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Abstract: We show that two popular selective inference procedures, namely
data carving (Fithian et al., 2017) and selection with a randomized response
(Tian and Taylor, 2018), when combined with the polyhedral method (Lee
et al., 2016), result in confidence intervals whose length is bounded. This
contrasts results for confidence intervals based on the polyhedral method
alone, whose expected length is typically infinite (Kivaranovic and Leeb,
2021). Moreover, we show that these two procedures always dominate cor-
responding sample-splitting methods in terms of interval length.
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1. Introduction

Post-model-selection inference, i.e., parametric inference when the fitted model
is chosen in a data-driven fashion, is non-trivial. Obviously, such a model is
random and may be misspecified. It is well-known that the ‘naive’ approach,
where the model-selection step is ignored in the sense that the chosen model
is treated as a-priori given and as correct in subsequent analyses, can result
in invalid inference procedures; cf. Leeb and Pötscher (2005). The polyhedral
method of Lee et al. (2016) is a recently proposed technique that allows one
to construct valid inference procedures, like tests or confidence intervals, after
model selection, for a parameter of interest that depends on the selected model.
The polyhedral method and its variants can be used with a variety of methods,
including the Lasso or the sequential testing method considered later in this
paper.

Kivaranovic and Leeb (2021) showed that the expected length of confidence
intervals based on the polyhedral method of Lee et al. (2016) is typically infi-
nite. The polyhedral method can be modified by combining it with data carving
(Fithian et al., 2017) or with selection on a randomized response (Tian and Tay-
lor, 2018). These references found, in simulations, that this combination results
in significantly shorter intervals than those based on the polyhedral method
alone. In this paper, we give a formal analysis of this phenomenon. We show
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that the polyhedral method, when combined with the proposals of Fithian et al.
(2017) or of Tian and Taylor (2018), delivers intervals whose length is always
bounded. Our upper bound is easy to compute, easy to interpret and also ap-
plies in situations where variances are estimated. In the interesting case, where
the polyhedral method alone gives intervals with infinite expected length, our
bound is also sharp. Moreover, we show that the intervals of Fithian et al. (2017)
and Tian and Taylor (2018) are always shorter than the intervals obtained by
corresponding sample splitting methods.

There are several ongoing developments regarding inference after model se-
lection. Roughly speaking, one can divide them into two branches: Inference
conditional on the selected model and inference simultaneous over all poten-
tial models. Pioneer works in these two areas are Lee et al. (2016) and Berk
et al. (2013), respectively. This paper is concerned with procedures in the first
branch, i.e., procedures that evolved from the polyhedral method. See, among
others, Fithian et al. (2017); Markovic et al. (2018); Panigrahi et al. (2021); Pan-
igrahi and Taylor (2023); Reid et al. (2017, 2018); Taylor and Tibshirani (2018);
Tian et al. (2016); Tian and Taylor (2017); Tian et al. (2018); Tian and Taylor
(2018); Tibshirani et al. (2016). For related literature from the second branch,
see among others, Bachoc et al. (2019, 2020); Kuchibhotla et al. (2018, 2020);
Zrnic and Jordan (2023). We also want to note that all these works address
model-dependent targets and not the true underlying parameter in the classical
sense. Valid inference for the underlying true parameter is a more challenging
task, as demonstrated by the impossibility results of Leeb and Pötscher (2005,
2006, 2008).

This paper is organized as follows. In Section 2, we showcase our results in
the context of selective inference for the file-drawer problem and with the Lasso,
and we describe a particular conditional distribution that occurs in selective in-
ference when the polyhedral method is combined with data carving or with
selection with a randomized response. In Section 3 we present our main tech-
nical result, Theorem 3.1, where we show that a confidence interval based on
the aforementioned conditional distribution has bounded length. We also per-
form simulations that provide additional insights on the accuracy of our upper
bound. In Section 4, we demonstrate that the conditional distribution considered
in Theorem 3.1 frequently arises in selective inference. In particular, we consider
the polyhedral method combined with data carving as well as the polyhedral
method combined with selection on a randomized response. We show that these
procedures give confidence intervals whose length is always bounded, and that
they strictly dominate corresponding sample-splitting methods in terms of inter-
val length. While the discussion in Section 4 is generic, we also provide detailed
examples in Section 5, namely a simple case of sequential testing with data carv-
ing and model selection using the Lasso on a randomized response. A discussion
in Section 6 concludes. All proofs are collected in the appendix.
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2. Overview and motivation

Consider first a very simple scenario for selective inference, the file-drawer prob-
lem, which was introduced by Rosenthal (1979) as a simple model for publica-
tion bias. Given Z ∼ N(μ, 1), the goal is to construct a confidence interval for
μ provided, e.g., that Z > 1.64, that is, provided that a test of the hypothesis
H0 : μ = 0 is rejected. The usual equal-tailed 95%-confidence interval for μ, i.e.,
Z ± 1.96, does not have the right coverage probability conditional on the event
that Z > 1.64 because, conditional on this event, the data is not Gaussian but
distributed as

Z | Z ∈ T (1)

for T = (1.64,∞), which is a truncated normal. This distribution depends on
unknown parameters only through μ, and standard methods give an equal-tailed
confidence set [L̂(Z), Û(Z)] that satisfies

P(μ ∈ [L̂(Z), Û(Z)] | Z ∈ T ) = 0.95;

see Lee et al. (2016, Theorem 5.2). This interval, while having the right coverage
probability, can be rather large in practice: Because the truncation set T is
bounded on one side, the results of Kivaranovic and Leeb (2021) entail that

E(Û(Z) − L̂(Z) | Z ∈ T ) = ∞.

Now suppose that the conditioning event is randomized as in Example 2 of Tian
and Taylor (2018). More precisely, suppose that the event {Z ∈ T} is replaced
by {Z + R ∈ T}, where R ∼ N(0, τ2) is independent of Z and where τ is
known. While this may not be practical when dealing with publication bias,
this is exactly what happens in data carving and selection with a randomized
response; see Section 4. Now the underlying distribution becomes

Z | Z + R ∈ T, (2)

and standard methods can again be used to construct an equal-tailed confidence
set [Ľ(Z), Ǔ(Z)] that satisfies

P(μ ∈ [Ľ(Z), Ǔ(Z)] | Z + R ∈ T ) = 0.95.

The main finding of this paper is that this and related randomization methods
have a dramatic impact on confidence interval length. Without randomization,
the expected length of the interval [L̂(Y ), Û(Y )] is infinite. With randomization,
the length of the interval [Ľ(Y ), Ǔ(Y )] is always bounded:

Ǔ(Z) − Ľ(Z) < 2 × 1.96 ×
√

1 + 1/τ2;

see Theorem 3.1. The upper bound is just the length of the usual (unconditional)
95%-confidence interval Z ± 1.96 multiplied by

√
1 + 1/τ2.
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Now consider a more elaborate scenario, model selection with the Lasso. Con-
sider a response vector Y and a matrix X of explanatory variables. In particular,
assume that Y ∼ N(θ, σ2In) with n ∈ N, θ ∈ R

n and σ2 ∈ (0,∞), and assume
that X ∈ R

n×d (d ∈ N) is a fixed matrix whose columns are in general position
in the sense of Tibshirani (2013). The Lasso estimator, denoted by β̂(y), is the
minimizer of the least squares problem with an additional penalty on the ab-
solute size of the regression coefficients (Frank and Friedman, 1993; Tibshirani,
1996):

β̂(y) = arg min
β∈Rd

1
2‖y −Xβ‖2

2 + λ‖β‖1,

where y ∈ R
n and where λ ∈ (0,∞) is a given tuning parameter. Because of our

assumptions on X, β̂(y) is well-defined; cf. Lemma 3 in Tibshirani (2013). Since
individual components of β̂(Y ) are zero with positive probability, the non-zero
coefficients of β̂(Y ) can be viewed as the model m̂(Y ) selected by the Lasso.
More formally, for each y ∈ R

n, let m̂(y) ⊆ {1, . . . , d} and ŝ(y) ∈ {−1, 1}|m̂(y)|

denote the set of indices and the vector of signs, respectively, of the non-zero
components of β̂(y) (in case m̂(y) = ∅, ŝ(y) is left undefined).

