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Abstract: In multiple hypothesis testing, it is well known that adaptive
procedures can enhance power via incorporating information about the
number of true nulls present. Under independence, we establish that two
adaptive false discovery rate (FDR) methods, upon augmenting sign dec-
larations, also offer directional false discovery rate (FDRdir) control in the
strong sense. Such FDRdir controlling properties are appealing, because
adaptive procedures have the greatest potential to reap substantial gain in
power when the underlying parameter configurations contain little to no
true nulls, which are precisely settings where the FDRdir is an arguably
more meaningful error rate to be controlled than the FDR.
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1. Introduction

Consider independent observations z1, . . . , zm P R, where each “z-value” zi is a
noisy measurement of an effect parameter θi P R. We suppose m is quite large,
and will use the notational shorthand rms ” t1, . . . ,mu in the sequel. For testing
the multiple point null hypotheses

Hi : θi “ 0, i P rms, (1.1)

Benjamini and Hochberg (1995) proposed their now-celebrated BH procedure
to control the false discovery rate (FDR),

E

«

řm
i“1 1pHi is rejected and θi “ 0q

1 _
řm

i“1 1pHi is rejectedq

ff

,

below a target level q P p0, 1q. However, many statisticians, such as Tukey (1962,
1991) and Gelman and Tuerlinckx (2000), consider testing the point nulls in (1.1)
futile, because the effects in reality, however small, are rarely exactly zero. In-
stead, they argue that one should test the direction/sign of the effect by declar-
ing either θi ą 0 or θi ă 0 as a discovery, or making no declaration about θi at
all if there is insufficient evidence to support either direction. Under this new
paradigm, a generic discovery procedure consists of two components:

706

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/24-EJS2213
mailto:dennis.leung@unimelb.edu.au
mailto:ninht@student.unimelb.edu.au
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


Adaptive directional FDR control 707

(i) R Ď t1, . . . ,mu, the set of rejected indices for which sign declarations
(discoveries) are made, and

(ii) ysgni, the positive or negative sign declared for each i P R. (Note that
ysgni ‰ 0.)

We denote such a procedure, or its associated decisions, by pysgniqiPR. Its error
rate analogous to the FDR is the directional false discovery rate (FDRdir),
defined as

FDRdir

”

pysgniqiPR
ı

” E

„ř

iPR 1psgnpθiq ‰ ysgniq|

1 _ |R|

j

, (1.2)

and its power can be measured by the expected number of true discoveries
(ETD)

ETD
”

pysgniqiPR
ı

” E

«

ÿ

iPR
1psgnpθiq “ ysgniq

ff

,

where for any x P R, sgnpxq ” 1px ą 0q´1px ă 0q. This paper treats the control
of FDRdir for the sign discoveries of the θi’s; we don’t exclude the possibility
that some effect parameters can indeed be zero, so a false discovery amounts to
declaring θi ă 0 when the truth is θi ě 0, or vice versa.1

Methods for controlling the FDRdir are surprisingly scant for the simple test-
ing problem above. To our best knowledge, under the independence among
z1, . . . , zm and some standard assumptions (Assumption 1 and 2 below), the
only known procedure that can provably control the FDRdir under a target
level q P p0, 1q in the strong sense, i.e. irrespective of the configuration of θi’s,
is what we call the directional Benjamini and Hochberg (BHdir) procedure pro-
posed in Benjamini and Yekutieli (2005, Definition 6). The BHdir procedure first
decides on the set of rejected indices among rms by applying the standard BH
procedure at level q to the two-sided p-values constructed from z1, . . . , zm, and
then declares the sign of each rejected θi as sgnpziq. Guo and Romano (2015,
Procedure 6) proposed another procedure almost identical to the BHdir, except
that the screening BH step is applied at level 2q instead of q. This latter pro-
cedure, however, can only control the FDRdir under its intended target level
q when all θ1, . . . , θm are nonzero. Guo and Romano (2015, Procedures 7-9),
Zhao and Fung (2018) and Guo, Sarkar and Peddada (2010) consider exten-
sions of the current problem that involve either specific patterns of dependence
or multidimensional directional decisions.

We will expand the repertoire of available methods for FDRdir inference with
strong theoretical guarantee. In the FDR literature, it is known that adaptive
methods (Benjamini and Hochberg, 2000, Benjamini, Krieger and Yekutieli,
2006) that incorporate a data-driven estimate of the proportion of true nulls

π ”
|ti : θi “ 0u|

m
(1.3)

1Some works call (1.2) the mixed directional false discovery rate, to emphasize the two
types of errors involved: those from declaring any sign at all for θi when θi “ 0 and those
from declaring an opposite sign for θi when θi ‰ 0.
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into their procedures have the potential to improve upon the power offered by
the vanilla BH procedure. Using martingale arguments, we prove that under in-
dependence, two adaptive methods can also provide strong FDRdir control upon
the augmentation of sign declarations. The first is Storey, Taylor and Siegmund
(2004)’s adaptive FDR procedure, which can be seen as an adaptive variant of
the BH procedure (Section 2). The second is a specific procedure belonging to
a more recent line of methods driven by a technique called “data masking” first
introduced in Lei and Fithian (2018) (Section 3). We also numerically demon-
strate their competitive power performances in Section 4.

Adaptive procedures that can offer FDRdir guarantees are particularly im-
portant for settings whose underlying parameter configurations contain little
to no true nulls. Arguably, if most θi’s in question are non-zero, the FDRdir is
more meaningful as an error measure compared to the FDR because querying
about their signs matters more. Moreover, such “non-sparse-signal” settings are
precisely those in which adaptive procedures can reap substantial gain in power;
see Storey, Taylor and Siegmund (2004, Section 3.1), where their adaptive FDR
procedure demonstrates greater improvements in power over the BH procedure
as π decreases.

