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Abstract: Analyzing large samples of high-dimensional data under de-
pendence is a challenging statistical problem as long time series may have
change points, most importantly in the mean and the marginal covariances,
for which one needs valid tests. Inference for large covariance matrices is es-
pecially difficult due to noise accumulation, resulting in singular estimates
and poor power of related tests. The singularity of the sample covariance
matrix in high dimensions can be overcome by considering a linear com-
bination with a regular, more structured target matrix. This approach is
known as shrinkage, and the target matrix is typically of diagonal form. In
this paper, we consider covariance shrinkage towards structured nonpara-
metric estimators of the bandable or Toeplitz type, respectively, aiming at
improved estimation accuracy and statistical power of tests even under non-
stationarity. We derive feasible Gaussian approximation results for bilinear
projections of the shrinkage estimators which are valid under nonstationar-
ity and dependence. These approximations especially enable us to formulate
a statistical test for structural breaks in the marginal covariance structure
of high-dimensional time series without restrictions on the dimension, and
which is robust against nonstationarity of nuisance parameter. We show
via simulations that shrinkage helps to increase the power of the proposed
tests. Moreover, we suggest a data-driven choice of the shrinkage weights,
and assess its performance by means of a Monte Carlo study. The results
indicate that the proposed shrinkage estimator is superior for non-Toeplitz
covariance structures close to fractional Gaussian noise.
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62M10.
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1. Introduction

Many modern applications encounter large data sets of very high dimension
d, which requires new approaches for modeling as well as statistical inference,
since classical methods usually fail. A particularly prominent example is the
covariance matrix Σ of a random vector of d variables, which has d2 unknown
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parameters. It is well-known that the sample covariance matrix Σ̂n of sample
size n is singular if n < d, and consistency of Σ̂n for growing dimension d requires
to control the O(d2) covariances and otherwise generally fails. Specifically, for n
iid samples of d-dimensional random vectors with finite fourth moments, consis-
tency in terms of the expected squared Frobenius norm of Σ̂n−Σn requires that
diag(Σn) and the variance of the average of the squared variables to be of the
order o(n/d), (Ledoit and Wolf, 2004). In terms of eigenvalues and eigenvectors,
classic inconsistency results for the largest eigenvalue and the top eigenvector
under the regime d/n → c ∈ (0, 1) are due to (Johnstone, 2001; Johnstone and
Lu, 2009), even when Σ = I. Since, however, it is generally believed that many
high-dimensional data sets are governed by, say r � d, strong signals, spiked
covariance models with r leading eigenvalues strictly larger than 1, whereas the
remaining bulk of the spectrum consists of unit eigenvalues, are quite extensively
studied. Here the leading eigenvalues of Σ̂n are biased, thus requiring de-biasing
procedures which, however, depend on the loss function, and the eigenvectors
are inconsistent as well, see (Donoho, Gavish and Johnstone, 2018) and the ref-
erences therein. Further potential remedies are to impose additional structural
assumptions on Σ, e.g. sparsity (Bickel and Levina, 2008a), Toeplitz shape (Cai,
Ren and Zhou, 2013), or assuming the entries further from the diagonal to decay
rapidly, also known as a bandable covariance matrix (Bickel and Levina, 2008b).
In these frameworks, it is possible to derive consistent estimators of Σ even if
d � n, see Cai, Ren and Zhou (2016) for a survey of suitable estimators and
matching minimax bounds.

The structured covariance matrix estimators admit optimal rates of conver-
gence within the specified class of matrices. However, if the true Σ does not
satisfy the structural assumptions, the estimators might perform poorly. For in-
stance, if we use an estimator of Toeplitz form, but Σ is not a Toeplitz matrix,
then this estimator will be inconsistent. In order to strike a compromise between
structured and model-free estimation, one may consider a shrinkage estimator
of the form

Σ̂w
n = (1 − w) Σ̂n + w Σ̃n, w ∈ [0, 1],

where Σ̂n is the usual sample covariance matrix, and the shrinkage target Σ̃n

is a structured estimator. The weight w may be interpreted as quantifying the
confidence in the structural assumption underlying the estimator Σ̃. A particu-
larly useful feature of shrinkage estimators is that Σ̂w

n will be regular, as Σ̃n is
usually chosen as a regular matrix. This makes shrinkage estimation especially
interesting for situations where the inverse of the covariance matrix is required,
e.g. in portfolio optimization. Ledoit and Wolf (2004) suggest to use a multiple of
the identity matrix, and Steland (2018) studies more general diagonal matrices.
Linear shrinking towards a structured target with respect to the scaled Frobe-
nius loss has been studied in (Ledoit and Wolf, 2003), but the results therein on
consistent estimators of the optimal shrinking weights consider classical fixed-d
asymptotics only. In the present paper, we go beyond a convex combination of
the sample covariance matrix with a single shrinkage target. Instead, we study
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convex combinations with a structured covariance estimator with known mini-
max optimality properties for bandable Σ, and a structured covariance estimator
which is minimax-optimal if Σ is of Toeplitz type, by considering (if w > 0) the
parameterized shrinkage target

Σ̃n = w2

w
Σ̂†

n + w3

w
Σ̂�

n,

for nonparametric estimators Σ̂†
n and Σ̂�

n, respectively, addressing both types
of matrices, for weights 0 ≤ w2, w3 ≤ 1 such that w1 + w2 + w3 = 1 where
w1 = (1 − w).

Theoretical analysis of these structured covariance estimators typically fo-
cuses on their consistency and rate of convergence. Here, we contribute by show-
ing that the estimators proposed when Σ is bandable and Toeplitz, respectively,
are still consistent under a general nonstationary nonlinear time series model,
whereas the known results assume iid d-dimensional random vectors. Thus, by
picking (asymptotically) the corresponding unit vectors as weights, the proposed
shrinkage estimator can adapt to, firstly, a Toeplitz structure, i.e. stationarity
of the coordinates, or, secondly, a bandable covariance structures, and then use
consistent estimators with guaranteed good rates of convergence, or, thirdly,
use the purely nonparametric sample covariance estimator. Moreover, to per-
form statistical inference, distributional approximations are required. Here, we
consider inference about the high-dimensional covariance matrix in terms of
projections vTΣv for some vector v ∈ Rd. Our results provide valid distribu-
tional approximations even when the choice of the threshold parameter of the
estimators addressing Toeplitz-type or bandable covariances does not guarantee
consistency. The vector v may either be determined by the application, or chosen
at random, independently from the sample. For example, in risk management,
v may represent weights of a portfolio of risky assets, and vTΣv corresponds to
the variance of this portfolio. The choice v = (1, . . . , 1)�/d corresponds to the
equal-weighted portfolio which is more diversified compared to portfolios using
weights according to the market capitalization such as exchange-traded funds
(ETFs) on market indices. A recent study on its performance is Swade et al.
(2023). For other approaches one may estimate the weights from historical data
and, by conditioning, assume they are fixed. As another example, the hypothesis
Σ = Σ0 may be studied via random projections: If v is drawn from some contin-
uous distribution, then Σ �= Σ0 implies vTΣv �= vTΣ0v almost surely. It is thus
reasonable to employ a test statistic of the form vT (S − Σ0)v for some estima-
tor S, either structured, unstructured, or shrunken. Further applications (lasso
prediction, sparse principal components) are discussed below. The idea to study
high-dimensional covariance matrices via bilinear forms has been suggested in
Steland and von Sachs (2017, 2018), and applied to changepoint testing (Ste-
land, 2020, 2023), K-sample problems (Mause and Steland, 2020) and factor
models, (Bours and Steland, 2021). For extensions to methods in the frequency
domain in terms of bilinear forms of spectral density matrix estimators and re-
lated statistics including nonlinear spectral averages see (Steland, 2024). In the
latter references, as well as in the present paper, the important assumption is
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that the projection vectors v have a bounded l1-norm. This condition is satisfied
in many applications and enables the methodology to work also for very high
dimensions d.

In this paper, we derive Gaussian approximation results for shrinkage estima-
tors of the covariance matrix with structured shrinkage targets Σ̃n. Our results
are valid for nonstationary, nonlinear, high-dimensional time series Xt, and we
demonstrate how to perform inference based on a suitable bootstrap scheme.
Notably, we only impose assumptions on the marginal time series, while the de-
pendency between the components may be arbitrary, and we need no restrictions
on the dimension d. This is a beneficial consequence of the projection technique,
as described in Section 2. As we allow the dimension to grow with sample size,
the considered models are arrays of time series. Thus, classical central limit the-
ory is not applicable because a limiting distribution in general does not exist.
Instead, we formulate our results in terms of so-called strong approximations, or
sequential couplings, in the sense of Komlós, Major and Tusnády (1975). Com-
pared to the existing work of Steland and von Sachs (2017, 2018), we consider
a much broader class of nonlinear time series models, which also allows us to
study non-diagonal, structured shrinkage targets. Underlying our mathematical
results are recent Gaussian couplings for nonstationary time series established
in Mies and Steland (2023) for the regime d � n

1
3 . We extend these results

to projections vTXt of very high-dimensional time series Xt. In particular, it
is shown that for l1-bounded projection vectors v, the Gaussian approxima-
tion is valid irrespective of the ambient dimension d, and of the dependence
structure between the d components. It turns out that this general projection
framework is also applicable to bilinear forms of sample covariance matrices,
as demonstrated in Section 3. The presented distributional approximation also
holds sequentially, and we demonstrate how to apply this to a test for struc-
tural breaks in the covariance matrix. An attractive feature of the proposed test
is that it is robust against general nonstationarity under the null hypothesis,
and only detects changes in the target parameter, i.e. the marginal covariance
structure. Furthermore, we discuss the optimal choice of shrinkage weights and
provide a data-driven criterion. Simulation results demonstrate that the asymp-
totic theory is also applicable in finite samples, and that shrinkage may improve
the performance both for estimation and for change testing.

The rest of this paper is structured as follows. In Section 2, we present
a general sequential Gaussian approximation result for projections of high-
dimensional nonstationary time series, which is applied to bilinear forms of
covariance matrices in Section 3. The data-driven choice of shrinkage weights
is discussed in Section 4. Section 5 describes the application of our distribu-
tional approximations to tests for changes in the covariance structure of a high-
dimensional time series, and presents a feasible bootstrap scheme. Simulation
results are presented in Section 6.
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2. Gaussian approximations for projections

We consider a d-variate time series Xt which may be nonlinear and nonstation-
ary, given by

Xt = Gt(εt, εt−1, . . .), (1)

for measurable mappings Gt : R∞ → Rd, t = 1, . . . , n, where we endow R∞

with the σ-algebra generated by all finite projections. The εi are iid U [0, 1]
random variables, which may be regarded as random seeds for the time series.
Note that the distributional assumption on the εi is not restrictive, as Gt is not
necessarily be smooth, but just measurable. The model formulation (1) allows
for a convenient formulation of ergodicity conditions via the physical dependence
measure introduced by Wu (2005). To formulate our assumptions on the kernels
Gt, introduce a second sequence ε̃i of iid U [0, 1] random variables, independent
of the sequence εi. For any t ∈ N, denote

εt = (εt, εt−1, . . .) ∈ R∞,

ε̃t,j = (εt, . . . , εj+1, ε̃j , εj−1, . . .) ∈ R∞,

such that Xt = Gt(εt) = (Gt,l(εt))dl=1. We assume that the impact of past
random seeds decays to zero polynomially, such that for some β > 1

(E|Gt,l(εt) −Gt,l(ε̃t,t−j)|q)
1
q ≤ Θ̃j−β , j ≥ 1, l = 1, . . . , d,

(E|Gt,l(ε0)|q)
1
q ≤ Θ̃, l = 1, . . . , d.

