖2
2 + λ2‖PNx‖2,

and (45) becomes

x ← argmin
x

1
n

∑
ψ(xi) − yixi + ρ

(
DTDxo −DTz + DTu

)T
x

+ λ2(g(xo))Tx + μ

2 ‖x− xo‖2
2 .

where g(v) is a subgradient of the function v �→ ‖PN v‖2 given by g(v) = PN v
‖PN v‖2

when PN v �= 0 and g(v) = 0 when PN v = 0.
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The z-update is easily shown to be given by elementwise soft-thresholding,

zi ← sign(zi) (|zi| − (Dx− u)i)+ ;

and the u-update is simply vector addition. The x-update is potentially more
challenging. Note first that the x-update is the same for each i, so we can solve
n 1-dimensional problems. The KKT stationarity condition requires

0 = (ψ′(xi) − yi) + ρ
(
DT (Dxo − z + u)

)
i
+ μ(xi − xo

i ).
=⇒ ψ′(xi) + μxi = yi − ρ

(
DTDxo −DTz + u

)
i
+ μxo

i .

Therefore, for any loss function as given by ψ, we want to solve ψ′(xi)+μxi = bi,
for each i ∈ [n]. For many functions ψ, the solution has a closed form. The Bino-
mial distribution with ψ(x) = log(1 + ex) is a family without a simple solution,
though standard root finding methods implemented in low-level languages have
no difficulties. To include the nullspace penalty, the x update changes slightly,
but the logic is the same.

Appendix E: Degrees of freedom and tuning parameter selection

Here, we provide further details of the tuning parameter selection procedure de-
scribed in Section 5. If Y ∼ N(θ∗, σ2), a now common method of risk estimation
makes use of Stein’s Lemma.

Lemma E.1 (Stein’s Lemma). Assume f(Y ) is weakly differentiable with es-
sentially bounded weak partial derivatives on R

n, then

tr Cov(Y, f(Y )) = E [〈Y, f(Y )〉] = σ2E

[
trDf(Y )

∣∣∣∣
y

]
.

The utility of this result comes from examining the decomposition of the
mean squared error of θ̂(Y ) as an estimator of θ∗.

E
[
‖θ∗ − θ̂(Y )‖2

2

]
= E

[
‖Y − θ̂(Y )‖2

2

]
− nσ2 + 2 tr Cov(Y, θ̂(Y ))

= E
[
‖Y − θ̂(Y )‖2

2

]
− nσ2 + 2σ2E

[
trJθ̂(z)

∣∣
Y

]
.

This characterization motivates the definition of degrees-of-freedom for linear
predictors (df := 1

σ2 trJθ̂(z)
∣∣
y
) (Efron, 1986), where θ̂(y) = Hy. Using Stein’s

Lemma, assuming σ2 is known, we have Stein’s Unbiased Risk Estimator

SURE(θ̂) = ‖y − θ̂‖2
2 − nσ2 + 2σ2 tr

(
Jθ̂(z)

∣∣
y

)
,

which satisfies E[SURE(θ̂)] = E‖θ∗ − θ̂(Y )‖2
2. Note that this is the risk for es-

timating the n-dimensional parameter θ∗. The following result generalizes this
idea to certain continuous exponential families.
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Lemma E.2 (Generalized Stein Lemma; Eldar, 2009). Assume θ̂(y) is weakly
differentiable in y with essentially bounded weak partial derivatives on R

n. Let
Y be distributed according to a natural exponential family and assume that the
base measure h is weakly differentiable. Then,

E
[
θ∗Tθ̂(Y )

]
= −E

[〈
∇h(Y )
h(Y ) , θ̂(Y )

〉
+ trJθ̂(y)

∣∣
Y

]
.

Note that ∇h(Y ) here means the vector [d/dy h(y)|yi ] and h(Y ) means the vector
[h(yi)].

Therefore we define the Generalized SURE (Eldar, 2009) along the lines of
the multivariate Gaussian case.

Lemma E.3. Assume h is weakly differentiable, θ̂(y) is weakly differentiable
with essentially bounded partial derivatives. Then

SURE(θ̂) = ‖θ̂(y)‖2
2 + 2

〈
∇h(y)
h(y) , θ̂(y)

〉
+ 2 tr

(
Jθ̂(z)

∣∣∣∣
y

)
+ 1

h(y) tr ∂
2h(z)
∂z2

∣∣∣∣
y

is an unbiased estimator for the MSE of an estimator θ̂(Y ) of θ: E‖θ̂(Y )− θ‖2
2.

Proof. We have

E
[
‖f(Y ) − θ(β)‖2

2

]
= E

[
‖f(Y )‖2

2

]
+ E

[
‖θ‖2

2

]
− 2E [〈θ(β), f(Y )〉] .

Now, the first term is a function of the data only, and to the last term, we simply
apply Theorem E.2. For the second term,

E
[
‖θ‖2

2

]
= E [〈θ, θ〉] = −E

[〈
∇h(Y )
h(Y ) , θ

〉]
= E

[〈
∇h(Y )
h(Y ) ,

∇h(Y )
h(Y )

〉]
+ E

[
tr ∂

∂y

∇h(y)
h(y)

∣∣∣∣
Y

]
= E

[
‖∇h(Y )‖2

2
h(Y )2

]
+ E

[
tr

‖∇h(Y )‖2
2 + h(Y )∂2/∂y2h(y)

∣∣
Y

h(Y )2

]

= E

[
1

h(Y ) tr ∂
2h(y)
∂y2

∣∣∣∣
Y

]
,

by applying Theorem E.2 twice along with the quotient rule.

For the MLE trend filter with a continuous exponential family, we have that h
is weakly differentiable. Furthermore, Theorem 1 in Vaiter et al. (2017) applies.
Thus the special case in Theorem 5.1 holds generally for this estimator.

However, we would prefer to estimate the Kullback–Leibler Divergence be-
tween the density under θ = θ̂(y) and that under θ = θ∗. For exponential
families,

E
[
KL(θ̂(Y ) ‖ θ∗)

]
= E

[〈
θ̂(Y ) − θ∗, β̂(Y )

〉
+ ψ(θ∗) − ψ

(
θ̂(Y )

)]
,
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and, an application of Theorem E.2 provides an unbiased estimator of this quan-
tity. The result is given in Theorem 5.1 in the main body.

Finally, we conclude this section with the proof of Theorem 5.2.

Proof of Theorem 5.2. The proof follows from Vaiter et al. (2017, Theorem 2).
We have

XT = PN (D̆)

∇2F0(μ̂(y), y) = diag
(
ψ′′(θ̂)

)
Aβ = 0

∇2
MJ

(
β̂(y)

)
= λ2PN

D(∇F0)(μ̂(y), y) = diag
(
ψ′′(θ̂)

)
.
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