1.1. Notation and assumptions

For a, b P R, we let a^ b ” minpa, bq and a_ b ” maxpa, bq. For any two subsets
A,B Ă rms, A Ĺ pĽqB means A is a strict subset (superset) of B. Up¨; a, bq
denotes a uniform density on the interval ra, bs Ď R. Eθr¨s means a (frequen-
tist) expectation with respect to fixed values of θ1, . . . , θm. For each i P rms

and given θi “ θ, Fi,θp¨q denotes the distribution function of zi with density
fi,θp¨q ” F 1

i,θp¨q ą 0 with respect to the Lebesgue measure on R (so Fi,θp¨q is im-
plicitly assumed to be smooth and strictly increasing). Φp¨q and φp¨q denote the
standard normal distribution and density functions, respectively. Additionally,
the following assumptions will be made for the two main theoretical results in
this paper (Theorems 2.1 and 3.1):

Assumption 1. The null distribution of zi is known and symmetric around
zero, i.e. Fi,0p´zq “ 1 ´ Fi,0pzq and fi,0p´zq “ fi,0pzq for any z P R.

Assumption 2. The family of densities tfi,θp¨quθPR satisfies the monotone like-
lihood ratio (MLR) property, i.e. for any given θ ă θ˚ and z ă z˚, fi,θ˚ pzq

fi,θpzq
ď

fi,θ˚ pz˚
q

fi,θpz˚q
.

These are not necessarily the weakest assumptions for our theorems to hold,
but are standard enough so as not to distract from the key ideas of the proofs.
Essentially, Assumption 2 guarantees that zi becomes “stochastically larger”
as θi increases, and two examples satisfying Assumption 2 are the normal dis-
tributions Npθ, σ2

i q for a fixed variance σ2
i and the noncentral t-distributions

NCT pθ, viq for a fixed degree vi (Kruskal, 1954, Section 3). Moreover, the sym-
metry condition on Fi,0 in Assumption 1 is not crucial; it is included primarily
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to streamline our presentation. If this condition isn’t satisfied, instead of zi, one
can alternatively consider the transformed statistic Φ´1pFi,0pziqq whose density
has the form

fi,θ
`

F´1
i,0

`

Φpzq
˘˘

fi,0
`

F´1
i,0

`

Φpzq
˘˘φpzq. (1.4)

As a function in z, (1.4) boils down to the symmetric density function φpzq when
θi “ 0. The density (1.4) also maintains the MLR property, provided that the
base density fi,θp¨q satisfies the MLR property.

2. Directional control with Storey, Taylor and Siegmund (2004)’s
adaptive procedure

Compute the two-sided p-values

pi ” 2Fi,0p´|zi|q, i P rms (2.1)

from the null distributions Fi,0, and for any t P r0, 1s, let Rptq ” ti : pi ď tu be
the set of rejected indices i defined by pi ď t; Algorithm 1 is a sign-augmented
version of Storey, Taylor and Siegmund (2004)’s adaptive procedure for FDRdir
control, which we call the “STSdir” for short.

Algorithm 1: The STSdir procedure at target FDRdir level q P p0, 1q

Data: z1, . . . , zm
Input: FDRdir target q P p0, 1q, the two-side p-values tpiu

m
i“1 from (2.1), and

tsgnpziqumi“1;
1 For a fixed tuning parameter λ P p0, 1q, compute π̂pλq ”

|ti:piąλu|`1
p1´λqm

as an estimate
for π;

2 Compute tλq ” sup
!

t P r0, 1s : zFDRλptq ď q
)

, where

zFDRλptq ”

#

π̂pλqmt
|Rptq|_1 , if t ď λ

1, if t ą λ
;

3 Compute the rejection set Rptλq q ” ti : pi ď tλq u ;
Output: Sign discoveries psgnpziqqiPRptλq q.

Rptλq q is precisely the rejection set produced by the adaptive procedure in
Storey, Taylor and Siegmund (2004, Theorem 3) that was proved to offer strong
FDR control for testing the point nulls in (1.1), under the assumptions that
the null p-values are independent and uniformly distributed. Roughly speaking,
compared to the BH procedure, which essentially uses

mt

|Rptq| _ 1 (2.2)

as an estimate for the FDR incurred by rejecting any pi below a given threshold
t, Storey, Taylor and Siegmund (2004)’s FDR estimate zFDRλptq adjusts (2.2) by
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the factor π̂pλq. This factor serves as a conservative estimate for the unknown
null proportion π P r0, 1s in (1.3). If π is close to zero, i.e. there are very few
true nulls in the problem, Storey, Taylor and Siegmund (2004)’s procedure could
produce substantially more rejections compared to the BH procedure. Our first
result is that, by simply augmenting the rejections with sign declarations as
in the output of Algorithm 1, the procedure also offers strong FDRdir control
under independence; we note that by the construction of the p-values in (2.1)
and Assumption 1, it must be the case that sgnpziq ‰ 0 for any i P Rptλq q:

Theorem 2.1 (FDRdir control of STSdir). Under Assumptions 1 and 2, as well
as the independence among z1, . . . , zm, Algorithm 1 controls the FDRdir at level
q P p0, 1q, i.e. by letting Sptq ” ti : sgnpθiq ‰ sgnpziq and i P Rptqu.

FDRdir

”

psgnpziqqiPRptλq q

ı

” Eθ

«

|Sptλq q|

|Rptλq q| _ 1

ff

ď

´

1 ´ Eθrλ|Sp1q|
s

¯

q ď q.

The proof of Theorem 2.1 in Appendix A.1 relies on the optional stopping
time theorem for supermartingales, which extends the original arguments by
Storey, Taylor and Siegmund (2004, Theorem 3) based on martingales. The
choice of λ entails a bias-variance trade-off in the estimation of π, and Storey,
Taylor and Siegmund (2004) fixes λ “ 0.5 in their simulations. Alternatively,
similarly to Storey, Taylor and Siegmund (2004, Section 6), we provided a
method in Appendix A.2 for automatically selecting λ based on the observed
data z1, . . . , zm to achieve a balance between bias and variance. Since Theo-
rem 2.1 is only valid on the premise of a fixed λ, using the provided method
of automatically selecting λ may not guarantee FDRdir control. Regardless, our
simulations in Section 4 demonstrate that this data-driven choice of λ typically
leads to empirically robust control of FDRdir.