Conditional on events like {m̂(Y ) = m} or {m̂(Y ) = m, ŝ(Y ) = s}, the poly-
hedral method provides confidence intervals for linear contrasts of the form η′mθ
with pre-specified coverage probability for a given d-vector ηm �= 0.1 These in-
tervals are based on the (conditional) distribution of η′mY , which is the obvious
(unconditionally unbiased) estimator for η′mθ. Consider a model m �= ∅ and a
sign-vector s ∈ {−1, 1}|m|, so that P(m̂(Y ) = m, ŝ(Y ) = s) > 0. Lee et al.
(2016) show that the event {m̂(Y ) = m, ŝ(Y ) = s} is a polyhedron in Y -space.
Hence, the distribution of Y |m̂(Y ) = m, ŝ(Y ) = s is a multivariate Gaussian
restricted to said polyhedron. Now decompose Y into the sum of two indepen-
dent components were one depends only on η′mY : Y = PηmY + (In − Pηm)Y
with Pηm denoting the orthogonal projection on the span of ηm. Conditional on
m̂(Y ) = m, ŝ(Y ) = s and (In − Pηm)Y = w, we see that Y equals PηmY + w
and lies on the affine line {αηm + w,α ∈ R} intersected with the polyhedron
corresponding to {m̂(Y ) = m, ŝ(Y ) = s}. In particular, the conditional distri-
bution of η′mY conditional on m̂(Y ) = m, ŝ(Y ) = s and (In − Pηm)Y = w is
a a truncated normal, similar to (1), where the truncation set is now an inter-
val Tm,s(w) that depends on the polyhedron (i.e., on m and s) and on w. In
particular,

L(η′mY | m̂(Y ) = m, ŝ(Y ) = s, (In − Pηm)Y = w) = L(Z | Z ∈ Tm,s(w)),

where L(. . . ) denotes the indicated (conditional) distributions, where Z ∼
N(η′mθ, σ2‖ηm‖2), and where Tm,s(w) is as above. Note that this distribution
is of the same functional form as (1). Using this distribution, Lee et al. (2016)
obtain a confidence interval for η′mθ with pre-specified coverage probability con-
ditional on m̂(Y ) = m, ŝ(Y ) = s, (In−Pηm)Y = w and hence also conditional on

1The quantity of interest η′mθ may depend on the selected model and is often of the form
η′mθ = γ′

m[(X′
mXm)−1X′

mθ] if m �= ∅.
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the (larger) event {m̂(Y ) = m, ŝ(Y ) = s}. The construction is the same as that
used to obtain the interval [L̂(Z), Û(Z)] in the file-drawer problem considered
earlier. And, again similar to the file-drawer problem, the conditional expected
length of this interval is infinite because the truncation set Tm,s(w) is always
bounded either from above or below (Kivaranovic and Leeb, 2021, Proposition
2).

Next, suppose that the model selection step is randomized as proposed
by Tian and Taylor (2018). Take ω ∼ N(0, τ2In) independent of Y . We will se-
lect a model based on the randomized data Y +ω, while the original data Y will
be used for subsequent inference. For model selection, we first compute the lasso-
estimator β̂(Y +ω) from the randomized data. The non-zero coefficients of this
estimator and their signs again give a model m̂(Y +ω) and a sign-vector ŝ(Y +ω)
(provided that m̂(Y +ω) �= 0). For m and s as before, we will use the polyhedral
method to obtain a confidence interval for η′mθ with pre-specified coverage prob-
ability conditional on the event {m̂(Y +ω) = m, ŝ(Y +ω) = s} that is based on
the conditional distribution of η′mY . The event {m̂(Y + ω) = m, ŝ(Y + ω) = s}
is again a polyhedron, but now in (Y + ω)-space. Arguing as in the preceding
paragraph, we see that

L(η′m(Y + ω) | m̂(Y + ω) = m, ŝ(Y + ω) = s, (In − Pηm)(Y + ω) = w)
= L(Z + R | Z + R ∈ Tm,s(w)),

where Z and Tm,s(w) are as before and where R ∼ N(0, τ2‖ηm‖2) is independent
of Z. Because we use the estimator η′mY , the conditional distribution of interest
is

L(η′mY | m̂(Y + ω) = m, ŝ(Y + ω) = s, (In − Pηm)(Y + ω) = w)
= L(Z | Z + R ∈ Tm,s(w)).

Based on this distribution, Tian and Taylor (2018) obtain a confidence interval
for η′mθ with pre-specified coverage probability conditional on m̂(Y + ω) =
m, ŝ(Y +ω) = s, (In−Pηm)(Y +ω) = w and hence also conditional on the (larger)
event {m̂(Y +ω) = m, ŝ(Y +ω) = s}. Because the distribution in the preceding
display is of the same functional form as (2), the confidence interval of Tian
and Taylor (2018) has properties similar to those of the interval [Ľ(Z), Ǔ(Z)]
that we constructed in the randomized file-drawer problem. In particular, its
length is always bounded. We will return to the Lasso later in Subsection 5.2 to
cover some more technical details; in particular, we will explicitly compute the
upper bound on confidence interval length and also consider the case where the
conditioning is on the selected model only (and not on the signs).

3. Main technical result

Here, we study confidence intervals based on an observation from the truncated
Gaussian distribution

Z | Z + R ∈ T, (3)
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where Z and R are independent, Z ∼ N(μ, σ2) with μ ∈ R and σ2 ∈ (0,∞),
R ∼ N(0, τ2) with τ2 ∈ (0,∞), and where the truncation set T is of the form

T =
k⋃

i=1
(ai, bi) (4)

with k ∈ N and ∞ ≤ a1 < b1 < · · · < ak < bk ≤ ∞.
Let Φ(t) be the cumulative distribution function (c.d.f.) of the standard nor-

mal distribution and denote by F τ2

μ,σ2(z) the conditional c.d.f. of the random
variable in (3). For sake of readability, we do not show the dependence of this
c.d.f. on T in the notation. For α ∈ (0, 1) and z ∈ R, let μα(z) satisfy

F τ2

μα(z),σ2(z) = 1 − α. (5)

The quantity μα(z) is well-defined and strictly increasing as a function of α for
fixed z ∈ R (cf. Lemma A.6). For all α1, α2 ∈ (0, 1) such that α1 < α2, we have

P (μ ∈ [μα1(Z), μα2(Z)] | Z + R ∈ T ) = α2 − α1 (6)

by a textbook result for confidence bounds (e.g., Chapter 3.5 in Lehmann and
Romano, 2006). A common choice is to set α1 = α/2 and α2 = 1 − α/2 such
that, conditional on {Z+R ∈ T}, [μα1(Z), μα2(Z)] is an equal-tailed confidence
interval for μ at level 1 − α. Another option is to choose α1 and α2 such that,
conditional on {Z+R ∈ T}, [μα1(Z), μα2(Z)] is an unbiased confidence interval
at level 1 − α (cf. Chapter 5.5 in Lehmann and Romano, 2006).