(P.1)

The time series Xt may be nonstationary, and the nonstationarity is explicit
by making the kernel Gt depend on t. Nevertheless, to obtain stronger asymp-
totic results, we require some regularity in time. Here, we do not choose classical
smoothness conditions, but rather formulate the regularity in terms of the total
variation norm of the mapping t 	→ Gt, measured in L2(P ). In particular, we
suppose that for some Γ̃ > 0,

n∑
t=2

(E|Gt,l(ε0) −Gt−1,l(ε0)|q)
1
q ≤ Γ̃ · Θ̃, l = 1, . . . , d. (P.2)

A few results require to assume

Xt has finite and stationary eighth moment and β > 2. (P.3)

We highlight that (P.1) and (P.2) only impose conditions on the individ-
ual components l = 1, . . . , d, and are thus rather easy to verify even for high-
dimensional models. To emphasize, we impose no assumption on the dependency
among the d components.

Now consider the projection of the d-variate time series Xt to a m-dimensional
time series Zt, with m � d. That is, for a matrix V ∈ Rm×d, we consider the
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time series Zt = V Xt. We measure the size of the matrix V by the operator
norm, ‖V ‖∞, with respect to the maximum vector norm, i.e.

‖V ‖∞ = sup
w∈Rd

‖V w‖∞
‖w‖∞

= max
l=1,...,m

‖Vl,·‖1,

where Vl,· denotes the l-th row of the matrix V . This choice of norm uniformly
controls the �1-norms of the projection vectors and is motivated by highdi-
mensional statistical problems. Indeed, as well known, if d is large compared
to n, classical statistical methods usually fail, because even strong signals are
overlayed by too many random noise sources (noise accumulation) and spuri-
ous correlations occur. To overcome the curse of high dimensionality, sparse
methods typically use ‖ · ‖r-norms with 1 ≤ r < 2, often leading to s-sparse
solutions, i.e. with only s active (non-zero) coordinates. For example, sparse
PCA constructs s-sparse directions u on which the data vectors are projected
by calculating uTXt, and the variance of such a coefficients uTXt, given by
the quadratic form uTΣnu and coinciding with the associated eigenvalue when
u is an eigenvector, provides information about the importance of that direc-
tion and is thus of interest. Similarly, when predicting a future response Ỹt by
a lasso regression on Xt, one calculates β̂T

n X̃t for future regressors X̃t, where
the lasso estimate β̂n is s− sparse and thus selects s � d variables, so that
it behaves like a low-dimensional statistic circumventing the issues arising for
large dimension. The variance β̂T

n Σnβ̂
T
n of the prediction β̂T

n X̃t is a natural mea-
sure of the prediction accuracy. When considering slightly more general vectors
v with bounded ‖v‖1-norm (uniformly in d and n), then we have the bound
|vTXt| ≤ ‖v‖1 max1≤j≤d |Xtj | at our disposal. Indeed, such projections have
bounded moments under weak assumptions guaranteed by (P.1) as summarized
in the following lemma, which no longer holds if ‖v‖2 is uniformly bounded but
‖v‖1 → ∞.

Lemma 2.1. Let q ≥ 1 and suppose that max1≤j≤d E|Xtj |q ≤ Θ̃ for some
constant C and all d, n, cf. (P.1). Then for any v ∈ Rs with norm ‖v‖1 uniformly
bounded by some M(

E|vTXt|q
) 1

q ≤ ‖v‖1 max
1≤j≤d

(E|Xtj |q)
1
q ≤ Θ̃M

The formulation of our first main result requires the two rates

χ(q, β) =
{

q−2
6q−4 , β ≥ 3

2 ,
(β−1)(q−2)
q(4β−3)−2 , β ∈ (1, 3

2 ).
, ξ(q, β) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
q−2
6q−4 , β ≥ 3,
(β−2)(q−2)
(4β−6)q−4 ,

3+ 2
q

1+ 2
q

< β < 3,
1
2 − 1

β , 2 < β ≤ 3+ 2
q

1+ 2
q

.

Theorem 2.2. Let Xt = Gt(εt) with E(Xt) = 0 be such that (P.1) holds for
some q > 2, β > 1, and let Zt = V Xt for some V ∈ Rm×d such that m ≤
cn for some c > 0. Then, on a potentially different probability space, there
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exist random vectors (X ′
t)nt=1

d= (Xt)nt=1 and independent, mean zero, Gaussian
random vectors Y ′

t such that⎛⎝Emax
k≤n

∥∥∥∥∥ 1√
n

k∑
t=1

(V X ′
t − Y ′

t )

∥∥∥∥∥
2

2

⎞⎠ 1
2

≤ CΘ̃‖V ‖∞
√
m log(n)

(m
n

)χ(q,β)
. (2)

for some universal constant C = C(q, β, c).
If β > 2, the local long-run variance Ξt(v)=

∑∞
h=−∞ V Cov(Gt(ε0), Gt(εh))V T

is well defined. If (P.2) is satisfied aswell, then there exist random vectors
(X ′

t)nt=1
d= (Xt)nt=1 and independent, mean zero, Gaussian random variables

Y ′
t ∼ N (0,Ξt(v)) such that⎛⎝Emax

k≤n

∥∥∥∥∥ 1√
n

k∑
t=1

(V X ′
t − Y ′

t )

∥∥∥∥∥
2

2

⎞⎠ 1
2

≤ CΘ̃Γ̃
1
2

β−2
β−1 ‖V ‖∞

√
m log(n)

(m
n

)ξ(q,β)
.

(3)

The rate of the approximation (2) is faster than (3). The difference is that in
the first case, the covariance structure of the approximating Gaussian random
vectors Y ′

t is not explicit. In the second case, the distribution of the approximat-
ing random vectors is explicit, at the price of assuming some temporal regularity
of the stochastic process Xt. In Section 5, we will describe a bootstrap scheme
to perform inference based on Theorem 2.2.

Neglecting the high-dimensional context for a moment, the projection Zt =
V Xt may be analyzed as a multivariate, nonstationary time series of fixed di-
mension m. In this setting, Wu and Zhou (2011) and Karmakar and Wu (2020)
study sequential Gaussian approximations, the latter obtaining optimal rates in
n which are faster than the rates of Theorem 2.2. However, they require a lower
bound on the covariance matrices of Zt, while our result does not need this as-
sumption. This is particularly relevant because we do not impose any conditions
on the dependency among the components of Xt. As an extreme example, if all
d components are independent, then a l1-bounded projection will lead to some
concentration due to averaging, such that a lower bound on the variance of the
projection can in general not be guaranteed. This prevents an application of
the result of Karmakar and Wu (2020) in the present situation. Moreover, the
covariance of the approximating random vectors in Karmakar and Wu (2020)
is not explicit. Instead, we employ a result on Gaussian couplings presented in
Mies and Steland (2023), which is in turn enabled by a recent result of Eldan,
Mikulincer and Zhai (2020).
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3. Asymptotics of high-dimensional shrinkage covariance matrix
estimators and their projections

For a d-variate centered time series Xt as above, denote the sample covariance
matrix by

Σ̂n,n = 1
n

n∑
t=1

XtX
T
t ,

i.e. the empirical lag-0 cross-covariance matrix of the time series Xt. The re-
spective partial sums are denoted by Σ̂k,n = 1

n

∑k
t=1 XtX

T
t , k = 1, . . . , n, and

its mean by

Σn = EΣ̂n,n = 1
n

n∑
t=1

Cov(Xt).

Hence, we account for nonstationarity of the time series Xt by averaging the
covariance matrices at all times t = 1, . . . , n.

The central observation enabling our subsequent analysis is that the matrix-
valued time series XtX

T
t fits within the framework of Section 2.

Proposition 3.1. If the time series Xt = Gt(εt) satisfies (P.1) resp. (P.2) with
power 2q and factor Θ̃, then the d2-variate time series X̌t = XtX

T
t = Ǧt(εt)

satisfies (P.1) resp. (P.2) with power q and factor Θ̃2.

It has been suggested by Steland and von Sachs (2017) to perform inference
on the covariance matrix via the quadratic form vT Σ̂n,nv for some vector v ∈ Rd,
i.e., the variance of the projection vTXt. As already discussed above, such pro-
jections are ubiquitous in statistical problems, for example arising in optimal
portfolio selection, as linear predictors in regression models, or when reducing
dimensionality by principal component analysis. The associated empirical ver-
sion, vT Σ̂n,nv = 1

n

∑n
t=1 |vTXt|2, may be interpreted as the estimated variance

of the univariate projection X̃t = vTXt. The results of Steland and von Sachs
(2017) and Steland and von Sachs (2018) on Gaussian approximations of vT Σ̂nv,
related change-point procedures, and Shrinkage estimators, impose the assump-
tion that the process Xt is a linear time series with a single innovation process,
which may be interpreted as a special type of single-factor model, although ap-
proximate vector autoregressions and spiked covariance models are included un-
der regularity conditions, see Steland (2020). Extensions to multi-factor models
with infinitely many factors and general multivariate linear processes with finite-
dimensional innovations are studied in Bours and Steland (2021). Although such
processes, especially factor models, provide good description for many applica-
tion scenarios and are widely used, they nevertheless restrict the dependence
structure of the d component processes and rule out phenomena such as condi-
tional heteroscedasticity and nonlinearity. Here, by relying on the results of the
previous section, we allow for nonstationary nonlinear time series and impose
much weaker assumptions on the dependence of the components.