3. Directional control with data masking: ZDIRECT

Early FDR methods, such as Storey, Taylor and Siegmund (2004)’s adaptive
procedure covered in Section 2, process data in a pre-determined manner to
decide on the set of rejected hypotheses. In contrast to the conventional belief
that the design of a testing procedure should not be affected by the observed
data’s patterns to avoid data snooping, Lei and Fithian (2018) recently showed
that, as long as the data are initially “masked” as a trade-off, one can iteratively
interact with the gradually revealed data in a legitimate way to devise valid FDR
procedures. The flexibility of this masking technique not only allows one to adapt
to information about the null proportion in (1.3) implied by the data, but also
side information provided by suitable external covariates that are present; see
(Chao and Fithian, 2021, Lei, Ramdas and Fithian, 2021, Leung and Sun, 2022,
Tian, Liang and Li, 2021, Yurko et al., 2020) for a series of follow-up works,
including the ZAP (finite) algorithm proposed by one of the present authors
(Leung and Sun, 2022, Algorithm 2).
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Motivated by the construct of ZAP, we propose a masking algorithm that is
augmented with sign declarations for the rejected θi’s, and is proven to provide
strong FDRdir control. To facilitate our presentation, for each i P rms, we first
define

ui ” Fi,0pziq, (3.1)

the probability integral transform of zi under the null that takes values in the
unit interval p0, 1q, as well as its reflection

qui ” p0.5 ´ uiqIpui ď 0.5q ` p1.5 ´ uiqIpui ą 0.5q (3.2)

about the midpoint 0.25 of the left sub-interval p0, 0.5q, or about the midpoint at
0.75 of the right sub-interval p0.5, 1q, depending on whether ui ď 0.5 or u ą 0.5.
Moreover, we let

u1
i ”

#

ui ^ qui if ui, qui P r0, 0.5s

ui _ qui if ui, qui P p0.5, 1q
, (3.3)

which, for any given i, is the value between ui and qui closer to the endpoints
of the unit interval. In particular, u1

i only provides partial knowledge about the
value of ui: If u1

i ď 0.5, ui may be either u1
i or 0.5 ´ u1

i; if u1
i ą 0.5, ui may be

either u1
i or 1.5 ´ u1

i.
With these preparations, we are now in a position to describe our iterative

testing procedure for the directional inference of θ1, . . . , θm with a target FDRdir
level q P p0, 1q, whose steps are listed out in Algorithm 2; we call it “ZDIRECT”
as it interacts with the z-values via their one-to-one transformations ui’s for
FDRdir control. Essentially, the algorithm iterates through steps t “ 0, 1, . . . to
construct a strictly decreasing sequence of subsets

rms “ M0 Ľ M1 Ľ M2 ¨ ¨ ¨

based on the data, and from each Mt, it forms the candidate “acceptance” and
“rejection” sets

At ” ti : i P Mt and ui P p0.25, 0.75qu and
Rt ” ti : i P Mt and ui P p0, 0.25s Y r0.75, 1qu;

the algorithm terminates at step t̂ “ mintt : zFDRdirptq ď qu as soon as the
FDRdir estimate

zFDRdirptq ”
1 ` |At|

|Rt| _ 1

falls below q, and declares the sign discoveries psgnpziqqiPRt̂
. Since Rt̂ Ă ti : ui P

p0, 0.25s Y r0.75, 1qu, it must be the case that sgnpziq ‰ 0 for any i P Rt̂, under
Assumption 1. Moreover, the sets Mt are shrunk in such a way that these two
conditions must be respected (line 6 in Algorithm 2):
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(C1) Mt`1 must be constructed based only on the partial data tũi,tuiPrms avail-
able at step t, where for each i P rms, we define

rui,t ”

#

ui if i R Mt

u1
i if i P Mt

, (3.4)

which may reveal the true value of ui depending on whether ui P Mt.
Essentially, any human/computer routine who shrinks Mt to Mt`1 can
only know that the true value of ui is one of two possibilities if i is still in
the “masked” set Mt.

(C2) Mt`1 must be a strict subset of Mt to ensure the algorithm does termi-
nate.

Algorithm 2: The ZDIRECT procedure at target FDRdir level q P p0, 1q

Data: z1, . . . , zm
Input: FDRdir target q P p0, 1q, the initial set M0 “ rms ;

1 for t“ 0,1 . . . , do
2 Find the candidate “acceptance set” At ” ti : i P Mt and ui P p0.25, 0.75qu;
3 Find the candidate “rejection set” Rt ” ti : i P Mt and ui P p0, 0.25s Y r0.75, 1qu;
4 Compute zFDRdirptq ”

1`|At|

|Rt|_1 ;
5 if zFDRdirptq ą q then
6 construct Mt`1 Ĺ Mt using only the partially masked data tũi,tuiPrms

from (3.4);
7 else
8 Set t̂ “ t; break;
9 end

10 end
Output: Sign discoveries psgnpziqqiPRt̂

.

Theorem 3.1, which is proven in Appendix B.2, states that ZDIRECT pro-
vides strong FDRdir control under the assumptions in this paper:

Theorem 3.1 (FDRdir control of ZDIRECT). Under Assumptions 1 and 2, as
well as the independence between z1, . . . , zm, Algorithm 2 controls the FDRdir
at level q P p0, 1q. Specifically, if the algorithm terminates at step t̂ “ mintt :
zFDRdirptq ď qu, we have

Eθ

„

|ti : sgnpθiq ‰ sgnpziq and i P Rt̂u|

1 _ |Rt̂|

j

ď q. (3.5)

Apart from the final sign declarations, Algorithm 2 inherits much of its struc-
ture from the ZAP (finite) algorithm in Leung and Sun (2022), but is situated in
the more general “without-threshold” framework (Lei and Fithian, 2018, Section
6.1) that does not explicitly involve any thresholding functions. In fact, a quan-
tity like zFDRdirptq has been used as an FDR estimate in Leung and Sun (2022).
To also make sense of it as a suitable FDRdir estimate for the sign discoveries
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of psgnpziqqiPRt , note that an i P Rt constitutes a false discovery if either

ui P p0, 0.25s and sgnpθiq ě 0, (3.6)

or
ui P r0.75, 1q and sgnpθiq ď 0. (3.7)

By the continuity of Fi,0, each ui is uniformly distributed when θi “ 0. Suppose
we are in an error-prone scenario where all θi’s are either exactly or very close to
zero, so that all ui’s stochastically behave much like uniform random variables.
For a given i P Mt, the event tui P p0, 0.25su and tui P p0.25, 0.5su should be
approximately equally likely, so the set size |ti : i P Mt and ui P p0.25, 0.5su|

is a reasonable estimate of the number of false discoveries by way of (3.6).
Analogously, |ti : i P Mt and ui P r0.5, 0.75qu| serves as an estimate of the
number of false discoveries by way of (3.7). As such, |At| makes sense as an
estimate of the number of false discoveries in Rt, where the additive “1” in the
numerator of zFDRdirptq is a theoretical adjustment factor to make it conservative
enough. In fact, this concept is akin to how the FDR estimate for the knockoff
filter for variable selection in linear regressions (Barber et al., 2015) can also
serve as an FDRdir estimate when sign declarations are augmented (Barber
et al., 2019).