It is easy to see that, as τ2 goes to 0, F τ2

μ,σ2(z) converges weakly to the c.d.f. of
the truncated normal distribution Z|Z ∈ T , which leads to confidence intervals
with infinite expected length if (and only if) the truncation set T is bounded from
above or from below (Kivaranovic and Leeb, 2021, Proposition 1). On the other
hand, as τ2 goes to ∞, it is similarly easy to see that F τ2

μ,σ2(z) converges weakly
to the c.d.f. of the normal distribution with mean μ and variance σ2. Hence, in
the case where the intervals are based on limτ2→∞ F τ2

μ,σ2(z), the length of the
resulting confidence interval equals σ

(
Φ−1(α2) − Φ−1(α1)

)
. These observations

suggest that, in the case where τ2 ∈ (0,∞), the length of [μα1(z), μα2(z)] might
be bounded somewhere between σ

(
Φ−1(α2) − Φ−1(α1)

)
and ∞. This idea is

formalized by the following result.

Theorem 3.1. Fix σ2 and τ2 in (0,∞), μ ∈ R, T as in (4), and 0 < α1 <
α2 < 1. For each x ∈ R, we then have

μα2(z) − μα1(z) < σ
(
Φ−1(α2) − Φ−1(α1)

)√
1 + σ2

τ2 ,

where μαi(z) is defined as in (5) with αi replacing α, i = 1, 2. If supT = bk < ∞,
the left-hand side converges to the right-hand side as z → ∞. The same is true
if inf T = a1 > −∞ and z → −∞.
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Fig 1. The length [μα1(z), μα2 (z)] is plotted as a function of z. In the left panel the truncation
sets are of the form (−a, a) and in the right panel truncation sets are of the form (−∞,−a)∪
(a,∞). The different values for a are shown below the plot. The remaining parameters are
α1 = 1 − α2 = 0.025 and σ2 = τ2 = 1.

The upper bound in Theorem 3.1 is easy to compute, does not depend on the
truncation set T , and increases as the amount of randomization τ2 decreases.
As τ2 goes to zero, the upper bound diverges to infinity, in accordance with
Kivaranovic and Leeb (2021). On the other hand, as τ2 goes to ∞, the upper
bound converges to σ

(
Φ−1(α2) − Φ−1(α1)

)
. Also note that the upper bound is

sharp if T is bounded from above or from below, i.e., in the case where confidence
intervals based on Z|Z ∈ T have infinite expected length. Finally, as detailed in
Remark 3.2 below, the upper bound can also be used in the unknown-variance
case, i.e., if σ2 or τ2 or both are replaced by estimators.

In Figure 1, we plot the length of [μα1(z), μα2(z)] as a function of z for
several truncation sets T . In the left panel the truncation set is of the form
(−a, a) (bounded) and in the right panel the truncation set is of the form
(−∞,−a) ∪ (a,∞) (unbounded with a gap in the middle). The top dashed
line denotes the upper bound σ

(
Φ−1(α2) − Φ−1(α1)

)√
1 + σ2/τ2; the bottom

dashed line denotes σ
(
Φ−1(α2) − Φ−1(α1)

)
, i.e., the length of the confidence in-

terval with unconditional coverage. In the left panel, we see that μα2(z)−μα1(z)
approximates the upper bound as |z| diverges. The smaller a, i.e., the smaller
the truncation set T , the faster the convergence. Also in this case, where the
truncation set is a bounded interval, the left panel indicates that the length
is bounded from below by σ

(
Φ−1(α2) − Φ−1(α1)

)
. In the right panel, we see

that our upper bound is not sharp when the truncation set is unbounded on
both sides. It appears that the length converges to σ

(
Φ−1(α2) − Φ−1(α1)

)
as

|z| diverges. However, as the gap of the truncation set becomes larger (i.e., as a
grows), we see that the length approximates the upper bound for values around
a and −a. Finally, σ

(
Φ−1(α2) − Φ−1(α1)

)
is not an lower bound in this case, as

we can see that the length is considerably smaller for values in the gap (−a, a).
It seems that the length converges to zero for values of z around 0 as a diverges.

In Figure 2, we plot Monte-Carlo approximations of the conditional expected
length of [μα1(Z), μα2(Z)] given Z +R ∈ T as a function of μ, for the same sce-
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Fig 2. The conditional expected length of [μα1(Z), μα2 (Z)] is plotted as a function of μ. In
the left panel the truncation sets are of the form (−a, a) and in the right panel the truncation
sets are of the form (−∞,−a) ∪ (a,∞). The different values for a are shown below the plot.
The remaining parameters are α1 = 1 − α2 = 0.025 and σ2 = τ2 = 1.

narii as considered in Figure 1. For the Monte-Carlo simulations, we draw 2000
independent samples from the distribution in (3), compute the confidence inter-
val for each and estimate the conditional expected length by the sample mean
of the lengths. In the left panel, we observe that the conditional expected length
is minimized at μ = 0 and converges to the upper bound as μ diverges. We also
note that the smaller the truncation set, the larger the conditional expected
length. This means that the conditional expected length is close to the upper
bound if the probability of the conditioning event is small. In the right panel, we
again observe that the conditional expected length is minimized at μ = 0. How-
ever, it seems to converge not the upper bound but to σ

(
Φ−1(α2) − Φ−1(α1)

)
as μ diverges. Surprisingly, the conditional expected length at μ = 0 decreases
as a increases and becomes significantly smaller than σ

(
Φ−1(α2) − Φ−1(α1)

)
.

In particular, and in contrast to the left panel, we here observe that, for μ close
to zero, the conditional expected length decreases as the probability of the con-
ditioning event decreases; for μ not close to zero, the situation is again as in the
left panel.

Remark 3.2 (The unknown-variance case). In the discussion so far, the vari-
ances σ2 and τ2 were assumed to be known. Assume now that one or both
of these variances are unknown, and that variance estimators σ̂2 and τ̂2 are
available that take values in (0,∞); if one of the variances is known, set the cor-
responding estimator equal to its value. We note that the truncation set T as
in (4) may depend on the (estimated) variances, and we stress this dependence
here by denoting it by T̂ . A natural way to obtain a confidence interval in the
unknown variance case is to proceed as before, using the variance estimators as
plug-ins. In particular, following the construction leading up to Theorem 3.1,
with σ2, τ2 and T replaced by σ̂2, τ̂2 and T̂ , respectively, we obtain a confidence
interval for μ that we denote by [μ̂α1(Z), μ̂α2(Z)]. For this interval, a relation
like (6) typically does not hold, and its conditional coverage probability depends
on the estimators σ̂2 and τ̂2; this topic is further discussed in Section 8.1 of Lee
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et al. (2016). However, Theorem 3.1 can still be used to obtain an upper bound
on the length of this interval: Using the theorem with σ2, τ2 and T replaced
by σ̂2, τ̂2 and T̂ , respectively, we see that μ̂α2(Z) − μ̂α1(Z) is smaller than
σ̂(Φ−1(α2) − Φ−1(α1))

√
1 + σ̂2/τ̂2. This is because the theorem only requires

that (5) holds with α replaced by αi, i = 1, 2.

4. Application to selective inference

Throughout this section, we consider the generic sample mean setting that lies
at the heart of the polyhedral method and of many procedures derived from
it. To use these methods with specific model selectors, one essentially has to
reduce the specific situation at hand to the generic setting considered here.
This is demonstrated by the examples in Section 5; further examples can be
obtained from the papers on selective inference mentioned in Section 1. For the
sake of exposition, we focus here on the known-variance case. As outlined in
Remark 3.2, our results can also be applied in situations where variances are
estimated, mutatis mutandis.

Let n ∈ N and let Z1, . . . , Zn be i.i.d. normal random variables with mean
μ ∈ R and variance σ2 ∈ (0,∞). The outcome of a model-selection procedure
can often be characterized through an event of the form Z̄n ∈ T , where Z̄n

denotes the sample mean and T is as in (4). The polyhedral method provides
a confidence interval for μ with pre-specified coverage probability conditional
on the event Z̄n ∈ T , based on the conditional distribution of Z̄n|Z̄n ∈ T .
The (conditional) expected length of this interval is infinite if and only if T is
bounded from above or from below; cf. Kivaranovic and Leeb (2021).