To estimate Σn and related quadractic forms vTΣnv, we shall shrink the
nonparametric estimator Σ̂n,n towards structured targets, in order to overcome
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various issues of the sample covariance matrix arising if d � n. A covariance
matrix Σ is called bandable if Σl,l′ ≤ g(|l − l′|) for some function g(x) → 0
as x → ∞. In this situation, optimal rates of convergence can be achieved via
thresholding, see (Cai, Ren and Zhou, 2016, Thm. 7) and references therein. In
particular, if g(x) ∝ |x|−α−1 for some α > 0, then a rate-optimal estimator is
given by the tapering estimator

Σ̂†
k,n = ((Σ̂k,n)l,l′ω(|l − l′|))dl,l′=1,

ω(x) =

⎧⎪⎨⎪⎩
1, x ≤ τ

2 ,

2 − 2x
τ , τ

2 < x ≤ τ,

0, x > τ,

The optimal rate is achieved by the threshold τ = min(n
1

2α+c , d) with c = 2
under the Frobenius norm ‖ · ‖F and with c = 1 under the spectral norm ‖ · ‖,
see Cai, Zhang and Zhou (2010). In particular, the optimal rates are

d−1‖Σ̂†
k,n − Σ‖2

F=O
(
n− 2α+1

2α+2 + d

n

)
, ‖Σ̂†

k,n − Σ‖2=O
(
n− 2α

2α+1 + log d
n

)
.

Another approach is to impose a Toeplitz structure, i.e. Σl,l′ = σ|l−l′|, for
some sequence σ0, σ1, . . .. The corresponding tapered Toeplitz estimator of Σ is

Σ̂�
k,n =

(
σ̂|l−l′|ω(|l − l′|)

)d
l,l′=1 ,

σ̂m = 1
d−m

∑
l−l′=m

(Σ̂k,n)l,l′ , 0 ≤ m < d,

with tapering weights ω(x) as above. If |σm| ≤ Cm−α−1, then the optimal rate
under the spectral norm is achieved by the threshold choice τ=(nd/ log(nd))

1
2α+1 ,

see (Cai, Ren and Zhou, 2016, Thm. 9) and Cai, Ren and Zhou (2013).
The following theorem shows that the full-sample estimators Σ̂†

n = Σ̂†
n,n and

Σ̂�
n = Σ̂�

n,n are consistent in the (rescaled) Frobenius norm, under mild regularity
conditions. Moreover, Σ̂†

n is rate-optimal for bandable covariance matrices. To
the best of our knowledge, these estimators have not yet been studied under
such a general nonstationary nonlinear time series model as given by (P.1) and
(P.2). Indeed, the optimal rates and thresholds have been obtained under the
assumption that Xt are iid random vectors with mean zero and a bandable or
Toeplitz covariance matrix Σ satisfying further regularity conditions.

Denote by Σ†
n and Σ�

n the theoretical oracle estimators associated to the
estimators Σ̂†

n,n and Σ̂�
n,n, respectively, obtained by replacing in their definitions

the estimates (Σ̂n,n)i,j by the true covariances (Σn,n)i,j . That is, Σ�
n = E(Σ̂�

n)
and Σ†

n = E(Σ̂†
n). Recall also that Σn = E(Σ̂n,n). Denote for A,B ≥ 0 the

scaled inner product by 〈A,B〉∗ = A · B/d and let ‖A‖F∗ =
√

〈A,A〉∗ be the
associated scaled Frobenius matrix norm. This scaling ensures that the unit
matrix has norm 1 whatever the dimension d. The following theorem studies
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the above estimators under the general time series model given by (P.1) and
(P.2) and provides sufficient conditions on the growth of dimension d relative
to the sample size when measuring the estimation error in terms of the scaled
Frobenius risk.

Theorem 3.2. Suppose that {Xt} satisfies (P.1) with q ≥ 4 and β > 1, and
that Cov(Xt) is bandable with exponent α > 0 uniformly for all t, i.e.

Cov(Xt)i,j ≤ C|i− j|−α−1.

(i) For any threshold τ , it holds

E‖Σ̂†
n − Σn‖2

F∗ ≤ C

{
τ−2α−1 + C

Θ̃4

(β − 1)2
min(τ, d)

n

}
.

Choosing τ = min(n
1

2α+2 , d), it holds

E‖Σ̂†
n − Σn‖2

F∗ ≤ C(Θ, β) min(n− 2α+1
2α+2 , d

n ).

(ii) If Σn is a Toeplitz matrix, then

E‖Σ̂�
n − Σn‖2

F∗ ≤ C

{
τ−2α−1 + Θ̃4

(β − 1)2
min(τ, d)

n

}
.

Choosing τ = min(n
1

2α+2 , d), it holds

E‖Σ̂�
n − Σn‖2

F∗ ≤ C(Θ, β) min(n− 2α+1
2α+2 , d

n ).

In particular, the optimal rate of convergence of the tapering estimator Σ̂†
n

carries over to the dependent, nonstationary case, with identical threshold val-
ues. This means, combining Theorem 3.2 and Theorem 4 of Cai, Zhang and
Zhou (2010) yields the minimax result

inf
Σ̂n

sup
Gα

E‖Σ̂n − Σn‖F∗ � min(n− 2α+1
2α+2 , d

n ),

where the optimal rate is attained by the tapering estimtor Σ̂†
n when using

the threshold τ = min(n
1

2α+2 , d). Here, Gα denotes the class of distributions of
Xn = (X1, . . . , Xn)� such that model (1) holds under assumptions (P.1)-(P.3),
Σn is bandable with decay parameter α, and the largest eigenvalue of Σn is
bounded by some given constant.

Note that the derived error bounds for the tapering estimator and the Toeplitz
estimator are identical; in particular, the pooling of covariances via σ̂m does not
give an improved error bound, which is a consequence of our weak assumptions.
As we do not impose any assumptions on the dependency between the compo-
nents, the averaging occuring in the definition of σ̂m can not be leveraged for
tighter controls on the estimation error. Moreover, we note that the rate for Σ̂�

n is
worse compared to the results of Cai, Ren and Zhou (2013). However, our bound
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is in terms of the Frobenius-star norm instead of the operator norm. Further-
more, the proof of Cai, Ren and Zhou (2013) crucially relies on an exponential
inequality for spectral density estimators, which is available for iid samples but
not under our general nonstationary time series model. Theorem 3.2 ensures
that under our assumptions the estimators used to construct the target are
consistent at a good convergence rate. This suggests to put τ = min(n

1
2α+2 , d).

A shrinkage estimator may be defined for any weight w ∈ Δ = {(w1, w2, w3) ∈
[0, 1]3 : w1 + w2 + w3 = 1}, as

Σ̂w
k,n = w1Σ̂k,n + w2Σ̂†

k,n + w3Σ̂�
k,n.

It turns out that the theory presented in Section 2 may be applied to the
quadratic form vT Σ̂w

n v for any shrinkage weight w, and hence also for the in-
dividual statistics vT Σ̂nv, vT Σ̂†

nv, and vT Σ̂�
nv. The crucial observation is that

these quadratic forms can be regarded as linear projections of the (d×d)-variate
time series XtX

T
t with respect to the Frobenius inner product A·B =

∑
i,j aijbij

defined for d × d matrices A = (aij)i,j and B = (bij)i,j , which coincides with
the usual inner product on Rd2 of the vectorized matrices. Indeed, we have the
representations

vT Σ̂†
k,nv = ν2 · Σ̂k,n, vT Σ̂�

k,nv = ν3 · Σ̂k,n,

for the projection weighting matrices ν1, ν2, ν3 ∈ Rd×d ≡ Rd2 given by

ν1 = (vlvl′)dl,l′=1, ‖ν1‖1 =
d∑

l,l′=1
|vlvl′ | = ‖v‖2

1,

ν2 = (vlvl′ω(|l − l′|))dl,l′=1, ‖ν2‖1 ≤ ‖ν1‖1 = ‖v‖2
1,

ν3 =

⎛⎝ ω(|l − l′|)
d− |l − l′|

∑
i−j=l−l′

vivj

⎞⎠d

l,l′=1

, ‖ν3‖1 ≤ ‖ν1‖1 = ‖v‖2
1

In particular, we may write vTXtX
T
t v = ν1 · (XtX

T
t ) as the Frobenius inner

product.
With Theorem 2.2, we obtain the following result.

Theorem 3.3. Suppose that the time series Xt = Gt(εt) satisfies (P.1) and (P.2)
with power q > 4 and exponent β > 2. Then, the time series Xt may be defined
on a different probability space, such that there exist independent, mean zero,
Gaussian random vectors ηt ∈ R3, such that⎛⎝E max

k=1,...,n
max
w∈Δ

∣∣∣∣∣√nvT
[
Σ̂w

k,n − EΣ̂w
k,n

]
v − wT 1√

n

k∑
t=1

ηt

∣∣∣∣∣
2⎞⎠ 1

2

≤ CΘ̃2Γ̃
1
2

β−1
β−2 ‖v‖2

1
√

log(n)n−ξ(q,β),
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for some universal constant C = C(q, β). The covariance of the Gaussian vectors
ηt ∼ N (0,Ξt) is given by

(Ξt)i,j =
∞∑

h=−∞
Cov

(
νi ·Gt(ε0)Gt(ε0)T , νj ·Gt(εh)Gt(εh)T

)
, i, j ∈ {1, 2, 3}.

It is worth mentioning that the bound in Theorem 3.3 allows that ‖v‖1 in-
creases as the dimension, d, or the sample size, n, grow, as long as ‖v‖1 =
o((logn)1/4n−ξ(q,β)/2).

For simplicity of presentation, Theorem 3.3 is formulated for a single projec-
tion vector v. However, we might as well use multiple vectors v(1), . . . , v(m) ∈ Rd

for the bilinear forms, and obtain a multivariate Gaussian approximation. De-
note by ν1

(j), ν
2
(j), ν

3
(j) the projection weighting matrices based on the vector v(j),

j = 1, . . . ,m.

Theorem 3.4. Suppose that the time series Xt = Gt(εt) satisfies (P.1) resp.
(P.2) with power q > 4 and exponent β > 2, and suppose that m ≤ cn for some
constant c. Then, the time series Xt may be defined on a different probability
space, such that there exist independent, mean zero, Gaussian random vectors
η
(s)
t ∈ R3, for s = 1, . . . ,m and t = 1, . . . , n, independent for different t, such

that⎛⎝E max
k=1,...,n

max
w∈Δ

m∑
s=1

∣∣∣∣∣√n(v(s))T
[
Σ̂w

k,n − EΣ̂w
k,n

]
v(s) − wT 1√

n

k∑
t=1

η
(s)
t

∣∣∣∣∣
2⎞⎠ 1

2

≤ CΘ̃2Γ̃
1
2

β−1
β−2

(
max

s=1,...,m
‖v(s)‖2

1

)√
m log(n)(mn )ξ(q,β),

for some universal constant C = C(q, β, c). The covariance of the Gaussian
vectors is given by

Cov((η(s)
t )i, (η(s′)

t )i) = (Ξ(s,s′)
t )i,j

=
∞∑

h=−∞
Cov

(
νi(s) ·Gt(ε0)Gt(ε0)T , νj(s′) ·Gt(εh)Gt(εh)T

)
, i, j ∈ {1, 2, 3}.