However, our specific methodology for updating Mt, as described next, con-
siderably differs from existing data masking algorithms. Notably, we rely solely
on z1, . . . , zm as the available data for our problem, without harnessing external
covariate information. This poses a greater challenge for boosting power, but
our simulations in Section 4 demonstrate that ZDIRECT remains competitive
in terms of power for FDRdir control when compared to other existing methods.

3.1. Shrinking the masked sets Mt

To achieve power, we aim to shrink Mt in accordance with conditions (C1)–(C2)
in such a way that Algorithm 2 can mimic the optimal discovery procedure
(ODP) under a Bayesian formulation2 of the problem, which imposes the addi-
tional assumption that the effects are random and independently generated by
a common prior distribution, i.e.

θi „i.i.d. Gpθq, i P rms, (3.8)

for an unknown distribution function Gp¨q. For a given target level q P p0, 1q,
the ODP, denoted by pysgn

ODP
i qiPRODP , is defined to be the procedure with the

properties that
FDRdir

”

pysgn
ODP
i qiPRODP

ı

ď q

and
ETD

”

pysgn
ODP
i qiPRODP

ı

ě ETD
”

pysgniqiPR
ı

2More precisely, it is an empirical Bayes formulation, because Gp¨q is assumed to be un-
known.
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Table 1

Optimal sign declaration strategy for a given i.
If Then

P pθi ă 0|ziq ă P pθi ą 0|ziq declare θi ą 0
P pθi ą 0|ziq ă P pθi ă 0|ziq declare θi ă 0
P pθi ą 0|ziq “ P pθi ă 0|ziq declare either θi ą 0 or θi ă 0

for any procedure pysgniqiPR with FDRdir
“

pysgniqiPR
‰

ď q, where the expectation
operator defining all the FDRdir and ETD quantities just mentioned is with
respect to both the randomness of the data tziuiPrms and that of the parameters
tθiuiPrms under (3.8) (i.e. different from the frequentist Eθr¨s operator). In other
words, the ODP is the best procedure in terms of maximizing ETD, among all
that can control FDRdir under a target level.

In order to shrink Mt in a manner that Algorithm 2 can mimic the ODP, we
have to better understand the latter’s operational characteristics; to that end,
we shall first intuitively grasp what the best course of action for a directional
decision maker should be under the Bayesian assumption (3.8). If s/he were
obliged to unambivalently declare a non-zero sign for a specific θi based on zi,
the optimal strategy is clearly the one outlined in Table 1 based on the posterior
probabilities P pθi ă 0|ziq and P pθi ą 0|ziq, whose associated probability of
making a false discovery can be calculated as

lfsr i “ P pθi ď 0|ziq ^ P pθi ě 0|ziq (3.9)

and must be no larger than the probability of false discovery made by any
other strategy. In the literature, the quantity in (3.9) is known as the local
false sign rate for i (Stephens, 2017, p. 279), and a smaller lfsr i suggests higher
confidence in the sign declaration for θi prescribed by Table 1. Now, if s/he were
to make non-zero sign declarations for the largest possible subset of parameters
from tθiuiPrms with FDRdir control in mind, the intuition would be to prioritize
making sign declarations for those i’s with the smallest local false sign rates,
each using Table 1’s strategy. This is in fact what the ODP does, as stated in
Theorem 3.2 below. We note that the ODP is not implementable in practice as
the underlying prior Gp¨q is, by assumption, unknown for computing the local
false sign rates.

Theorem 3.2 (Operational characteristics of the ODP under Bayesian formu-
lation). Assume the prior in (3.8), and that conditional on tθiuiPrms, z1, . . . , zm
are independent with respective distributions F1,θ1 , . . . , Fm,θm . For a given level
q P p0, 1q, the optimal discovery procedure pysgn

ODP
i qiPRODP must be such that

(i) lfsri ď lfsrj for any i P RODP and j P rmszRODP , and
(ii) For each i P RODP , ysgn

ODP
i is declared in accordance with Table 1.

The proof of Theorem 3.2 is in Appendix B.3, which extends the arguments
in Heller and Rosset (2021, Theorem 2.1) on the optimal FDR procedure for the
point null testing problem in (1.1). While the ODP cannot be operationalized
in practice, one can make ZDIRECT mimic its characteristic that indices with
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the smallest local false sign rates get rejected first: At each step t, we aim to
get rid of exactly one element from the masked set Mt that has potentially the
largest local false sign rate, since only elements remaining in the next Mt`1
may be rejected. In what follows, let

z1
i ” F´1

i,0 pu1
iq, qzi ” F´1

i,0 pquiq and rzi,t ”

#

zi if i R Mt

z1
i if i P Mt

,

which convert u1
i, qui and rui,t back onto their original z-value scale. Specifically,

we estimate the local false sign rates as

ylfsr i,t “ min
˜

ş

θď0 fi,θpz1
iqdĜtpθq

ş

fi,θpz1
iqdĜtpθq

,

ş

θě0 fi,θpz1
iqdĜtpθq

ş

fi,θpz1
iqdĜtpθq

¸

for each i P Mt,

(3.10)
where Ĝtp¨q is an estimate of Gp¨q based on the partial dataset tz̃i,tuiPrms, or
equivalently, tũi,tuiPrms from (3.4). The index to be unmasked from Mt is then

ît “ arg max
iPMt

ylfsr i,t, (3.11)

which has the largest estimated local false sign rate; that the estimates in (3.10)
are evaluated at the z1

i’s presumes that any given masked element in Mt may
come from the rejection set Rt.