4.1. Data carving

Data carving (Fithian et al., 2017) means that only a subset of the data is used
for model selection while the entire dataset is used for inference based on the
selected model. Let δ ∈ (0, 1) be such that δn is a positive integer. If only the
first δn observations are used for selection, the outcome of a model-selection
procedure can often be characterized through an event of the form Z̄δn ∈ T ;
here Z̄δn is the sample mean of the first δn observations and the truncation set T
is as in (4). (Of course, the truncation sets used by the plain polyhedral method
and by the polyhedral method with data carving might differ.) Inference for μ
is now based on the conditional distribution

Z̄n | Z̄δn ∈ T. (7)

In the preceding display, the conditioning variable Z̄δn can be written as Z̄δn =
Z̄n+R̄ for R̄ = Z̄δn−Z̄n. Using elementary properties of the normal distribution,
it is easy to see that Z̄n and R̄ are independent. We thus obtain the following:
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Proposition 4.1. The conditional c.d.f. of the random variable in (7) is equal
to F τ̃2

μ,σ̃2(z) with truncation set T ,

σ̃2 = σ2

n
and τ̃2 = σ2

n

1 − δ

δ
.

Let μ̃α(z) satisfy F τ̃2

μ̃α(z),σ̃2(z) = 1 − α, where σ̃2 and τ̃2 are as in the propo-
sition. Then [μ̃α1(Z̄n), μ̃α2(Z̄n)] is a confidence interval for μ with conditional
coverage probability α2 − α1 given Z̄δn ∈ T (0 < α1 < α2 < 1). Theorem 3.1
implies that

μ̃α2(z) − μ̃α1(z) <
σ√
n

(
Φ−1(α2) − Φ−1(α1)

) 1√
1 − δ

.

We see that the length of [μ̃α1(Z̄n), μ̃α2(Z̄n)] shrinks at the same
√
n-rate as in

the unconditional case. The price of conditioning is at most the factor 1/
√

1 − δ.
Note that, for δ = 1, data carving reduces to the polyhedral method.

A corresponding sample-splitting method is the following: Again, the model
is selected based on the first δn observations, resulting in the same event Z̄δn ∈
T . For subsequent inference, however, only the last (1 − δ)n observations are
used. Because these are independent of Z̄δn, one obtains the standard confidence
interval for μ based on the last (1−δ)n observations, whose length is σ(Φ−1(α2)−
Φ−1(α1))/

√
(1 − δ)n. By the inequality in the preceding display, this sample-

splitting interval is always strictly larger than the interval obtained with data
carving.

4.2. Selection with a randomized response

This method of Tian and Taylor (2018) performs model-selection with a ran-
domized version of the data (i.e., after adding noise), while inference based on
the selected model is performed with the original data. Let ω ∼ N(0, τ2In) be a
noise vector independent of Z1, . . . , Zn and write ω̄n for the mean of its compo-
nents. If, in the model-selection step, the randomized data Z1 + ω1, . . . Zn + ωn

are used instead of the original data, then the outcome of the model-selection
step can often be characterized through an event of the form Z̄n+ ω̄n ∈ T where
T again is a truncation set as in Section 3 (possibly different from the trunca-
tion sets used by the plain polyhedral method or by the polyhedral method with
data carving). Here, inference for μ is based on the conditional distribution

Z̄n | Z̄n + ω̄n ∈ T, (8)

which is easy to compute.

Proposition 4.2. The conditional c.d.f. of the random variable in (8) is equal
to F τ̄2

μ,σ̄2(z) with truncation set T ,

σ̄2 = σ2

n
and τ̄2 = τ2

n
.
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Let μ̄α(z) satisfy F τ̄2

μ̄α(z),σ̄2(z) = 1 − α, where σ̄2 and τ̄2 are as in the propo-
sition, so that [μ̄α1(Z̄n), μ̄α2(Z̄n)] is a confidence interval for μ with conditional
coverage probability α2 − α1 given Z̄n + ω̄n ∈ T (0 < α1 < α2 < 1). With
Theorem 3.1, we see that

μ̄α1(z) − μ̄α2(z) <
σ√
n

(
Φ−1(α2) − Φ−1(α1)

)√
1 + σ2

τ2 .

Similarly to data carving, the length of the interval shrinks at the same
√
n-rate

as in the unconditional case, where the price of conditioning is controlled by the
factor

√
1 + σ2/τ2, and the method reduces to the polyhedral method if τ = 0.

To obtain a sample-splitting method that is comparable to selection with a
randomized response, we proceed as follows: We use the first nσ2/(σ2 + τ2)
observations for model selection and the remaining m = nτ2/(σ2 + τ2) obser-
vations for inference (assuming, for simplicity, that these numbers are positive
integers). Write Z̃m for the mean of the last m observations. Because the first
n − m observations are independent of Z̃m, we thus obtain the standard con-
fidence interval for μ based on Z̃m with length σ(Φ−1(α2) − Φ−1(α1))/

√
m =

(σ/
√
n)(Φ−1(α2) − Φ−1(α1))

√
1 + σ2/τ2. In terms of length, this interval is

always dominated by [μ̄α1(Z̄n) − μ̄α2(Z̄n)] considered above.
For data carving, choosing a corresponding sample splitting method was ob-

vious; cf. Subsection 4.1. This is not the case in the setting considered here.
Nevertheless, the considerations in the preceding paragraph show that selection
with a randomized response dominates any sample splitting scheme that uses
at most m = nτ2/(σ2 + τ2) observation for inference and the rest for selection.

Remark 4.3. Throughout this section, we have considered Gaussian data. In
non-Gaussian settings, our results can be applied asymptotically, provided that,
in (7) or (8), (i) the estimator used in the inference step, i.e., Z̄n, as well as the
random variables in the conditioning event are asymptotically jointly normal
and (ii) the probability of the conditioning event does not vanish.

5. Examples

5.1. Sequential testing with data carving

Consider a situation where an experiment Z is to be repeated independently n
times in order to determine the mean μ of Z. However, the whole process is to
be stopped at an earlier stage if results do not look promising, e.g., in a simple
clinical trial. In particular, the process is to be stopped if the mean Z̄δn of the
first δn repetitions fails to exceed a certain threshold c (assuming that δ is a
pre-determined fraction so that δn is an integer less than n). In this situation, a
confidence interval for μ is desired conditional on the event that Z̄δn > c, that
is, in the event that the process was not stopped early. If Z is assumed to be
Gaussian with mean μ and variance σ2, this situation can be handled using the
results of Section 4.1: Set T = (c,∞). Based on the conditional distribution of
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Z̄n given Z̄δn ∈ T , one obtains an equal-tailed confidence interval for μ with
coverage probability 1 − α whose length is less than 2σ√

n
Φ−1(1 − α/2)/

√
1 − δ.

In particular, the early stopping rule, i.e., conditioning on Z̄δn ∈ T , results in
intervals that are longer than the standard interval (that is constructed without
early stopping, i.e., without conditioning) by a factor of less than 1/

√
1 − δ.

In this example, we did not consider controlling for explanatory variables for
simplicity; allowing for additional explanatory variables to influence the exper-
imental outcome is more complex and will be studied elsewhere. We also note
that, in the setting of the present example, data carving controls a conditional
probability that is not commonly considered in group sequential testing. For the
substantial body of literature in that area, we refer to Jennison and Turnbull
(2000).