Remark 1. It is also possible to choose the vector v randomly. In this situation,
Theorems 3.3 and 3.4 are still applicable conditionally on v, provided that the
choice of v is independent from the data. Moreover, v may also be chosen in
a data-driven way. This is, for instance, relevant for financial risk where v = v̂
represents the optimal portfolio weights according to some criterion as discussed
in the introduction. For our results to be applicable, it is important that the
weights v̂ are based on historical data, say from time t = −B and older. For
sufficiently large B, assumption P.1 ensures that v̂ and Σ̂k,n are essentially
independent. The same applies to the choice of the shrinkage weights w, which
may be determined deterministically, randomly, or based on historical data.
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4. Optimal shrinkage weights

The question arises, how the shrinking weights relate to the theoretical (ora-
cle) performance of the resulting shrinkage estimator. To pursue such a study,
we first consider the problem to combine the nonparametric estimator with
oracles of the two targets within a framework proposed by Ledoit and Wolf
(2004) and aim at minimizing the squared Frobenius risk. This leads to a con-
vex but box-constrained optimization problem allowing for an explicit interior
solution (if it exists), which we briefly discuss. We propose consistent estima-
tors of the unknown quantities determining the optimization problem and its
solution(s) leading to data-adaptive bona fide estimates. A similar approach has
been pursued by Bodnar, Gupta and Parolya (2014), who derive optimal shrink-
age weights for a general shrinkage target and construct bona fide estimators.
In contrast, we consider not one but two shrinkage targets, which are further-
more data-dependent, and our bona-fide shrinkage weights need to account for
temporal dependence.

For simplicity of presentation, we elaborate this for the full sample of size n;
the corresponding sequential estimates and oracles based on the first k obser-
vations can then be derived easily. Write Σ̂n = Σ̂n,n and recall that Σ†

n and Σ�
n

are the theoretical oracle estimators associated to the estimators Σ̂†
n,n and Σ̂�

n,n,
respectively, obtained by replacing in their definitions the estimates (Σ̂n,n)i,j by
the true covariances (Σn,n)i,j . Equivalently, Σ�

n = EΣ̂�
n and Σ†

n = EΣ̂†
n.

We wish to determine the optimal ideal shrinking weights such that the re-
sulting (scaled) Frobenius risk is minimized when combining the nonparametric
estimator Σ̂n with the oracle estimators Σ†

n and Σ�
n. The scaled mean squared

error of the sample covariance matrix is given by MSE(Σ̂n) = MSE(Σ̂n; Σn) =
E‖Σ̂n − Σn‖2

F∗, and we consider the risk minimization problem

min
w

E‖Σw
n − Σn‖2

F∗

where Σw
n = w1Σ̂n + w2Σ†

n + w3Σ�
n, w1 + w2 + w3 = 1.

(4)

Further, let
E†

n = ‖Σ†
n − Σn‖2

F∗, E�
n = ‖Σ�

n − Σn‖2
F∗

be the squared approximation errors corresponding to the oracles, and

Dn = 〈Σ†
n − Σn,Σ�

n − Σn〉∗.

Substituting w1 = 1 − w2 − w3 and observing that E〈Σ̂n − Σn, A〉 = 0, for
A ∈ {Σ†

n,Σ�
n}, it suffices to determine minimizers of

f(w2, w3) = (1 − w2 − w3)2E‖Σ̂n − Σn‖2
F∗ + w2

2E
†
n + w2

3E
�
n + 2w2w3Dn. (5)

Adding the constraints 0 ≤ w1, w2 ≤ 1 leads to a quadratic programming prob-
lem under box constraints, which generally requires numerical algorithms for
its solution. We discuss the special case of an interior solution, where explicit
formulas can be derived, at the end of this section. The optimal weights depend
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on the unknown values MSE(Σ̂n) = E‖Σ̂n−Σn‖2
F∗, E†

n, E�
n, and Dn. To obtain

a data-driven solution for the optimal weights, we need consistent estimators of
these quantities, which are also interesting in their own right.

Observe that

MSE(Σ̂n) = 1
nd

d∑
i,j=1

Var(
√
n(Σ̂n)i,j).

Under the assumptions of Proposition 3.1
√
n(Σ̂n)i,j = 1√

n

∑n
t=1(Xt)i(Xt)j can

be approximated in L2 by 1√
n

∑n
t=1 Yt,i,j for independent Gaussian random

variables

Yt,i,j ∼ N(0, ξ2
t,i,j) with ξ2

t,i,j =
∞∑

h=−∞
Cov(Gt,i(ε0)Gt,j(ε0), Gt,i(εh)Gt,j(εh)).

This yields

MSE(Σ̂n) = 1
nd

d∑
i,j=1

1
n

n∑
t=1

ξ2
t,i,j + o(1).

Sancetta (2008) proposed an estimator of MSE(Σ̂n) by estimating the long-
run-variance parameters Var(

√
n(Σ̂n)i,j) by the long-run-variance estimators

V̂ar(
√
n(Σ̂n)i,j) = Γ̂n,i,j(0) + 2

n−1∑
s=1

K(s/b)Γ̂n,i,j(s),

where K is a positive weighting function, b > 0 is a bandwidth, and

Γ̂n,i,j(s) = 1
n

n−s∑
t=1

[(Xt)i(Xt)j − (Σ̂n)i,j ] · [(Xt+s)i(Xt+s)j − (Σ̂n)i,j ].

The mean square error may then be estimated as

M̂SE(Σ̂n) = 1
nd

d∑
i,j=1

V̂ar(
√
n(Σ̂n)i,j).

The result is as follows, see (Sancetta, 2008, Lemma 1).

Lemma 4.1. If (P.1)-(P.3) hold, K : R → R is a decreasing positive càdlàg-
function with limx→0+ K(x) = 1 and

∫∞
0 K2(x)dx < ∞, and b → ∞ with

b = o(
√
n), then ∣∣∣M̂SE(Σ̂n) −MSE(Σ̂n)

∣∣∣ = o

(
d

n

)
.

In practice, the bandwidth b needs to be chosen in a data-driven way, e.g. by
the method described in Andrews (1991). As we essentially estimate the long
run variance of many scalar entries, the latter method is expected to perform
well even in the present high-dimensional context.
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Let us now derive consistent estimators for the approximation errors E†
n

and E�
n and the inner product Dn. The quantities Δ�

n = Σn − Σ�
n and E�

n =
‖Σn−Σ�

n‖2
F∗ can be estimated by plugging in the estimators Σ̂�

n and Σ̂†
n. Hence,

define
Δ̂�

n = Σ̂†
n − Σ̂�

n, Ê�
n = ‖Σ̂†

n − Σ̂�
n‖2

F∗.

To estimate E†
n observe that Δ†

n = (Δ†
n,ij)i,j = Σn − Σ†

n is given by

Δ†
n =

⎧⎨⎩ 0, |i− j| ≤ τ/2,
(1 − ω(|i− j|))Σn,ij , τ/2 < |i− j| ≤ τ,
Σn,ij , |i− j| > τ.

Estimation of Δ†
n is delicate, since this involves estimating

∑
m>τ

∑
|i−j|=m 1 =

(d−τ)(d−τ +1)/2 = O(d2) off-diagonal terms which would lead to the unsatis-
factory condition d2 = o(n). For the class of bandable covariance matrices under
consideration, we can proceed by introducing a second threshold and estimate
only the covariances on the diagonals τ/2 + 1, . . . , σ. This means, we estimate
Δ†

n by Δ̂†
n = (Δ̂†

n,ij)i,j with

Δ̂†
n,ij =

⎧⎪⎪⎨⎪⎪⎩
0, |i− j| ≤ τ/2,
(1 − ω(|i− j|))Σ̂n,ij , τ/2 < |i− j| ≤ τ,

Σ̂n,ij , τ < |i− j| ≤ σ,
0, |i− j| > σ,

for some threshold σ with τ � σ � d, and put

Ê†
n = ‖Δ̂†

n‖2
F∗.

Lastly, the estimation of Dn = 〈Σn −Σ†
n,Σn −Σ�

n〉∗ can be based on the above
estimators of Δ†

n = Σn − Σ†
n and Δ�

n = Σn − Σ�
n,

D̂n = 〈Δ̂†
n, Δ̂�

n〉∗.

The folllowing results, which provide L1- and L2-bounds, respectively, ensuring
consistency, treat the highdimensional case d ≥ n

1
2α+2 .

Theorem 4.2. Suppose that {Xt} satisfies (P.1) and (P.2) and Var(Xt) is
bandable for all t. Further, assume that d ≥ n

1
2α+2 , and the estimators Σ̂†

n, Δ̂†
n

and Σ̂�
n are calculated with thresholds τ †n = n

1
2α+2 , τ�n = (nd/ log(nd))

1
2α+1 , and

σ†
n = n

1+s
2α+2 for some 0 < s < 2α.

(i) It holds

E‖Δ̂�
n − Δ�

n‖F∗ = = O
(
n−α+1/2

2α+2

)
,

E‖Δ̂�
n − Δ�

n‖2
F∗ = O

(
n− 2α+1

2α+2

)
.

and

E|Ê�
n − E�

n| = E

∣∣∣‖Σ̂�
n − Σ̂†

n‖F∗ − ‖Σ�
n − Σn‖F∗

∣∣∣ = O
(
n−α+1/2

2α+2

)
.
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(ii) We have
E‖Δ̂†

n − Δ†
n‖2

F∗ = O
(
n− 2α+1−s

2α+2

)
and

E|Ê†
n − E†

n| = E

∣∣∣‖Δ̂†
n‖F∗ − ‖Δ†

n‖F∗

∣∣∣ = O
(
n− 2α+1−s

2(2α+2)

)
.

(iii) It holds

E|D̂n −Dn| = O
(√(

d
log(nd)

) 1
2α+1

n− 2α−1−s
2α+1

)
,

and if d = O(nκ) for some κ > 0, then a sufficient condition for L1-
consistency of D̂n is κ ≤ 2α− 1 − s.

Having consistent estimators at our disposal, we can propose the following
bona fide estimators of the optimal weights,

(ŵ∗
1 , ŵ

∗
2 , ŵ

∗
3) = arg min

w∈Δ
w2

1M̂SE(Σ̂n) + w2
2Ê

†
n + w2

3Ê
�
n + 2w2w3D̂n.

This yields the feasible shrinkage estimator

Σ̂w∗

n = w∗
1Σ̂n + w∗

2Σ̂†
n + w∗

3Σ̂�
n.

The performance of the corresponding shrinkage estimator Σ̂ŵ∗
n is assessed via

simulations in the Section 6.
Let us now briefly discuss the case of an interior solution of the minimization

problem (5). We have

f(w2, w3) = (w2, w3)Qn

(
w2
w3

)
− a�n

(
w2
w3

)
+ MSE(Σ̂n),

where

Qn =
(

MSE(Σ̂n) + E† MSE(Σ̂n) + Dn

MSE(Σ̂n) + Dn MSE(Σ̂n) + E�
n

)
, an =

(
MSE(Σ̂n)
MSE(Σ̂n)

)
.