Now we describe how we get Ĝtp¨q based on the partial data. Since the prior
Gp¨q is unknown, we will model it to have a unimodal mixture density

gp¨;wq “ w0δ0p¨q `
ÿ

k“´K,...,´1,1,...,K
wkhkp¨q (3.12)

proposed in Stephens (2017), where w ” pw´K , . . . , w´1, w0, w1, . . . , wKq are
mixing probabilities that sum to 1, δ0p¨q denotes the delta function at zero, and
hk’s are uniform densities of the forms

hkp¨q “

#

Up¨; 0, akq if k “ 1, . . . ,K
Up¨; ak, 0q if k “ ´1, . . . ,´K

for predetermined endpoints a1, . . . , aK ą 0 and a´1, . . . , a´K ă 0. The log-
likelihood of (3.12) with respect to the partial data tz̃i,tuiPrms at step t can then
be computed as

Ltpwq “
ÿ

iPrms

log
«

w0l0,i,t `
ÿ

k“´K,...,´1,1,...,K
wklk,i,t

ff

(3.13)

where lk,i,t are the likelihoods of the mixture components of the forms

l0,i,t “

#

fi,0pziq ` fi,0pqziq if i P Mt

fi,0pziq if i P rmszMt
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and

lk,i,t “

#

ş

rfi,θpziq ` fi,θpqziqshkpθqdθ if i P Mt
ş

fi,θpziq ¨ hkpθqdθ if i P rmszMt

for k “ ´K, . . . ,´1, 1, . . . ,K.

(3.14)

When fi,θ is from the family of normal distributions Npθ, σ2
i q, the quantities

in (3.14) have closed-form expressions; if fi,θ is from the family of noncentral
t-distributions NCT pθ, νiq, methods for approximating the quantities in (3.14)
are discussed in Appendix B.1. From (3.13), the density of Ĝt is taken as ĝtp¨q “

gp¨; ŵtq, where ŵt solves the penalized maximum likelihood estimation:

max
w:

ř

k wk“1,
wkě0@k

«

Ltpwq `

K
ÿ

k“´K

pλk ´ 1q logwk

ff

. (3.15)

Above, the last term is a Dirichlet penalty with tuning parameters λk ą 0.

Remarks Adaptivity is implicitly built into our algorithm, since the null prob-
ability w0 in our modeling density (3.12) is the Bayesian analogue of the frequen-
tist null proportion in (1.3). By striving to mimic the operational characteristic
of the ODP, it also allows adaptivity to other features, such as the asymmetry
in the distribution of the zi’s; in the FDR literature, it is well known that lo-
cal false discovery rate approach based on z-values can further boosts testing
power by leveraging distributional asymmetry (Storey, Dai and Leek, 2007, Sun
and Cai, 2007), and the same discussion can carry over to FDRdir control with
local false sign rates. We stress that although (3.12) may well be misspecified
as a density for the hypothetical prior Gp¨q, strong frequentist FDRdir control
is guaranteed by (3.5) in Theorem 3.1. Moreover, our choice of it as a working
model carries two main advantages:

(a) Speed: The iterative updates of Mt for most existing FDR data-masking
algorithms are computationally expensive, as they usually employ beta
mixture models that require the EM algorithm (Dempster, Laird and Ru-
bin, 1977) for estimation. On the contrary, as explained in Stephens (2017,
Supplementary material), an optimization problem with the form in (3.15)
is convex and can be solved by fast and reliable interior point methods.

(b) Appropriate flexibility: Stephens (2017) argues for the plausibility of uni-
modality in many real applications since most effects are close to zero while
larger effects are decreasingly likely; by increasing the number of compo-
nents K and expanding the supporting intervals defined by ak, (3.12) can
approximate any unimodal distribution about zero (Feller, 1971, p. 158).
On the other hand, as heuristically discussed in Leung and Sun (2022, Sec-
tion 5), having a too-flexible model could overfit the partial data tz̃i,tuiPrms,
which one is constrained to work with to adhere to data masking, only to
underfit the original data tzi,tuiPrms. Stephens (2017, Section 3.1.4) also
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advocates for unimodality as a form of “regularization” because it prevents
density estimates from concentrating in small pockets. Our simulation re-
sults in Section 4 show that ZDIRECT can still be competitive against
other practical methods even when the unimodality is misspecified.

4. Simulations

4.1. Simulation setups

We simulate m “ 1000 independent zi „ Npθi, 1q values where θ1, . . . , θm are
independently generated from a mixture density of the form

gpθq “ wδ0pθq ` p1 ´ wqg1pθq, (4.1)

where δ0p¨q is the delta function at zero for the nulls, and g1pθq is an “alternative”
density which is itself a mixture of two normal components of the form

g1pθq “ p1 ´ vqφpθ ` ξq ` vφpθ ´ ξq.

The simulation parameters controlling different aspects are chosen as follows.

(a) w (signal sparsity parameter): Takes one of the values in t0.8, 0.5, 0.2, 0u.
Letting w “ 0.8 renders a setting with approximately 80% of the θi’s equal
to 0, and taking w “ 0 renders a setting with all θi’s being non-zero.

(b) ξ (signal size parameter): Takes one of the values in t0.5, 1, 1.5, 2, 2.5u. It
influences the absolute value of an effect θi if it is non-zero.

(c) v (asymmetry parameter): Takes one of the values in t0.5, 0.75, 1u. It con-
trols the proportion of the alternative θi’s generated from the positively
centered normal component φpθ ´ ξq; a larger v makes gpθq more asym-
metric.

How the different combinations of w, ξ and v change the shape of gpθq is illus-
trated in Figure 4.1; note that many of these gpθq are evidently not unimodal.

4.2. Methods compared

We compare the following seven methods for FDRdir control:

(a) BHdir: The directional BH procedure proposed by Benjamini and Yekutieli
(2005). We note that the validity of BHdir is originally proved under the
assumption that the family tFi,θp¨quθPR is stochastically increasing, which
is implied by the MLR property in Assumption 2 (Lehmann, Romano and
Casella, 2005, Lemma 3.4.2 piiq).