5.2. Lasso selection with a randomized response

To complete the discussion of the randomized Lasso from Section 2 we will use
the assumptions and the notation maintained there. Considered a model m and
a sign-vector s so that P(m̂(Y ) = m, ŝ(Y ) = s) > 0. We already know that
the conditional distribution of η′mY given m̂(Y + ω) = m, ŝ(Y + ω) = s and
(In−Pηm)Y = w is of the form (3) with Z ∼ N(μ̌, σ̌2) and R ∼ N(0, τ̌2), where
μ̌ = η′mθ, σ̌2 = σ2‖ηm‖2, τ̌2 = τ2‖ηm‖2, and where T = Tm,s(w) is an interval.
Choose αi, i = 1, 2, satisfying 0 < α1 < α2 < 1 and choose μ̌αi(z) so that
F τ̌2

μ̌αi
(z),σ̌2(z) = 1−αi, i = 1, 2, where the c.d.f. is computed with the truncation

set Tm,s(w) replacing T . Clearly, μ̌αi(z) depends on z, on m and s, and on w

(through the truncation set). Set Ľm,s,w(z) = μ̌α1(z) and Ǔm,s,w(z) = μ̌α2(z).
Then, by construction,

P(η′mθ ∈ [Ľm,s,w(η′mY ), Ǔm,s,w(η′mY )] | m̂(Y + ω) = m

ŝ(Y + ω) = s,

(In − Pηm)(Y + ω) = w) = α2 − α1

and, by Theorem 3.1,

Ǔm,s,w(η′mY ) − Ľm,s,w(η′mY ) < σ̌(Φ−2(α2) − Φ−2(α1))
√

1 + σ2

τ2 .

Also, the relations in the preceding two displays continue to hold if the condi-
tioning on (In − Pηm)(Y + ω) = w is dropped in the first display and if w is
replaced by W = (In − Pηm)(Y + ω) in both.

Now consider a model m with P(m̂(Y )) > 0. If m = ∅, then the event
{m̂(Y ) = m} is again a polyhedron in Y -space; cf. Lee et al. (2016). If m �= ∅,
then the event {m̂(Y ) = m} can be decomposed into the (disjoint) union of
events of the form {m̂(Y ) = m, ŝ(Y ) = s}, each with positive probability;
therefore, the event {m̂(Y ) = m} is the (disjoint) union of finitely many poly-
hedra in Y -space. This entails that the conditional distribution of η′mY given
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m̂(Y +ω) = m and (In −Pηm)(Y +ω) = w is again of the form (3) with Z and
R as in the preceding paragraph, where T = Tm(w) is now the union of finitely
many intervals. Now, proceeding as in the preceding paragraph, we obtain a
confidence interval [Ľm,w(η′mY ), Ǔm,w(η′mY )] that satisfies

P(η′mθ ∈ [Ľm,w(η′mY ), Ǔm,w(η′mY )] | m̂(Y + ω) = m, (In − Pηm)(Y + ω) = w)
= α2 − α1

by construction and

Ǔm,w(η′mY ) − Ľm,w(η′mY ) < σ̌(Φ−2(α2) − Φ−2(α1))
√

1 + σ2

τ2

by Theorem 3.1. As before, the relations in the preceding two displays continue
to hold if the conditioning on (In − Pηm)(Y + ω) = w is dropped in the first
display and if w is replaced by W = (In − Pηm)(Y + ω) in both.

6. Discussion

We have shown that the length of certain confidence intervals with conditional
coverage guarantee can be drastically shortened by adding some noise to the
data throughout the model-selection step. Examples include data carving and
selection on a randomized response, both combined with the polyhedral method.
Our findings clearly support the observations of Fithian et al. (2017) and Tian
and Taylor (2018) that sacrificing some power in the model-selection step results
in a significant increase in power in subsequent inferences. Selection and infer-
ence on the same data is not favorable in the case where the events describing
the outcome of the selection step correspond to bounded regions in sample space
(in our case, the truncation set T ), because then the resulting confidence set has
infinite expected length; cf. Kivaranovic and Leeb (2021). There are, however,
situations where this case can not occur: For example, Heller et al. (2019) study
a situation where first a global hypothesis is tested against a two-sided alterna-
tive and subsequent tests are only performed if the global hypothesis is rejected.
There, bounded selection regions do not arise and excessively long intervals are
not an issue. Hence, we recommend to be cautious about the selection procedure
one chooses. In some situations, adding noise in the selection step (e.g., through
data carving or randomized selection) may be beneficial; in other situations, it
may not be necessary.

Appendix A: Proof of Theorem 3.1

We first provide some intuition behind the theorem. Second, we state Proposi-
tion A.1 and A.2 which are the two core results which the proof of Theorem 3.1
relies on. Finally, we prove Theorem 3.1 with the help of these two propositions.
In Section A.1 and A.2 we then prove Proposition A.1 and A.2, respectively.
The first of these two propositions is considerably more difficult to prove. In
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Section A.3 we collect several auxiliary results which are required for the proofs
of the main results.

Throughout this section, fix σ2 and τ2 in (0,∞), and simplify notation by
setting Fμ(z) = F τ2

μ,σ2(z) and fμ(z) = fτ2

μ,σ2(z), where F τ2

μ,σ2(z) and fτ2

μ,σ2(z)
denote the conditional c.d.f. and the conditional probability density function
(p.d.f.), respectively, of the random variable in (3). Set ρ2 = τ2/(σ2 + τ2),
and recall that μα(z) is defined by (5). Denote by φ(t) and Φ(t) the p.d.f.
and c.d.f. of the standard normal distribution with the usual convention that
φ(−∞) = φ(∞) = Φ(−∞) = 1 − Φ(∞) = 0.

Observe that the random vector (Z,Z + R)′ has a two-dimensional normal
distribution with mean (μ, μ)′, variance (σ2, σ2 + τ2)′ and covariance σ2. It is
elementary to verify that, for any v ∈ R,

Z | Z + R = v ∼ N(ρ2μ + (1 − ρ2)v, σ2ρ2). (9)

Let Gμ(z, v) denote the c.d.f. of this normal distribution, i.e.,

Gμ(z, v) = Φ
(
z − (ρ2μ + (1 − ρ2)v)

σρ

)
. (10)

By definition of Fμ(z), we have

Fμ(z) = E [Gμ(z, Vμ)] , (11)

where Vμ is a random variable that is truncated normally distributed with mean
μ, variance σ2 + τ2 and truncation set T .

Assume, for this paragraph, that T is the singleton set T = {v} for some fixed
v ∈ R (singleton truncation sets are excluded by our definition of T in (4)). Then
the c.d.f.s Gμ(z, v) and Fμ(z) coincide, and it is elementary to verify that the
length of [μα1(z), μα2(z)] is equal to (σ/ρ)(Φ−1(α2)−Φ−1(α1)), which is exactly
the upper bound in Theorem 3.1. The theorem thus implies that confidence in-
tervals only become shorter if one conditions on a set T with positive Lebesgue
measure instead of a singleton. On the other hand, if T is equal to R, it is
clear that the length of [μα1(z), μα2(z)] is equal to σ(Φ−1(α2)−Φ−1(α1)). Sur-
prisingly, this latter quantity is not necessarily a lower bound for the length of
[μα1(z), μα2(z)] if T is a proper subset of R; cf. the r.h.s. of Figure 1, or Figure
1 of Kivaranovic and Leeb (2021) in the case where τ is equal to 0.

Proposition A.1. For all z ∈ R and all μ ∈ R, we have

∂Φ−1(Fμ(z))
∂μ

< − ρ

σ
. (12)

Proposition A.2. Let Gμ(z, v) be defined as in (10) and let α ∈ (0, 1). If
supT = bk < ∞, then

lim
z→∞

Gμα(z)(z, bk) = 1 − α.