Hence, we are given a quadratic minimization problem under box constraints,
and a natural condition is to assume that det(Qn) > 0. If an interior solution
w∗ ∈ (0, 1)3 exists (or the box constraint is omitted), the explicit solution is
easily seen to be given by

w∗
2 = MSE(Σ̂n)(E�

n −Dn)
Fn

, w∗
3 = MSE(Σ̂n)(E†

n −Dn)
Fn

with
Fn = det(Qn) = E†

nE
�
n + MSE(Σ̂n)(E†

n + E�
n − 2Dn) −D2

n.

The resulting optimal weight for the sample covariance matrix Σ̂n is

w∗
1 = E†

nE
�
n −D2

n

Fn
.
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We see from the formula for w∗
1 that the optimal solution prefers the nonpara-

metric estimator Σ̂n, if the truth Σn cannot be well approximated by a banded
or Toeplitz matrix. The banded estimator receives a large weight, if the distance
between the Toeplitz oracle and Σn is large. Analogously, the optimal solution
assigns a large weight to the Toeplitz estimator, if Σn is not well approximated
by the banded oracle, so that ‖Σn − Σ†

n‖2
F is large. As a result, it is optimal to

distribute the weights across the estimators Σ̂n, Σ̂†
n and Σ̂�

n according to how
well they approximate Σn, where the approximation accuracy is measured by the
squared distances of the oracles to the truth and, in case of the nonparametric
estimator, by the MSE.

Since D2
n ≤ E†

nE
�
n, we have w∗

1 ≥ 0. If Dn ≤ min(E†
n, E

�
n), then w∗

2 , w
∗
3 ≥ 0

so that w ∈ Δ. It is interesting to note that w∗
2

w∗
3

= E�
n−Dn

E†
n−Dn

, i.e., the ratio of the
oracle shrinking weights is independent of MSE(Σ̂n). Further, w∗

2 > w∗
3 (banding

preferable compared to Toeplitz) if and only if

E†
n < E�

n ⇔ ‖Σ†
n − Σn‖F∗ < ‖Σ�

n − Σn‖F∗.

Even more is true: The above derivations remain formally true without any
changes, if we use an arbitrary unbiased estimator Σ̃n of Σn, i.e., an arbitrary
measurable function Σ̃n of the data with E(Σ̃n) = Σn. Therefore, we have
the following interesting result: The ratio w∗

2
w∗

3
is a universal characteristic of

the risk minimization problem (4) in the sense that it is independent of the
nonparametric estimator and completely determined by Σn.

5. Testing for structural breaks

The sequential approximation result of Theorem 3.3 may be applied to test for
changes in the covariance matrix Σt = Cov(Xt, Xt) ∈ Rd×d of a time series Xt.
To be precise, we want to test the hypothesis

H0 : Σt ≡ Σ0 ↔ H1 : Σt �≡ Σ0.

We propose the following CUSUM-type statistics

Tn(w) =
√
nmax

k≤n

∣∣∣vT (Σ̂w
k,n − k

n Σ̂w
n,n

)
v
∣∣∣ , w ∈ Δ,

T ∗
n(D) = sup

w∈D
Tn(w), D ⊂ Δ.

To determine critical values for the statistic Tn(w) resp. T ∗
n , we employ a

bootstrap scheme suggested in Mies and Steland (2023). In particular, let ηt ∼
N (0, At) be independent Gaussian random vectors in R3, where

At = 1
b

(
t∑

s=t−b+1

χs

)⊗2

, t = b, . . . , n,

χs =
[
νj · (XsX

T
s − Σ̂n,n)

]3
j=1

.
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and At = 0 for t < b. Here, b is a block-length tuning parameter which needs
to be chosen suitably, see below. We now define the bootstrapped version of the
changepoint statistics as

Rn(w) =
√
nmax

k≤n

∣∣∣∣∣ 1n
k∑

t=b

wT ηt −
k

n

1
n

n∑
t=b

wT ηt

∣∣∣∣∣ ,
R∗

n(D) = sup
w∈D

Rn(w).

Finally, for α ∈ (0, 1), introduce the conditional quantiles

an(α,w) = inf{a > 0 : P (Rn(w)|X1, . . . , Xn) ≤ α},
a∗n(α,D) = inf{a > 0 : P (R∗

n(D)|X1, . . . , Xn) ≤ α}.

We suggest to reject the null hypothesis if

Tn(w) > an(α,w) + δn, resp. T ∗
n(D) > a∗n(αn, D) + δn,

for δn = 1/(logn)p for some p ≥ 1.

Theorem 5.1. Let Xt = Xt,n = Gn
t (εt) be an array of dn-variate time series,

such that each kernel Gn
t satisfies (P.1) and (P.2), for some q > 8, β > 2, and

with factors Θ̃ and Γ̃ not depending on n. Choose the block length b such that
b = bn � nζ for some ζ ∈ (0, 1). If Cov(Xt,n) = Σ0 for all t = 1, . . . , n, and for
some covariance matrix Σ0, then

lim sup
n→∞

P (Tn(w) > an(α,w) + δn) ≤ α, w ∈ Δ,

lim sup
n→∞

P (T ∗
n(D) > a∗n(α,D) + δn) ≤ α, D ⊂ Δ.

Hence, the proposed bootstrap scheme indeed maintains the specified size
for a change in covariance. A particular feature of this test is that it is robust
against nuisance changes, because even under the null hypothesis the time series
Xt may be nonstationary, except for its stationary marginal covariance matrix.
The relevance of this kind of robustness has been first highlighted by Zhou
(2013) for changes in mean, see also Górecki, Horváth and Kokoszka (2018)
and Pešta and Wendler (2020). Changes in the second moment structure in
the presence of non-constant mean have been studied by Dette, Wu and Zhou
(2019) and Schmidt et al. (2021), and a robust CUSUM test for a broad class
of parameters is introduced in Mies (2021). Nevertheless, all these references
focus on the low-dimensional case, whereas our new test is also applicable in
high dimensions.

Despite its robustness, the suggested test still maintains power against clas-
sical changepoint alternatives.

Theorem 5.2. Let Xt = Xt,n = Gn
t (εt) be an array of dn-variate time series,

such that each kernel Gn
t satisfies (P.1) and (P.2) for some q > 8, β > 2, and

with factors Θ̃ and Γ̃ not depending on n. Suppose that for some u ∈ (0, 1),
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Σt = Σ1 for t = 1, . . . , �un�, and Σt = Σn for larger times t = �un� + 1, . . . , n.
Choose b = bn → ∞ such that bn � n, and standardize v such that ‖v‖1 = 1.
Define the change size

fn(w) =

∣∣∣∣∣∣
∑

k=1,2,3

wkν
k · [Σn − Σ1]

∣∣∣∣∣∣ , w ∈ Δ,

fn(D) = sup
w∈D

fn(w), D ⊂ Δ.

If
√
nfn(w) → ∞, then, as n → ∞,

P (Tn(w) > an(α,w) + δn) → 1. (6)

If
√
nfn(D) → ∞, and if D has non-empty interior, then, as n → ∞,

P (T ∗
n(D) > a∗n(α,D) + δn) → 1. (7)

Remark 2. Theorem 5.2 shows that the test detects local alternatives at rate
1/

√
n, quantified in a suitable sense. In the course of the proof, we show that

a∗n(D) = OP (1) + oP (T ∗
n(D)). The latter bound might not be sharp, as the

projection via the vector v may lead to some averaging, making a∗n(D) even
smaller. This effect would increase the power of our test, and allow to detect local
alternatives at a rate faster than

√
n, by ‘pooling’ power across the dimensions.

However, to make this analysis rigorous, further assumption on the dependence
structure of the high-dimensional time series Xt are needed, which we explicitly
do not want to impose in this paper.

6. Simulation

To demonstrate the implementation of our proposed changepoint test and the
benefits of shrinkage, we assess our methodology for three examples of high-
dimensional time series. To emphasize the relevance of accounting for nonsta-
tionarity, we purposely simulate weakly stationary time series. However, the
autocovariance structure of the outer products XtX

T
t is non-constant in time,

and hence the same holds for the local long run variances Ξt in Theorem 3.3.

6.1. Model A

First, we simulate a high-dimensional time series according to the vector
ARMA(1,1) model

Xt = aΠXt−1 + bεt + εt−1.

The matrix Π ∈ Rd×d is a permutation matrix, such that the model is non-
explosive. Furthermore, for any t, the (εt)i, i = 1, . . . , d, are chosen as inde-
pendent, zero mean random variables having a symmetrized Gamma distri-
bution with shape parameter α(t/n), standardized to unit variance. We set
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α(u) = 2 + sin(2πu), u ∈ [0, 1]. Thus, the autocovariance structure is station-
ary, but the time-series is nonstationary. In particular, the long run covariance
matrices Ξt which occur in Theorem 3.3 are non-constant.

We assess our changepoint procedure under the null hypothesis of no change,
and under the alternative where b changes at time t = �n

2 �. The projection
vector v is chosen randomly as N/‖N‖1 for a standard Gaussian random vector
N ∼ N (0, Id×d). The threshold for the tapering estimator is chosen as τ †n =
n

1
2α+1 , and τ�n = (nd/ log(nd))

1
2α+1 . Note that these thresholds are optimal

for estimation under the spectral norm, in the class of bandable matrices with
decay rate α. In practice, α is unknown, and we use the threshold for α = 2 in
our simulations. To determine the shrinkage weights, we also use the threshold
σ = σ†

n = n
1

2α+1 � τ †n. For the bootstrap scheme, the additional offset is chosen
as δn = log(n)−4, and the block-length is bn = �5n0.2�.

Table 1 reports the simulated size and power of the bootstrap test for dif-
ferent combinations of n and d = dn, and shrinkage weights w(1) = (1, 0, 0)
and w(2) = (0.3, 0.3, 0.4). We also consider the data-driven shrinkage weight w∗

as described in Section 4, which is not covered by our Gaussian approximation
results. Regarding the choice of the bandwidth for the estimator M̂SE(Σ̂n), we
employ the method of Newey and West (1994) with Bartlett kernel as imple-
mented in the R package sandwich (see Zeileis, Köll and Graham (2020)), and
we determine a separate bandwidth for each component V̂ar(

√
n(Σ̂n)i,j).

When simulating the process, we set a = 0.5 and b = 0.5 (resp. b = 0.75 post-
change). Based on our simulation results, we find that the test maintains the
specified size 10% and is indeed slightly conservative, as established theoretically
in Section 5. Moreover, the power of the changepoint test increases with sample
size, as expected, but also with increasing dimension. This may be explained by
the fact that here, the change affects all coordinates, such that the additional
information can be used to improve the detection performance. It is also in-
teresting to observe that the additional usage of the tapered and the Toeplitz
estimator further improves the power of the test. This is interesting because
the shrinkage estimator has originally been proposed as a method to improve
the performance of a point estimate. Our simulation results demonstrate that
shrinkage can also be also useful for testing.