(b) LFSR: A computationally simpler substitute for the ODP based on the
oracle lfsr i’s in (3.9); inspired by Sun and Cai (2007)’s earlier work on opti-
mal FDR control. Its implementation details are deferred to Appendix C.1.
The implementation of the ODP described in Theorem 3.2 entails solv-
ing a complex infinite integer problem to compute a rejection threshold
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Fig 4.1. Plots of the effect generating density gpθq for every possible combination of w, ξ
and v considered in Section 4.

for the lfsr i’s (Heller and Rosset, 2021). In comparison, LFSR is simpler
to compute whilst often having comparable power. Like the ODP, LFSR
offers FDRdir control under the Bayesian formulation in (3.8), but it can
only serve as a hypothetical benchmark for other methods since it also
requires oracle knowledge of the true generating prior in (4.1).

(c) ASH (“adaptive shrinkage”, Stephens (2017)): A procedure that is al-
most the same as LFSR in its implementation, except that the oracle
gp¨q from (4.1) is replaced by an estimated gp¨; ŵq based on the unimodal
model in (3.12), where ŵ is a penalized maximum likelihood estimate of
w with respect to the full data tziuiPrms obtained by the R package ashr;
all tuning parameters involved are chosen to be the default described in
Stephens (2017, Supplementary information). This procedure may risk vi-
olating the desired FDRdir target if the unimodal density (3.12) is too far
from the true prior density of the θ’s.

(d) GR (Guo and Romano (2015, Procedure 6)): The FDRdir testing pro-
cedure mentioned in Section 1 that provides (frequentist) control of the
FDRdir under the target level q when all the θi’s are non-zero, i.e. π “ 0;
see Guo and Romano (2015, Theorem 5 and its proof).
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(e) STSdir: Algorithm 1 by setting λ “ 0.5.
(f) aSTSdir: The STSdir procedure, except with an automatic (data-driven)

choice for λ as described in Appendix A.2. It has no proven theoretical
control of the FDRdir.

(g) ZDIRECT: Algorithm 2, by initializing M1 “ ti : u1
i ď 0.2 or u1

i ě 0.8u

based on the tũi,0umi“1 “ tũ1
iu

m
i“1, which respects condition (C1). There-

after, Mt is updated as in Section 3.1, where the optimization in (3.15)
is performed using a solver in the R package Rmosek (ApS, 2022). The
points ak are picked to give a large and dense grid; in particular, for the
positive supports, the minimum and maximum are set as a1 “ 10´1 and
aK “ 2

a

maxi z1 2
i ´ 1, with the rest set as ak`1 “

?
2ak ď aK based

on the multiplicative factor
?

2 (and so, K is implicitly determined). The
negative supports are set by taking a´1 “ ´a1, . . . , a´K “ ´aK . This grid
follows the recommendation of Stephens (2017) except aK is determined
with z1

i’s instead of zi to observe the masking condition (C1). Moreover,
we set λk “ 0.8 for all k “ ´K, . . . , 0, . . . ,K. This further regularizes the
estimation by encouraging sparsity in the estimates of the mixing propor-
tions w, and provides consistently good performance. Lastly, to speed up
the algorithm, ĝtp¨q is only re-estimated by (3.15) for every rm{200s steps,
i.e., the same ĝtp¨q is used rm{200s times to update the candidate rejection
and acceptance sets before the algorithm terminates.

4.3. Results

The empirical FDRdir and power of the different methods implemented for the
target FDRdir level q “ 0.1 are evaluated with 1000 sets of repeatedly generated
tzi, θiuiPrms. The results are shown in Figure 4.2, where the power is shown as
the true positive rate, defined as E

”
ř

iPR 1psgnpμiq“ ysgniq|

1_|R|

ı

for a generic proce-
dure pysgniqiPR, which some consider to be more illustrative than the ETD. The
following observations can be made:

(a) Throughout, the only methods that can visibly control FDRdir under the
target q “ 0.1 in all settings are LSFR, BHdir, ZDIRECT and STSdir, pre-
cisely the ones with theoretical guarantees. However, LSFR is not imple-
mentable in practice and only has FDRdir guarantee under the Bayesian
formulation in (3.8). While ZDIRECT and STSdir still lag considerably
behind in power compared to LFSR in settings with small w (or small
π, as a frequentist analogue), their power advantage over BHdir becomes
substantial as w approaches 0. Across the board, aSTSdir, which is cal-
ibrated with a data-driven λ and has no theoretical guarantee, displays
slightly better power than STSdir, but also violates the FDRdir target ever
so slightly for large ξ when w “ 0.8.

(b) ASH is the one practical method that overall matches LFSR closest in
power, but severely violates the desired FDRdir level in some settings
when w P t0.2, 0.5u. This is not surprising because the unimodal working
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Fig 4.2. Empirical directional false discovery rate and true positive rates of the seven com-
pared methods for the simulations in Section 4; each method was implemented at a target
FDRdir level q “ 0.1 (black horizontal lines).
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model in (3.12), which ASH is based on, is misspecified for many of the
multimodal data generating gp¨q in Figure 4.1.

(c) GR visibly violates the FDRdir target when w P t0.5, 0.8u, and severely so
for w “ 0.8. When w “ 0, the only case where GR can provably control
the FDRdir, GR’s power is at best comparable to STSdir and ZDIRECT
when the signal size ξ is small, but inferior to them when ξ is large.

(d) ZDIRECT’s power is considerably better than STSdir when v “ 1, the
most asymmetric setting for g. As discussed in the remarks of Section 3.1,
by attempting to mimic the operational characteristics of the ODP via
estimating the lfsr i quantities in (3.10), ZDIRECT has the potential to
leverage asymmetry in the distribution of the z-values to boost testing
power, just like the ODP does. This is even more remarkable, consider-
ing that the working model (3.12) is obviously misspecified for the true
θ-generating prior in (4.1), which attests to the practical usefulness of
Stephens (2017)’s unimodal assumption when combined with ZDIRECT’s
data masking mechanism to ensure strong FDRdir control (Theorem 3.1).