If inf T = a1 > −∞, then

lim
z→−∞

Gμα(z)(z, a1) = 1 − α.
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This proposition entails that Gμα(z)(z, bk) converges to Fμα(z)(z) as z → ∞
if the truncation set T is bounded from above, and the same is true with a1
replacing bk and as z → −∞ if T is bounded from below. We continue now with
the proof of Theorem 3.1.

Proof of Theorem 3.1. By definition of μα1(z), we have Φ−1(Fμα1 (z)(z)) =
Φ−1(1 − α1). Because Proposition A.1 holds for any z and μ, it follows that
for any c ∈ (0,∞), we have

Φ−1(Fμα1 (z)+c(z)) < Φ−1(1 − α1) − cρ/σ.

We plug c = σ(Φ−1(α2) − Φ−1(α1))/ρ into the inequality, apply the strictly
increasing function Φ to both sides and use the symmetry Φ−1(α) = −Φ−1(1−α)
to obtain

Fμα1 (z)+σ(Φ−1(α2)−Φ−1(α1))/ρ(z) < 1 − α2.

Because Fμ(z) is strictly decreasing in μ by Lemma A.6 and μα2(z) satisfies the
equation Fμα2 (z)(z) = 1 − α2, the previous inequality implies that

μα2(z) < μα1(z) + σ

ρ

(
Φ−1(α2) − Φ−1(α1)

)
.

Subtracting μα1(z) on both sides gives the inequality of the theorem. It remains
to show that this upper bound is tight if the truncation set T is bounded. We
only consider the case supT = bk < ∞ here, because the case inf T = a1 > −∞
can be treated by similar arguments, mutatis mutandis. In view of the definition
of Gμ(z, v) in (10), Proposition A.2 and the symmetry Φ−1(α) = −Φ−1(1 − α)
imply that

lim
z→∞

z − (ρ2μα1(z) + (1 − ρ2)bk)
σρ

= −Φ−1(α1)

and
lim
z→∞

z − (ρ2μα2(z) + (1 − ρ2)bk)
σρ

= −Φ−1(α2).

Subtracting the second limit from the first and multiplying by σ/ρ gives

lim
z→∞

μα2(z) − μα1(z) = σ

ρ
(Φ−1(α2) − Φ−1(α1)).

Hence the upper bound is tight.

A.1. Proof of Proposition A.1

The proof of the Proposition is split up into a sequence of lemmas that are
directly proven here.

Lemma A.3. For all z ∈ R and all μ ∈ R, we have

∂Φ−1(Fμ(z))
∂z

<
1
σρ

. (13)
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Proof. By the inverse function theorem, we have ∂Φ−1(α)/∂α = 1/φ(Φ−1(α)).
This equation and the chain rule imply that

∂Φ−1(Fμ(z))
∂z

= fμ(z)
φ(Φ−1(Fμ(z))) .

It suffices to show that the numerator on the r.h.s. is less than
φ(Φ−1(Fμ(z)))/(σρ).

In view of (10)–(11), Leibniz’s rule implies that the p.d.f. fμ(z) is equal to

fμ(z) = 1
σρ

E

[
φ

(
z − (ρ2μ + (1 − ρ2)Vμ)

σρ

)]
= 1

σρ
E
[
φ
(
Φ−1(Gμ(z, Vμ))

)]
.

Observe now that it is sufficient to show that the function φ(Φ−1(α)) is strictly
concave because, by Jensen’s inequality, it follows then that fμ(z) is bounded
from above by

1
σρ

φ
(
Φ−1 (E [Gμ(z, Vμ)])

)
= 1

σρ
φ(Φ−1(Fμ(z))),

completing the proof.
Elementary calculus shows that

∂2φ(Φ−1(α))
∂α2 = −1

φ(Φ−1(α)) .

Because φ(Φ−1(α)) is positive for all α ∈ (0, 1), it follows that the second
derivative is negative for all α ∈ (0, 1). This means, φ(Φ−1(α)) is strictly concave
and the proof is complete.

Note that the inequality (13) of this lemma resembles inequality (12) of
Proposition A.1. While inequality (13) is surprisingly easy to prove, inequal-
ity (12) is more difficult. Equation (11) provides intuition why this is the case:
The distribution of the random variable Vμ does not depend on z but it de-
pends on μ. Hence to prove inequality (12), we cannot exchange integral and
differential and we cannot apply Jensen’s inequality as we did in the proof of
Lemma A.3. We did not find a direct proof of inequality (12). However, in the
following we show that inequality (13) in fact implies (12).

To show this implication, we need a more explicit representation of fμ(z).
Elementary calculus and properties of the conditional normal distribution imply
that the conditional p.d.f. fμ(z) can also be written as

fμ(z) = 1
σ
φ

(
z − μ

σ

) ∑k
i=1 Φ

(
bi−z
τ

)
− Φ

(
ai−z
τ

)
∑k

i=1 Φ
(

bi−μ√
σ2+τ2

)
− Φ

(
ai−μ√
σ2+τ2

) . (14)
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Lemma A.4. Let Gμ(z, v) be defined as in (10). For all z ∈ R and all μ ∈ R,
we have

∂Φ−1(Fμ(z))
∂μ

=
−fμ(z) +

∑k
i=1 h(bi)(Fμ(z) −Gμ(z, bi)) − h(ai)(Fμ(z) −Gμ(z, ai))

φ(Φ−1(Fμ(z))) ,

where

h(v) =
1√

σ2+τ2φ
(

v−μ√
σ2+τ2

)
∑k

i=1 Φ
(

bi−μ√
σ2+τ2

)
− Φ

(
ai−μ√
σ2+τ2

) .
Proof. The chain rule implies that

∂Φ−1(Fμ(z))
∂μ

= ∂Φ−1(Fμ(z))
∂Fμ(z)

∂Fμ(z)
∂μ

.

The inverse function theorem implies that the first derivative on the r.h.s. is
equal to 1/φ(Φ−1(Fμ(z))). Therefore, it remains to show that ∂Fμ(z)/∂μ is equal
to the numerator on the r.h.s. of the equation of the lemma. Leibniz’s rule implies
that ∂Fμ(z)/∂μ =

∫ z

−∞ ∂fμ(u)/∂μ du. Therefore, we compute ∂fμ(z)/∂μ first.
Lemma A.7 implies that

∂fμ(z)
∂μ

= z − μ

σ2 fμ(z) + fμ(z)
k∑

i=1
h(bi) − h(ai).

We use the expression on the r.h.s. to compute
∫ z

−∞ ∂fμ(u)/∂μdu. Lemma A.8
implies that the integral of the first summand is equal to

−fμ(z) −
k∑

i=1
h(bi)Gμ(z, bi) − h(ai)Gμ(z, ai).

Because, in the second-to-last display, the second summand on the r.h.s. depends
on z only through fμ(z), it is easy to see the integral of this function is equal to

Fμ(z)
k∑

i=1
h(bi) − h(ai).

The sum of the last two expressions is equal to the numerator on the r.h.s of
the equation of the lemma, which completes the proof.

This lemma implies that proving Proposition A.1 is equivalent to showing
that Bμ(z) < 0 for

Bμ(z) = ρ

σ
φ(Φ−1(Fμ(z))) − fμ(z)
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+
k∑

i=1
h(bi)(Fμ(z) −Gμ(z, bi)) − h(ai)(Fμ(z) −Gμ(z, ai)). (15)

Observe that

0 = lim
|z|→∞

fμ(z) = lim
|z|→∞

φ(Φ−1(Fμ(z))

= lim
z→−∞

Fμ(z) = lim
z→∞

1 − Fμ(z)

= lim
z→−∞

Gμ(z, v) = lim
z→∞

1 −Gμ(z, v).