6.2. Models B & C

As a second example, we consider the vector ARMA(1,1) process Xt given by

Xt = aXt−1 + bεt + εt−1,

with a and b as above, and εt ∼ N (0, A) iid random vectors, and we initialize
X0 ∼ N (0, A (1 + b2)/(1 − a2)) to ensure weak stationarity. The symmetric
positive semidefinite matrix A ∈ Rd×d is chosen as Ai,j = γ(ti − tj), for γ(h) =
|h+1|2H + |h−1|2H −2|h|2H , which is the autocovariance function of fractional
Gaussian noise. y For the values ti, we consider the scenarios (B) ti = i, such that
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Table 1

Power (and size), nominal level 10%. p-values based on 103 bootstrap samples, reported
values based on 104 Monte Carlo simulations.

n = 100 n = 500 n = 1000 n = 2000
Model A

w(1) d = 4 0.102 (0.09) 0.220 (0.08) 0.433 (0.09) 0.727 (0.09)
d = 4n0.3 0.101 (0.09) 0.289 (0.08) 0.520 (0.08) 0.824 (0.09)
d = 4n0.5 0.098 (0.07) 0.282 (0.08) 0.535 (0.08) 0.822 (0.09)

w(2) d = 4 0.107 (0.08) 0.334 (0.08) 0.594 (0.09) 0.878 (0.10)
d = 4n0.3 0.155 (0.07) 0.823 (0.08) 0.990 (0.09) 1.000 (0.09)
d = 4n0.5 0.201 (0.05) 0.967 (0.07) 1.000 (0.07) 1.000 (0.08)

w∗ d = 4 0.102 (0.08) 0.252 (0.08) 0.458 (0.09) 0.751 (0.09)
d = 4n0.3 0.119 (0.08) 0.530 (0.08) 0.826 (0.08) 0.985 (0.09)
d = 4n0.5 0.130 (0.06) 0.697 (0.07) 0.956 (0.07) 1.000 (0.09)

Model B
w(1) d = 4 0.108 (0.08) 0.277 (0.08) 0.503 (0.09) 0.803 (0.09)

d = 4n0.3 0.102 (0.08) 0.275 (0.07) 0.502 (0.08) 0.804 (0.09)
d = 4n0.5 0.101 (0.08) 0.276 (0.07) 0.505 (0.08) 0.798 (0.09)

w(2) d = 4 0.137 (0.08) 0.438 (0.08) 0.712 (0.09) 0.938 (0.09)
d = 4n0.3 0.198 (0.08) 0.861 (0.07) 0.993 (0.08) 1.000 (0.09)
d = 4n0.5 0.270 (0.07) 0.966 (0.08) 1.000 (0.08) 1.000 (0.09)

w∗ d = 4 0.115 (0.08) 0.302 (0.08) 0.531 (0.09) 0.829 (0.09)
d = 4n0.3 0.133 (0.08) 0.528 (0.07) 0.837 (0.08) 0.989 (0.09)
d = 4n0.5 0.157 (0.07) 0.671 (0.07) 0.941 (0.08) 0.999 (0.09)

Model C
w(1) d = 4 0.098 (0.08) 0.273 (0.08) 0.502 (0.08) 0.806 (0.09)

d = 4n0.3 0.104 (0.08) 0.277 (0.08) 0.510 (0.08) 0.806 (0.09)
d = 4n0.5 0.094 (0.08) 0.269 (0.07) 0.506 (0.08) 0.799 (0.09)

w(2) d = 4 0.124 (0.08) 0.415 (0.08) 0.692 (0.09) 0.929 (0.09)
d = 4n0.3 0.170 (0.08) 0.774 (0.08) 0.971 (0.08) 1.000 (0.09)
d = 4n0.5 0.225 (0.07) 0.908 (0.08) 0.997 (0.08) 1.000 (0.09)

w∗ d = 4 0.108 (0.08) 0.321 (0.08) 0.573 (0.08) 0.856 (0.09)
d = 4n0.3 0.132 (0.08) 0.460 (0.08) 0.733 (0.08) 0.947 (0.09)
d = 4n0.5 0.143 (0.08) 0.518 (0.07) 0.786 (0.08) 0.952 (0.09)

A is a Toeplitz matrix, and (C) ti =
√
i, such that A is not a Toeplitz matrix.

For the bootstrap scheme and for the determination of shrinkage weights, we
use the same settings as in Model A.

The size and power of the changepoint test are presented in Table 1. As
for Model (A), the test turns out to be conservative, and gains power with
increasing sample size, and higher dimension. In our simulations, we also find the
deterministic weight w(2) leading to higher power compared to the data-driven
weight w∗. Thus, future work could explore the optimal choice of shrinkage
weights from a testing perspective.

Under the null hypothesis of no change, the marginal covariance matrix of
Xt is given by Cov(Xt) = A1+2ab+b2

1−a2 . Thanks to this explicit formula, we are
able to analyze the error of estimation of the proposed shrinkage estimator with
data-driven shrinkage weights, see Table 2. As benchmarks, we evaluate the
performance of the estimators Σ̂n, Σ̂†

n, and Σ̂�
n individually. For model B, the

Toeplitz estimator Σ̂�
n is found to perform best, which could be expected be-
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Table 2. Mean square estimation error of the marginal covariance Σ = Cov(Xt) under stationarity, measured in the scaled Frobenius norm ‖ · ‖F∗.
Errors are reported, in this order, for (i) sample covariance Σ̂n, (ii) tapered estimator Σ̂†

n, (iii) Toeplitz-type estimator Σ̂�
n, (iv) the shrinkage

estimator Σ̂w∗
n . Reported values based on 104 Monte Carlo simulations.

n = 100 n = 500 n = 1000 n = 2000

Model B

d = 4 2.50 | 2.32 | 0.87 | 2.34 0.52 | 0.48 | 0.18 | 0.48 0.26 | 0.24 | 0.09 | 0.24 0.13 | 0.12 | 0.05 | 0.12
d = 4n0.3 6.38 | 3.84 | 0.78 | 4.01 2.55 | 1.29 | 0.16 | 1.42 1.49 | 0.76 | 0.08 | 0.82 0.95 | 0.49 | 0.04 | 0.53
d = 4n0.5 19.96 | 4.32 | 0.60 | 7.71 9.06 | 1.43 | 0.15 | 3.17 6.39 | 0.86 | 0.08 | 2.13 4.54 | 0.56 | 0.04 | 1.48

Model C

d = 4 2.63 | 2.61 | 1.49 | 2.45 0.55 | 0.67 | 0.61 | 0.52 0.28 | 0.42 | 0.50 | 0.27 0.14 | 0.29 | 0.44 | 0.14
d = 4n0.3 6.85 | 5.17 | 3.91 | 4.80 2.73 | 2.55 | 5.21 | 1.98 1.58 | 1.79 | 5.69 | 1.23 1.01 | 1.26 | 6.80 | 0.82
d = 4n0.5 21.25 | 12.47 | 9.05 | 10.64 9.48 | 11.13 | 12.98 | 5.75 6.66 | 12.37 | 15.69 | 4.55 4.70 | 12.27 | 19.12 | 3.53
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cause the true covariance matrix is of Toeplitz type. On the other hand, the
shrinkage estimator always improves upon the sample covariance matrix Σ̂n,
and is often close the performance of the tapered estimator Σ̂†

n. For model C,
the decay of the off-diagonal entries of the true covariance matrix is slower,
hence the performance of Σ̂†

n is also worse. Indeed, its estimation error is larger
than the error of the sample covariance Σ̂n. Yet, for n ≥ 500, the error of the
shrinkage estimator is lower than that of all other estimators. This demonstrates
that our proposed shrinkage estimator not only chooses among the three estima-
tors, but may indeed improve the performance even further due to the convex
combination.

7. Proofs

Proof of Lemma 2.1. The result follows from Jensen’s inequality:

E

∣∣∣∣∣∣
d∑

j=1
vjXtj

∣∣∣∣∣∣
q

≤ ‖v‖q1E

⎛⎝ d∑
j=1

|vj |
‖v‖1

|Xtj |

⎞⎠q

≤ ‖v‖q1
d∑

j=1

|vj |
‖v‖1

E|Xtj |q = ‖v‖q1 max
1≤j≤d

E|Xtj |q

Proof of Theorem 2.2. The time series Zt may be written as Zt = G̃t(εt), with
kernel G̃t = V Gt, such that we may apply Theorem 3.1 of Mies and Steland
(2023). It can be verified that G̃t satisfies conditions (G.1) and (G.2) therein,
with Γ = Γ̃ and Θ =

√
mΘ̃‖V ‖∞. To see this, note that for any m-variate

random variable X, we have

(E‖X‖q2)
1
q ≤ (E‖X‖qq)

1
qm

1
2− 1

q ≤ m
1
2 max
l=1,...,m

(E|Xl|q)
1
q ,

because ‖x‖2 ≤ m
1
2− 1

q ‖x‖q for any vector x ∈ Rm. Moreover, for any l =
1, . . . ,m,

(E|Vl,·Gt(ε0)|q)
1
q =

(
E

∣∣∣∣∣
d∑

r=1
Vl,rGt,r(ε0)

∣∣∣∣∣
q) 1

q

≤
d∑

r=1
|Vl,r| (E|Gt,r(ε0)|q)

1
q ≤ ‖V ‖∞Θ̃,

such that

(E‖V Gt(ε0)‖q)
1
q ≤

√
m‖V ‖∞Θ̃.

The same argument can be used to establish (G.1) and (G.2).
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Proof of Proposition 3.1. Observe that for four random variables Y1, Y2, Z1, Z2 ∈
L2q, it holds that

(E|Y1Z1 − Y2Z2|q)
1
q ≤ (E|(Y1 − Y2)Z1|q)

1
q + (E|Y2(Z1 − Z2)|q)

1
q

≤ (E|Y1−Y2|2q)
1
2q (E|Z1|2q)

1
2q +(E|Yw|2q)

1
2q (E|Z1−Z2|2q)

1
2q .

Inequality (P.1) may be obtained by setting Y1 = Gt,l(εt), Y2 = Gt,l(ε̃t,t−j) and
Z1 = Gt,l′(εt), Z2 = Gt,l′(ε̃t,t−j). Inequality (P.2) may be obtained by setting
Y1 = Gt,l(εt), Y2 = Gt−1,l(εt) and Z1 = Gt,l′(εt), Z2 = Gt−1,l′(εt).