5. Discussion

We have proved that, under independence and upon augmenting sign declara-
tions, Storey, Taylor and Siegmund (2004)’s adaptive procedure and ZDIRECT,
a particular implementation of the recently introduced line of adaptive “data
masking” algorithms, can offer FDRdir control in the strong sense. These results
are particularly important when the parameter configurations contain little to
no true nulls because adaptive procedures precisely reap the most power benefit
in such scenarios. Moreover, under “non-sparse-signal” settings, FDRdir is ar-
guably a more meaningful error rate to be controlled than the FDR. Both meth-
ods require tuning parameters; in our experience, the simple choice of λ “ 0.5
for STSdir and λk “ 0.8 for ZDIRECT have consistently given us competitive
power performance, even for some less instructive simulation setups considered
in earlier versions of this paper. For ZDIRECT, while other working models
that may further boost the power can be deployed, we find the current im-
plementation based on Stephens (2017)’s unimodal model to be attractive, as
the optimization under the hood is numerically very stable and fast. While our
theory doesn’t cover settings where the z-values can be dependent, additional
simulation results in this vein are included in Appendix C.2.

An interesting dual problem to sign declarations is to construct, for each i in
a data-dependent selected subset R Ď rms, a confidence interval CIi Ď R such
that

(a) each CIi is sign-determining, i.e. CIi Ď p´8, 0s or CIi Ď p0,8q, and
(b) the false coverage rate (FCR)

E

„

|ti : θi P CIiu|

1 _ |R|

j

is controlled under a desired level q P p0, 1q.
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This paradigm of inference has been recently suggested in Weinstein and
Yekutieli (2020), and they proposed a first procedure that constructs such se-
lective sign-determining confidence intervals. The adjective “selective” indicates
that the set R is also chosen based on the same data tziu

m
i“1 the CIi’s are con-

structed with. Note, STSdir and ZDIRECT do correspond to such procedures
that construct trivially long intervals

CIi “

#

p0,8q if zi ą 0
p´8, 0q if zi ă 0

for each i in their rejection sets. It will be a challenging but meaningful task
to devise non-trivial selective sign-determining confidence intervals where the
target set R is chosen in a more adaptive manner akin to STSdir and ZDIRECT,
to offer more powerful alternative procedures to Weinstein and Yekutieli (2020,
Definition 2)’s procedure.

Appendix A: Additional content for Section 2

A.1. Proof of Theorem 2.1

We shall first state four intermediate results, which allow us to extend the
arguments in Storey, Taylor and Siegmund (2004, Section 4.3) to prove the
FDRdir controlling properties of STSdir under Assumptions 1 and 2.

Lemma A.1. Under Assumption 2, for z P R,

(a) if θi ă 0, then
”

fi,θi pzq

fi,0pzq

ı

r1 ´ Fi,0pzqs ´ r1 ´ Fi,θi pzqqs ě 0;

(b) if θi ą 0, then
”

fi,θi pzq

fi,0pzq

ı

Fi,0pzq ´ Fi,θipzq ě 0.

Proof of Lemma A.1. To prove statement (a), let θi ă 0 and let z0, z1 P R such
that z0 ă z1. By Assumption 2, we have that

fi,θipz0q

fi,0pz0q
ě

fi,θipz1q

fi,0pz1q
.

Multiplying both sides by fi,0pz1q and integrating over z1 from z0 to 8 yields
„

fi,θipz0q

fi,0pz0q

j

r1 ´ Fi,0pz0qs ě r1 ´ Fi,θipz0qs ,

which proves statement (a). The proof of statement (b) follows analogously to
that of (a).

In the lemma below, the probability operator Pθi“0p¨q emphasizes the law is
driven by a value of θi equal to zero; the operators Pθiă0p¨q and Pθią0p¨q have
similar meanings.

Lemma A.2. Under Assumptions 1 and 2, for 0 ă s ď t ď 1,
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(i) Pθi“0 ppi ď s|pi ď t, zi ‰ 0q “ s{t;
(ii) Pθiă0 ppi ď s|pi ď t, zi ě 0q ď s{t;
(iii) Pθią0 ppi ď s|pi ď t, zi ď 0q ď s{t.

Proof of Lemma A.2. For any x P p0, 1s, we first rewrite

Pθi“0 ppi ď x, zi ‰ 0q “
“

1 ´ Fi,0
`

´F´1
i,0 px{2q

˘‰

` Fi,0
`

F´1
i,0 px{2q

˘

“ x; (A.1)
Pθiă0 ppi ď x, zi ě 0q “ 1 ´ Fi,θi

`

´F´1
i,0 px{2q

˘

; (A.2)
Pθią0 ppi ď x, zi ď 0q “ Fi,θi

`

F´1
i,0 px{2q

˘

. (A.3)

piq follows from (A.1) since Pθi“0 ppi ď s|pi ď t, zi ‰ 0q “
Pθi“0ppiďs,zi‰0q

Pθi“0ppiďt,zi‰0q
“

s
t .

piiq is obvious when s “ t; when s ă t, by applying the mean value theorem

on
1´Fi,θ

´

´F´1
i,0 px{2q

¯

x as a function in x in light of (A.2), there exists c P ps, tq

such that, for y ” F´1
i,0 pc{2q,

”

Pθiă0ppiďt,ziě0q

t

ı

´

”

Pθiă0ppiďs,ziě0q

s

ı

t ´ s

“

”

fi,θi p´yq

fi,0pyq

ı

Fi,0pyq ´ r1 ´ Fi,θi p´yqs

4Fi,0pyq2

“

”

fi,θi p´yq

fi,0p´yq

ı

r1 ´ Fi,0p´yqs ´ r1 ´ Fi,θi p´yqqs

4Fi,0pyq2
, (A.4)

where the last equality follows from the symmetry of Fi,0 in Assumption 1. Since
θi ă 0, by applying Lemma A.1 paq to the numerator in (A.4), we get that

„

Pθiă0 ppi ď t, zi ě 0q

t

j

´

„

Pθiă0 ppi ď s, zi ě 0q

s

j

ě 0,

which is equivalent to Pθiă0ppiďs,ziě0q

Pθiă0ppiďt,ziě0q
ď

s
t , and piiq is proved. The proof for piiiq

is analogous to that of piiq, using the mean value theorem on
Fi,θi

´

F´1
i,0 px{2q

¯

x , (A.3)
and Lemma A.1 pbq.

Lemma A.3. Let Sptq be defined as in Theorem 2.1. Under Assumptions 1
and 2, as well as the independence among z1, . . . , zm, |Sptq|{t for 0 ď t ă 1 is a
supermartingale with time running backward, with respect to the filtration

Ft “ σ
´

t1ppi ď xq,1ppi ď x, sgnpziq ‰ sgnpθiqquiPrms
: 0 ă t ď x ď 1

¯

.