This equation chain implies that Bμ(z) converges to 0 as |z| → ∞. Holding μ, σ2

and τ2 fixed, this is the same as saying that Bμ(z) converges to 0 as Fμ(z) goes
to 0 or 1. Let the function F−1

μ (α) be defined by the equation

Fμ(F−1
μ (α)) = α. (16)

Clearly, F−1
μ (α) is well-defined for all α ∈ (0, 1) and we have that F−1

μ (Fμ(z)) =
z for all z ∈ R. To prove Proposition A.1, it is now sufficient to show that
Bμ(F−1

μ (α)) is strictly convex as a function of α for any fixed μ, σ2 and τ2 (in
view of the second-to-last display).

Lemma A.5. Let Bμ(z) be defined in (15) and F−1
μ (α) in (16). Let μ, σ2 and

τ2 be fixed. Then, for all z ∈ R,

∂2Bμ(F−1
μ (α))

∂α2

∣∣∣
α=Fμ(z)

= − ρ

σφ(Φ−1(Fμ(z))) + 1
σ2fμ(z) .

Proof. We start by computing the first derivative of Bμ(F−1
μ (α)) with respect

to α. The chain rule implies that

∂Bμ(F−1
μ (α))

∂α
=

∂Bμ(F−1
μ (α))

∂F−1
μ (α)

∂F−1
μ (α)
∂α

.

The inverse function theorem implies that the second derivative on the r.h.s. is
equal to 1/fμ(F−1

μ (α)). In view of the definitions of Bμ(z) and F−1
μ (α) in (15)

and (16), we see that to compute the first derivative on the r.h.s. we need to
compute the derivatives of α, φ(Φ−1(α)), fμ(F−1

μ (α)) and Gμ(F−1
μ (α), v) with

respect to F−1
μ (α). Because ∂F−1

μ (α)/∂α is equal to 1/fμ(F−1
μ (α)), it follows

that the derivative of α with respect to F−1
μ (α) is equal to fμ(F−1

μ (α)). The chain
rule implies that the derivative of φ(Φ−1(α)) with respect to F−1

μ (α) is equal
to −Φ−1(α)fμ(F−1

μ (α)). Lemma A.9 implies that the derivative of fμ(F−1
μ (α))

with respect to F−1
μ (α) is equal to

−
F−1
μ (α) − μ

σ2 fμ(F−1
μ (α)) − fμ(F−1

μ (α))
k∑

i=1
l(F−1

μ (α), bi) − l(F−1
μ (α), ai),
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where l(z, v) is defined in Lemma A.9. And finally, Lemma A.10 implies that
the derivative of Gμ(F−1

μ (α), v) with respect to F−1
μ (α) is equal to

fμ(F−1
μ (α))l(F−1

μ (α), v)
h(v) ,

where h(v) is defined in Lemma A.4 and l(z, v) is defined in Lemma A.9. The
previous four derivatives and the definition of Bμ(z) in (15) entail, after straight-
forward simplifications, that

∂Bμ(F−1
μ (α))

∂F−1
μ (α)

= fμ(F−1
μ (α))

(
− ρ

σ
Φ−1(α) +

F−1
μ (α) − μ

σ2 +
k∑

i=1
h(bi) − h(ai)

)

and therefore

∂Bμ(F−1
μ (α))

∂α
= − ρ

σ
Φ−1(α) +

F−1
μ (α) − μ

σ2 +
k∑

i=1
h(bi) − h(ai).

Now it is easy to see that

∂2Bμ(F−1
μ (α))

∂α2 = − ρ

σφ(Φ−1(α)) + 1
σ2fμ(F−1

μ (α))
.

The claim of the lemma follows by evaluating the second derivative at α =
Fμ(z).

To prove Proposition A.1, it remains to show that

− ρ

σφ(Φ−1(Fμ(z))) + 1
σ2fμ(z) > 0.

But this is the same as showing

fμ(z)
φ(Φ−1(Fμ(z))) <

1
σρ

.

The l.h.s. is equal to ∂Φ−1(Fμ(z))/∂z and in Lemma A.3 we have shown that
this inequality is true. This completes the proof of Proposition A.1.

A.2. Proof of Proposition A.2

Let ε > 0. We will only consider the case where supT = bk < ∞; the other case
follows by similar arguments, mutatis mutandis. Recall the definition of Fμ(z)
in (11). By the law of total probability, we can write Fμ(z) as

P(Vμ > bk−ε)E [Gμ(z, Vμ)|Vμ > bk − ε]+P(Vμ ≤ bk−ε)E [Gμ(z, Vμ)|Vμ ≤ bk − ε] .

Note that both conditional expectations are bounded by 1. Because the random
variable Vμ (defined under equation (11)) is a truncated normal with mean μ,
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variance σ2+τ2 and truncation set T , it follows that Vμ converges in probability
to bk as μ goes to ∞. Now as z goes to ∞, it follows that μα(z) goes to ∞ (cf.
the discussion after the proof of Lemma A.6). This implies that

lim
z→∞

Fμα(z)(z) = lim
z→∞

E
[
Gμα(z)(z, Vμα(z))|Vμα(z) > bk − ε

]
.

Note that Gμ(z, v) is strictly decreasing in v. This means that Fμ(z) is bounded
from below by Gμ(z, bk). But this also means that limz→∞ Fμα(z)(z) is bounded
from below by limz→∞ Gμα(z)(z, bk). On the other hand, observe that the condi-
tional expectation on the r.h.s. of the preceding display is bounded from above
by Gμα(z)(z, bk − ε). This means that limz→∞ Fμα(z)(z) is bounded from above
by limz→∞ Gμα(z)(z, bk − ε). Since Fμα(z)(z) is equal to 1 − α for all z ∈ R, it
follows that

lim
z→∞

Gμα(z)(z, bk) ≤ 1 − α ≤ lim
z→∞

Gμα(z)(z, bk − ε).

Because ε was arbitrary and Gμ(z, v) is simply a normal c.d.f., which is uniformly
continuous, the claim of the proposition follows.

A.3. Auxiliary results

Lemma A.6. For every z ∈ R, Fμ(z) is continuous and strictly decreasing in
μ and satisfies

lim
μ→∞

Fμ(z) = lim
μ→−∞

1 − Fμ(z) = 0.

Proof. Continuity is obvious. For monotonicity, it is sufficient to show that fμ(z)
has monotone likelihood ratio because Lee et al. (2016) already showed that
monotone likelihood ratio implies monotonicity. This means for μ1 < μ2, we need
to show that fμ2(z)/fμ1(z) is strictly increasing in z. In view of the definition of
fμ(z) in (14), it is easy to see that fμ2(z)/fμ1(z) can be written as c exp((μ2 −
μ1)z/σ), where c is a positive constant that does not depend on z. Because
μ1 < μ2 and the exponential function is strictly increasing, it follows that fμ(z)
has monotone likelihood ratio. Finally, we show that limμ→∞ Fμ(z) = 0. The
other part of this equation follows by similar arguments. Let M < bk. Recall the
definition of Fμ(z) in (11). By the law of total probability, we can write Fμ(z)
as

P(Vμ > M)E [Gμ(z, Vμ)|Vμ > M ] + P(Vμ ≤ M)E [Gμ(z, Vμ)|Vμ ≤ M ] .

Note that both conditional expectations are bounded by 1. Because the random
variable Vμ (defined under equation (11)) is a truncated normal with mean μ,
variance σ2 + τ2 and truncation set T , it follows that limμ→∞ P(Vμ > M) =
1 − limμ→∞ P(Vμ ≤ M) = 1. This implies that

lim
μ→∞

Fμ(z) = lim
μ→∞

E [Gμ(z, Vμ)|Vμ > M ] .
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Because Gμ(z, v) is strictly decreasing in v, it follows that the conditional ex-
pectation on the r.h.s. is bounded from above by Gμ(z,M). But this means that
limμ→∞ Fμ(z) is bounded by limμ→∞ Gμ(z,M). Because latter limit is equal to
0, the same follows for the former limit.