Proof of Theorem 3.2. By (Mies and Steland, 2023, Th. 3.2) we have under
Assumption (P.1) for all d, n⎛⎝Emax

k≤n

∣∣∣∣∣
k∑

t=1
XtiXtj − (Var(Xt))ij

∣∣∣∣∣
2⎞⎠ 1

2

≤ C
Θ̃2

β − 1n
1
2 , 1 ≤ i, j ≤ d,

such that Σ̂n,ij = (Σ̂n)ij satisfies

max
1≤i,j≤d

E(Σ̂n,ij − Σn,ij)2 ≤ C
Θ̃4

(β − 1)2n
−1. (8)

To show the bound for Σ̂†
n, observe that

E‖Σ̂†
n − Σn‖2

F∗ ≤ 4 (An + Bn + Cn)

where

An = d−1
∑

m≤τ/2

∑
|i−j|=m

E(Σ̂n,ij − Σn,ij)2,

Bn = d−1
∑

τ/2<m≤τ

∑
|i−j|=m

ω(|i− j|)2E
(
Σ̂n,ij − Σn,ij

)2
,

Cn = d−1
∑

τ/2<m≤τ

∑
|i−j|=m

(1 − ω(|i− j|))2Σ2
n,ij ,

Dn = d−1
∑
m>τ

∑
|i−j|=m

Σ2
n,ij .

Clearly, |Cn + Dn| = O(τ−2α−1). Furthermore,

|An + Bn| ≤ C
Θ̃4

(β − 1)2
1
nd

∑
m≤τ

∑
|i−j|=m

1 ≤ C

n
min(τ, d).

Thus,

E‖Σ̂†
n − Σn‖2

F∗ ≤ C

{
τ−2α−1 + Θ̃4

(β − 1)2
min(τ, d)

n

}
.

The optimal rate is attained for τ = min
[
(n(β − 1)2/Θ̃4)

1
2α+2 , d

]
.
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To show the bound for Σ̂�
n observe that by Jensen’s inequality

E(σ̂m − σm)2 = E

(
1

d−m

∑
k−l=m

Σ̂n,kl − Σn,kl

)2

≤ 1
d−m

∑
k−l=m

E(Σ̂n,kl − Σn,kl)2

≤ C
Θ̃4

(β − 1)2n
−1,

where σm = 1
d−m

∑
k−l=m Σn,kl for all i, j with i− j = m ≤ τ . We have

E‖Σ̂�
n − Σn‖2

F,∗ ≤ 2
d

∑
m≤τ

∑
i−j=m

E(Σ̂�
n,ij − Σn,ij)2 + 2

d

∑
m>τ

∑
i−j=m

(Σn,ij)2

= 2
d

∑
m≤τ

∑
i−j=m

E(ω(i− j)(σ̂m − σm))2 + 2
d

∑
m>τ

∑
i−j=m

(Σn,ij)2

= Gn + Hn.

Since Σ�
n,ij ≤ C m−α−1, we have σm ≤ Cm−α−1 for i − j = m. Thus, Hn =

O(τ−2α−1). Moreover, Gn = O(min(d, τ)/n). We obtain the same bound as in
case (i), i.e.

E‖Σ̂�
n − Σn‖2

F∗ ≤ C

{
τ−2α−1 + Θ̃4

(β − 1)2
min(τ, d)

n

}
.

Optimal choice of τ yields the same rates as in case (i).

Proof of Lemma 4.1. One only needs to verify Condition 2 of Sancetta (2008).
Essentially, this is specific Doukhan-Louhichi type weak dependence condition.
It is known that Bernoulli shifts satisfy such weak dependence conditions, but
the applying the results in the literature would require to impose stronger as-
sumptions on Gt. Therefore, we give a direct proof working under (P.1). Let
ε̄i,j = (εi, . . . , εj+1, ε

′
j , ε

′
j−1, . . .) where {ε′t} is an independent copy of {εt}. Fix

u, v ∈ {1, . . . , 4}, (i1, . . . , iv), (s1, . . . , sv) ∈ Nv and (j1, . . . , ju), (t1, . . . , tu) ∈ Nu

such that s1 ≤ · · · ≤ su + r ≤ t1 ≤ · · · ≤ tv for some r ∈ N. Put Utv (εtv ) =
Xt1,j1 · · ·Xtv,jv and Vsu(εsu) = Ys1,i1 · · ·Ysu,iu . Then

Cov(Utv (εtv ), Vsu(εsu)) = Cov(Utv (εtv−su), Vsu(ε0))
= Cov(Utv (ε̄tv−su,0), Vsu(ε0))
+ Cov(Utv (εsu,0) − Utv (ε̄tv−su,0), Vsu(ε0))
= Cov(Utv (εsu,0) − Utv (ε̄tv−su,0), Vsu(ε0))

By telescoping over the random variables Utv (l) = Utv (εtv−su , . . . , εtv−su−l+1,
ε̄tv−su−l), so that

∑
l>tv−su

Utv (l)−Utv (l−1) = Utv (εsu,0)−Utv (ε̄tv−su,0), and
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noting that E|(Utv (l) − Utv (l − 1))Vsu(ε0)| ≤ Θ′l−β for some constant Θ′ by
(P.1), we obtain

Cov(Utv (εtv ), Vsu(εsu)) = O(r−β+1),

which establishes the Doukhan-Louhichi type weak dependence condition re-
quired in Condition 2 of Sancetta (2008), since β > 2.

Proof of Theorem 4.2. The first assertion follows from rearranging terms,

Σ̂�
n − Σ̂†

n − (Σ�
n − Σn) = (Σ̂�

n − Σ�
n) − (Σ̂†

n − Σn)

and the triangle inequality, so that by Theorem 3.2

E‖Σ̂�
n − Σ̂†

n − (Σ�
n − Σn)‖F∗ ≤ E‖Σ̂�

n − Σ�
n‖F∗ + E‖Σ̂†

n − Σn‖F∗

≤
(
E‖Σ̂�

n − Σ�
n‖2

F∗

) 1
2 +

(
E‖Σ̂†

n − Σ†
n‖2

F∗

) 1
2

= O
(
n−α+1/2

2α+2

)
,

and, by the cr-inequality,

E‖Σ̂�
n−Σ̂†

n−(Σ�
n−Σn)‖2

F∗ ≤ 2E‖Σ̂�
n−Σ�

n‖2
F∗+2E‖Σ̂†

n−Σ†
n‖2

F∗ = O
(
n− 2α+1

2α+2

)
.

For the second assertion of (i), use the fact that if An − Bn ≤ Cn on An ≥ Bn

and Bn − An ≤ Dn on An < Bn, for random variables An, Bn and bounds
Cn, Dn, then

E|An −Bn| ≤ E(An −Bn)1An≥Bn + E(−An + Bn)1An<Bn

≤ ECn + EDn

Apply this bound with An = ‖Σ̂�
n− Σ̂†

n‖F∗, Bn = ‖Σ�
n−Σ†

n‖F∗ and the bounds

‖Σ̂�
n − Σ̂†

n‖F∗ − ‖Σ�
n − Σn‖F∗ ≤ ‖Σ̂�

n − Σ̂†
n − (Σ�

n − Σn)‖F∗ = Cn

as well as

‖Σ�
n − Σn‖F∗ − ‖Σ̂�

n − Σ̂†
n‖F∗ ≤ ‖Σ�

n − Σn − (Σ̂�
n − Σ̂†

n)‖F∗ = Dn,

which follow from the triangle inequality. Therefore,

E

∣∣∣Ê�
n −E�

n

∣∣∣ = E

∣∣∣‖Σ̂�
n − Σ̂†

n‖F∗ − ‖Σ�
n − Σn‖F∗

∣∣∣ = O
(
n−α+1/2

2α+2

)
.

To show (ii) observe that we have, similarly as above, the bounds

±(‖Δ̂†
n‖F∗ − ‖Δ†

n‖F∗) ≤ ‖Δ̂†
n − Δ†

n‖F∗

yielding

E

∣∣∣‖Δ̂†
n‖F∗ − ‖Δ†

n‖F∗

∣∣∣ ≤ 2E‖Δ̂†
n − Δ†

n‖F∗ ≤ 2
√
E‖Δ̂†

n − Δ†
n‖2

F∗.
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Thus, it suffices to study E‖Δ̂†
n − Δ†

n‖2
F∗. We have

E‖Δ̂†
n − Δ†

n‖2
F∗ = d−1

∑
τ†/2≤m≤τ†

∑
|i−j|=m

(1 − ω(|i− j|))2E(Σ̂n,ij − Σn,ij)2

+ d−1
∑

τ†<m≤σ†

∑
|i−j|=m

E(Σ̂n,ij − Σn,ij)2

+ d−1
∑

m>σ†

∑
|i−j|=m

Σ2
n,ij

= O(σ†n−1) + O((σ†)−2α−1)

= O
(
n− 2α+1−s

2α+2

)
+ O

(
n− (s+1)(2α+1)

2α+2

)
.

Both terms are o(1) and the first term dominates because the choice of σ† is
essentially undersmoothing. Therefore,

E

∣∣∣‖Δ̂†
n‖F∗ − ‖Δ†

n‖F∗

∣∣∣ = O(E‖Δ̂†
n−Δ†

n‖F∗) = O

(√
E‖Δ̂†

n − Δ†
n‖2

F∗

)
= O(rn),

where rn = n− 2α+1−s
2(2α+2) .

(iii) First note that

‖Δ†
n‖2

F∗ = ‖Σn − Σ†
n‖2

F∗ ≤ 1
d

∑
|i−j|> τ

2

Σ2
n,ij = O

(
(τ †n)−2α−1) = O

(
n− 2α+1

2α+2

)
and

‖Δ�
n‖2

F∗ = ‖Σn − Σ�
n‖2

F∗ = 1
d

∑
|i−j|≤τ

ω(|i− j|)2(Σn,ij − σ|i−j|)2 + 1
d

∑
|i−j|>τ

Σ2
n,ij

= O
(
τ�n(d− τ�n)

d

)
+ O

(
(τ�n)−2α−1)

= O(τ�n).

Using the decomposition

〈Δ̂†
n, Δ̂�

n〉∗ − 〈Δ†
n,Δ�

n〉∗ = 〈Δ̂†
n − Δ†

n, Δ̂�
n〉∗ + 〈Δ†

n, Δ̂�
n − Δ�

n〉∗
we obtain the bound∣∣∣〈Δ̂†

n, Δ̂�
n〉∗ − 〈Δ†

n, Δ̂�
n〉∗

∣∣∣ ≤ ‖Δ̂†
n − Δ†

n‖F∗(‖Δ�
n‖F∗ + ‖Δ̂�

n − Δ�
n‖F∗)

+ ‖Δ†
n‖F∗‖Δ̂�

n − Δ�
n‖F∗

leading to

E

∣∣∣〈Δ̂†
n, Δ̂�

n〉∗ − 〈Δ†
n,Δ†

n〉∗
∣∣∣ ≤ ‖Δ�

n‖F∗E‖Δ̂†
n − Δ†

n‖F∗

+
√
E‖Δ̂†

n − Δ†
n‖2

F∗

√
E‖Δ̂�

n − Δ�
n‖2

F∗

+ ‖Δ†
n‖F∗E‖Δ̂�

n − Δ�
n‖F∗
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= O(
√

τ�nrn) + O(rnn−α+1/2
2α+2 ) + O((τ †n)−2α−1rn)

= O(
√

τ�nrn)

= O
(√(

d
log(nd)

) 1
2α+1

n
1

2α+1+ s+1
2α+2−1

)

≤ O
(√(

d
log(nd)

) 1
2α+1

n
s+2
2α+1−1

)

= O
(√(

d
log(nd)

) 1
2α+1

n
s+1−2α
2α+1

)
.