This lemma ensures that the function μα(z) is well defined, continuous,
strictly increasing in z and α and that limz→∞ μα(z) = limz→−∞ −μα(z) = ∞
(see also Lemma A.3 in Kivaranovic and Leeb (2021)).

Lemma A.7. Let the function h(v) be defined as in Lemma A.4. For all z ∈ R

and all μ ∈ R, we have

∂fμ(z)
∂μ

= z − μ

σ2 fμ(z) + fμ(z)
k∑

i=1
h(bi) − h(ai).

Proof. In view of the definition of fμ(z) in (14), the chain rule and product rule
imply that the derivative of fμ(z) with respect to μ is equal to

z − μ

σ2
1
σ
φ

(
z − μ

σ

) ∑k
i=1 Φ

(
bi−z
τ

)
− Φ

(
ai−z
τ

)
∑k

i=1 Φ
(

bi−μ√
σ2+τ2

)
− Φ

(
ai−μ√
σ2+τ2

)
+ 1

σ
φ

(
z − μ

σ

)

×

(∑k
i=1 Φ

(
bi−z
τ

)
− Φ

(
ai−z
τ

))(
1√

σ2+τ2

∑k
i=1 φ

(
bi−μ√
σ2+τ2

)
− φ

(
ai−μ√
σ2+τ2

))
(∑k

i=1 Φ
(

bi−μ√
σ2+τ2

)
− Φ

(
ai−μ√
σ2+τ2

))2 .

In view of the definition of fμ(z), it is easy to see that the first summand is
equal to

z − μ

σ2 fμ(z)

and, in view of the definitions of fμ(z) and h(v), that the second summand is
equal to

fμ(z)
k∑

i=1
h(bi) − h(ai).

Lemma A.8. Let Gμ(z, v) be defined as in (10) and h(v) as in Lemma A.4.
For all z ∈ R and all μ ∈ R, we have∫ z

−∞

u− μ

σ2 fμ(u)du = − fμ(z) −
k∑

i=1
h(bi)Gμ(z, bi) − h(ai)Gμ(z, ai).

Proof. By definition of fμ(z) in (14), the integral can be written as∑k
i=1

∫ z

−∞
u−μ
σ3 φ

(
u−μ
σ

)
Φ
(
bi−u
τ

)
du−

∫ z

−∞
u−μ
σ3 φ

(
u−μ
σ

)
Φ
(
ai−u
τ

)
du∑k

i=1 Φ
(

bi−μ√
σ2+τ2

)
− Φ

(
ai−μ√
σ2+τ2

) .
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Note that all integrands in the numerator are of the same form. They only differ
in the constants a1, b1, . . . , ak, bk. This means, we can apply Equation 10,011.1
of Owen (1980) to each integral. This equation implies that the numerator is
equal to

k∑
i=1

−1√
σ2 + τ2

φ

(
bi − μ√
σ2 + τ2

)
Φ
(
z − (ρ2μ + (1 − ρ2)bi)

σρ

)

− 1
σ
φ

(
z − μ

σ

)
Φ
(
bi − z

τ

)

−
(

−1√
σ2 + τ2

φ

(
ai − μ√
σ2 + τ2

)
Φ
(
z − (ρ2μ + (1 − ρ2)ai)

σρ

)

− 1
σ
φ

(
z − μ

σ

)
Φ
(
ai − z

τ

))
.

(Also note that this equation can easily be verified by differentiation of the
antiderivative.) In view of the definitions of fμ(z), h(v) and Gμ(z, v), we can
see that the claim of the lemma is true.

Lemma A.9. For all z ∈ R and all μ ∈ R, we have

∂fμ(z)
∂z

= −z − μ

σ2 fμ(z) − fμ(z)
k∑

i=1
l(z, bi) − l(z, ai),

where
l(z, v) =

1
τ φ

(
v−z
τ

)
∑k

i=1 Φ
(
bi−z
τ

)
− Φ

(
ai−z
τ

) .
Proof. In view of the definition of fμ(z) in (14), the chain rule and product rule
imply that the derivative of fμ(z) with respect to z is equal to

− z − μ

σ2
1
σ
φ

(
z − μ

σ

) ∑k
i=1 Φ

(
bi−z
τ

)
− Φ

(
ai−z
τ

)
∑k

i=1 Φ
(

bi−μ√
σ2+τ2

)
− Φ

(
ai−μ√
σ2+τ2

)

− 1
σ
φ

(
z − μ

σ

) 1
τ

∑k
i=1 φ

(
bi−z
τ

)
− φ

(
ai−z
τ

)
∑k

i=1 Φ
(

bi−μ√
σ2+τ2

)
− Φ

(
ai−μ√
σ2+τ2

) .
It is easy to see that the first summand is equal to

−z − μ

σ2 fμ(z)

and, in view of the definitions of fμ(z) and l(z, v), that the second summand is
equal to

−fμ(z)
k∑

i=1
l(z, bi) − l(z, ai).
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Lemma A.10. Let h(v) be defined as in Lemma A.4 and l(z, v) as in
Lemma A.9. For all z ∈ R and all μ ∈ R, we have

∂Gμ(z, v)
∂z

= fμ(z)l(z, v)
h(v) .

Proof. By definition of Gμ(z, v) in (10), we have

∂Gμ(z, v)
∂z

= 1
σρ

φ

(
z − (ρ2μ + (1 − ρ2)v)

σρ

)
.

We claim that

1
σρ

φ

(
z − (ρ2μ + (1 − ρ2)v)

σρ

)
=

1
σφ

(
z−μ
σ

) 1
τ φ

(
v−z
τ

)
1√

σ2+τ2φ
(

v−μ√
σ2+τ2

) .
To see this note that we can write the l.h.s. as c1 exp(−d1/2) and r.h.s. as
c2 exp(−d2/2), where

c1 = 1
σρ

√
2π

=
√
σ2 + τ2

στ
√

2π
= c2

and

d1 =
(
z − (ρ2μ + (1 − ρ2)v)

σρ

)2

= z2 − 2ρ2μz − 2(1 − ρ2)vz + ρ4μ2 + (1 − ρ2)2v2 + 2ρ2(1 − ρ2)μv
σ2ρ2

= ρ2(z − μ)2 + (1 − ρ2)(v − z)2 − ρ2(1 − ρ2)(v − μ)2

σ2ρ2

=
(
z − μ

σ

)2

+
(
v − z

τ

)2

−
(

v − μ√
σ2 + τ2

)2

= d2.

Hence the claimed equation is true. Observe that the r.h.s. of that equation can
be written as

1
σ
φ

(
z − μ

σ

) ∑k
i=1 Φ

(
bi−z
τ

)
− Φ

(
ai−z
τ

)
∑k

i=1 Φ
(

bi−μ√
σ2+τ2

)
− Φ

(
ai−μ√
σ2+τ2

) 1
τ φ

(
v−z
τ

)
∑k

i=1 Φ
(
bi−z
τ

)
− Φ

(
ai−z
τ

)

×
∑k

i=1 Φ
(

bi−μ√
σ2+τ2

)
− Φ

(
ai−μ√
σ2+τ2

)
1√

σ2+τ2φ
(

v−μ√
σ2+τ2

) .

In view of the definitions of fμ(z), l(z, v) and h(v), it is easy to see that the
previous expression is equal to fμ(z)l(z, v)/h(v). Hence the derivative of Gμ(z, v)
with respect to z is of the claimed form.
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