The latter estimate can be bounded by O(d
1

2α+1n− 2α−s
2α+2 ). Hence, if d = O(nκ)

for some κ > 0, the above bound is o(1) provided κ ≤ 2α−1−s. This completes
the proof.

Proof of Theorem 5.1. Note that the statistics Tn and the critical values an(α,w)
are both quadratic in ‖v‖1, such that we may suppose without loss of gen-
erality that ‖v‖1 = 1. If we replace the χs by the centered random vectors
χ̄s = [νj · (XsX

T
s − Σ0)]3j=1, then Theorem 5.1 is a special case of (Mies and

Steland, 2023, Prop. 5.3). We briefly show that the estimation error of Σ̂n ver-
sus the true covariance matrix is negligible. To this end, denote the sequential
estimators of the asymptotic covariance, for k = b, . . . , n, by

Q̂(k) =
k∑

t=b

1
b

(
t∑

s=t−b+1
χs

)⊗2

, Q(k) =
k∑

t=b

1
b

(
t∑

s=t−b+1
χ̄s

)⊗2

.

It suffices to show that

E max
k=1,...,n

‖Q̂(k) −Q(k)‖tr = O(
√
nb), (9)

where ‖A‖tr = tr((AAT ) 1
2 ) denotes the trace norm of a symmetric matrix. Since

the matrices Q̂(k) and Q(k) are always of fixed dimension 3 × 3, the choice of
norm is in fact irrelevant as all norms are equivalent, and we may use an arbitrary
matrix norm ‖ · ‖. If (9) holds, then both Q̂(k) and Q(k) satisfy Theorem 5.1
in Mies and Steland (2023), such that the bootstrap scheme based on Q̂(k) is
valid.

To establish (9), denote Δn =
[
νj · (Σ0 − Σ̂n,n)

]3
j=1

= χs−χ̄s ∈ R3, for all s.
Via quadratic expansion, we find that, for some universal C which may change
from line to line,

Emax
k

∥∥∥Q̂(k) −Q(k)
∥∥∥

= Emax
k

∥∥∥∥∥∥
k∑

t=b

1
b

⎡⎣( t∑
s=t−b+1

(χ̄s + Δn)
)⊗2

−
(

t∑
s=t−b+1

χ̄s

)⊗2⎤⎦∥∥∥∥∥∥
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= Emax
k

∥∥∥∥∥
k∑

t=b

1
b

[(
t∑

s=t−b+1

(χ̄s(bΔn)T + (bΔn)χ̄T
s + (bΔn)⊗2)

)]∥∥∥∥∥
≤ C E

n∑
t=b

[
2

∥∥∥∥∥
t∑

s=t−b+1

χ̄sΔT
n

∥∥∥∥∥+ b ‖Δn‖2

]

≤ C
n∑

t=b

√√√√E

∥∥∥∥∥
t∑

s=t−b+1

χ̄s

∥∥∥∥∥
2√

E‖Δn‖2 + nbE‖Δn‖2.

By virtue of Proposition 3.1 and Lemma 2.1, the centered time series χ̄s satis-
fies condition (G.1) of Mies and Steland (2023), such that the Rosenthal-type
inequality, Theorem 3.2 therein, is applicable. This yields,√√√√E

∥∥∥∥∥
t∑

s=t−b+1

χ̄s

∥∥∥∥∥
2

≤ C
√
b

∞∑
j=1

Θ̃j−β = O(
√
b),

because Θ̃ is fixed in the asymptotic regime of Theorem 5.1. Analogously,

√
E‖Δn‖2 =

√√√√
E

∥∥∥∥∥ 1
n

n∑
t=1

χ̄t

∥∥∥∥∥
2

= O(1/
√
n).

Hence, Emaxk

∥∥∥Q̂(k) −Q(k)
∥∥∥ = O(

√
nb + b) = O(

√
nb). The last inequality

holds because b ≤ n, and establishes (9).

Proof of Theorem 5.2. Denote

Σk,n := EΣ̂k,n = k ∧ �un�
n

Σ1 + (k − �un�) ∨ 0
n

Σn.

Theorem 3.3 yields that

Tn(w) =
√
nmax

k≤n

∣∣∣∣∣∣
∑

k=1,2,3

wkν
k · [Σk,n − Σn,n]

∣∣∣∣∣∣+ O

⎛⎝√√√√ 1
n

n∑
t=1

‖Ξt‖2

⎞⎠+ o(1),

uniformly in w ∈ Δ. The matrices Ξt ∈ R3×3 are bounded under our assump-
tions, because (P.1) implies that

Cov
(
Gn

t,j(ε0)Gn
t,i(ε0), Gn

t,j(εh)Gn
t,i(εh)

)
≤ C Θ̃2|h|1−β, i, j = 1, . . . , dn.

As ‖νk‖1 ≤ 1 is bounded, we find that ‖Ξt‖ = O(1). Hence, for some universal
c = c(u) > 0 depending on the change location u ∈ (0, 1),

Tn(w) ≥ c ·
√
nfn(w) + O(1).
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This approximation holds uniformly in w ∈ Δ, and thus

T ∗
n(D) ≥ c̃ ·

√
nfn(D) + O(1).

As a second step, we derive an upper bound on the bootstrap quantile
an(α,w) a∗n(α,D). Note that, conditionally on X1, . . . , Xn, the ηt are indepen-
dent centered random vectors. Hence, the Burkholder-Davis-Gundy inequality
yields

E∗|Rn(w)|2 ≤ 4nE∗ max
k=1,...,n

∣∣∣∣∣ 1n
k∑

t=1
wT ηt

∣∣∣∣∣
2

(10)

≤ C

n

n∑
t=b

E∗|wT ηt|2 ≤ C̃

∥∥∥∥∥ 1
n

n∑
t=b

wTAtw

∥∥∥∥∥ , (11)

where E∗ denotes the conditional expectation given X1, . . . , Xn, for brevity.
Let χ̄s =

[
νj ·

(
XsX

T
s − E(XsX

T
s )
)]3

j=1, and define Āt= 1
b

(∑t
s=t−b+1 χ̄s

)⊗2
.

By virtue of Proposition 3.1, and since ‖νj‖1 is bounded, the sequence χ̄t sat-
isfies the conditions of (Mies and Steland, 2023, Thm. 5.1), with d = 3, which
yields that∥∥∥∥∥ 1

n

n∑
t=b

Āt −
1
n

n∑
t=1

Ξt

∥∥∥∥∥ = OP

(√
b
n + b−1 + b2−β

)
= oP (1).

Since Ξt is bounded, we find that

1
n

n∑
t=b

Āt = OP (1). (12)

Now denote Δt,n = χt − χ̄t =
[
νj · (E(XsX

T
s ) − Σ̂n,n)

]3
j=1

. Similar to the
proof of Theorem 5.1, we derive

E

∣∣∣∣∣ 1n
n∑

t=b

wT [At − Āt]w

∣∣∣∣∣ = 1
n
E

∣∣∣∣∣
n∑

t=b

1
b
wT

[(
t∑

s=t−b+1

(χ̄s + Δs,n)
)⊗2

−
(

t∑
s=t−b+1

χ̄s

)⊗2]
w

∣∣∣∣∣
≤ 2

n
E

∣∣∣∣∣
n∑

t=b

1
b
wT

(
t∑

s=t−b+1
χ̄s

)(
t∑

s=t−b+1
Δs,n

)T

w

∣∣∣∣∣
+ 1

n
E

∣∣∣∣∣
n∑

t=b

1
b
wT

(
t∑

s=t−b+1
Δs,n

)⊗2

w

∣∣∣∣∣
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≤ 2
n

n∑
t=b

E

[∥∥∥∥∥
t∑

s=t−b+1

χ̄s

∥∥∥∥∥ · |Δ∗
n(w)|

]
+ bE|Δ∗

n(w)|2

≤ 2
√
bE|Δ∗

n(w)|2 max
t=b,...,n

√√√√E

∥∥∥∥∥ 1√
b

t∑
s=t−b+1

χ̄s

∥∥∥∥∥
2

+ bE|Δ∗
n(w)|2,

for Δ∗
n(w) = maxs=1,...,n |wTΔs,n|. By virtue of (P.1), we may conclude that

the autocovariances ‖Cov(χr, χs)‖ ≤ CΘ̃2|r − s|1−β are summable (Mies and
Steland, 2023, Prop. 6.4), and we hence conclude that

max
t=b,...,n

√√√√E

∥∥∥∥∥ 1√
b

t∑
s=t−b+1

χ̄s

∥∥∥∥∥
2

= O(1).

The same bound on the autocovariances yields Var(Σ̂n,n) = O(1/n). Thus, via
the classical bias-variance-decomposition, E|Δ∗

n(w)|2 ≤ C( 1
n + fn(w)2), uni-

formly in w ∈ Δ. We conclude that∥∥∥∥∥ 1
n

n∑
t=b

wT [At − Āt]w

∥∥∥∥∥ = OP

(√
bfn(w)

)
+ oP (1).

Together with (11) and (12), we obtain Rn(w) = OP

(√
bfn(w)

)
+ oP (1), and

hence an(α,w) = OP

(√
bfn(w)

)
+oP (1). In combination with the lower bound

on Tn(w), and b = bn � n, this establishes (6)
To proof (7), we need an upper bound on the supremum Rn(D) =

supw∈D Rn(w). Since w ∈ Δ may be regarded as convex weights, the trian-
gle inequality yields

Rn(D) ≤ Rn(w1) + Rn(w2) + Rn(w3) = OP

(√
bfn(Δ)

)
+ oP (1),

for w1 = (1, 0, 0), w2 = (0, 1, 0), and w3 = (0, 0, 1). Moreover, since D has non-
empty interior, there exists constants c1, c2 > 0 such that c1fn(Δ) ≤ fn(D) ≤
c2fn(Δ). Thus, the condition in the Theorem implies

√
nfn(Δ) → ∞, and

the lower bound (11) yields T ∗
n(D) ≥ c̃

√
nfn(Δ) → ∞. On the other hand,

a∗n(α,D) ≤ C̃
√
bfn(Δ) + 1 � T ∗

n(D). This establishes (7).
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