That is, for 0 ă s ď t ď 1, Eθ

”

|Spsq|

s

ˇ

ˇ

ˇ
Ft

ı

ď
|Sptq|

t .
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Proof of Lemma A.3. Since |Spsq| can be written as

|Spsq|“
ÿ

i:θi“0
1ppi ď s, zi ‰ 0q`

ÿ

i:θią0
1ppi ď s, zi ď 0q`

ÿ

i:θiă0
1ppi ď s, zi ě 0q,

(A.5)

it is not difficult to observe from statements piq–piiiq of Lemma A.2 that |Spsq|

given Ft is stochastically dominated by the Binomialp|Sptq|, s{tq distribution.
Hence, Eθr|Spsq||Fts ď |Sptq| ¨ ps{tq.

Lemma A.4. If Y „ Binomialpn, λq, then for any λ P p0, 1q and n P N,

Dnpλq ” E

„

Y

n ´ Y ` 1

j

“
p1 ´ λnqλ

1 ´ λ
,

where Dnpλq is strictly increasing in λ.
Proof of Lemma A.4. By direct computation,

Dnpλq “

n
ÿ

i“1

ˆ

n

i

˙

p1 ´ λq
n´iλi

¨
i

n ´ i ` 1

“
λ

1 ´ λ

n
ÿ

i“1

ˆ

n

i ´ 1

˙

p1 ´ λq
n´i`1λi´1

“
λ

1 ´ λ
¨ p1 ´ λn

q

which proves the expectation result. Taking the derivative of Dnpλq with respect
to λ yields

D1
npλq “

λnpnλ ´ n ´ 1q ` 1
pλ ´ 1q2

.

Let the numerator of D1
npλq be denoted as 9D1

npλq ” λnpnλ ´ n ´ 1q ` 1. To
prove that Dnpλq is strictly increasing in λ, we will show that 9D1

npλq ą 0 by
induction. Suppose 9D1

N pλq ą 0 is true for some fixed N P N. Then
9D1
N`1pλq “ λN`1

ppN ` 1qλ ´ pN ` 1q ´ 1q ` 1
“ λp 9D1

N pλq ` λN
pλ ´ 1q ´ 1q ` 1

ą λpλN
pλ ´ 1q ´ 1q ` 1

“ p1 ´ λqp1 ´ λN`1
q

ą 0

where the first inequality stems from the inductive condition 9D1
N pλq ą 0. Since

9D1
1pλq “ pλ´1q2 ą 0, it follows that 9D1

npλq ą 0 for any λ P p0, 1q and n P N.

Now we can begin the proof of Theorem 2.1. First, we can write

Eθ

«

|Sptλq q|

|Rptλq q| _ 1

ff

“ Eθ

«

|Sptλq q|

|Rptλq q| _ 1 ; zFDRλpλq ě q

ff

` Eθ

«

|Sptλq q|

|Rptλq q| _ 1 ; zFDRλpλq ă q

ff

.
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If zFDRλpλq ě q, then tλq ď λ. Hence, |Rptλq q| _ 1 ě π̂0pλqtλqm{q and so

Eθ

«

|Sptλq q|

|Rptλq q| _ 1 ; zFDRλpλq ě q

ff

ď Eθ

«

q
1 ´ λ

|ti : pi ą λu| ` 1
|Sptλq q|

tλq
; zFDRλpλq ě q

ff

“ Eθ

«

q
1 ´ λ

|ti : pi ą λu| ` 1Eθ

«

|Sptλq q|

tλq

ˇ

ˇ

ˇ

ˇ

ˇ

Fλ

ff

; zFDRλpλq ě q

ff

ď Eθ

„

q
1 ´ λ

|ti : pi ą λu| ` 1
|Spλq|

λ
; zFDRλpλq ě q

j

where the last step follows by Lemma A.3 and the optional stopping theorem
since tλq is a stopping time with respect to Ft with time running backward. If
zFDRλpλq ă q, then tλq “ λ and so

Eθ

«

|Sptλq q|

|Rptλq q| _ 1 ; zFDRλpλq ă q

ff

ďEθ

„

q
1 ´ λ

|ti : pi ą λu| ` 1
|Spλq|

λ
; zFDRλpλq ă q

j

.

Hence,

Eθ

«

|Sptλq q|

|Rptλq q| _ 1

ff

ď Eθ

„

q
1 ´ λ

|ti : pi ą λu| ` 1
|Spλq|

λ

j

ď Eθ

„

q
|Spλq|

|Sp1q| ´ |Spλq| ` 1
1 ´ λ

λ

j

.

By taking s “ λ and t “ 1 in statements piq–piiiq of Lemma A.2, in light of the
equality in (A.5), it is not difficult to see that |Spλq| given |Sp1q| is stochastically
dominated by the Binomialp|Sp1q|, λq distribution. Hence,

Eθ

„

q
|Spλq|

|Sp1q| ´ |Spλq| ` 1
1 ´ λ

λ

j

ď

´

1 ´ Eθrλ|Sp1q|
s

¯

q (A.6)

by Lemma A.4. Combining (A.6) with 1 ´ Eθrλ|Sp1q|s ď 1 ´ λEθr|Sp1q|s ď 1, a
consequence of Jensen’s inequality, Theorem 2.1 is proved.

A.2. Automatic λ selection procedure

Two inputs are required for this procedure: B, the number of bootstrap samples;
and Λ, a set of candidate values for λ. Our recommendations are B “ 1000
and Λ “ t0.05, 0.10, . . . , 0.95u. The procedure is summarized in the following
algorithm.

(1) Compute π̂pλ1q for each λ1 P Λ.
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(2) For each λ1 P Λ, construct B bootstrap estimates tπ̂bpλ1quBb“1 by bootstrap
sampling the p-values.

(3) Compute π̂min ” minλ1PΛ π̂pλ1q.
(4) For each λ1 P Λ, compute

{MSEpλ1
q “

1
B

B
ÿ

b“1
rπ̂b

pλ1
q ´ π̂min

s
2.

(5) Output the estimated optimal tuning parameter λ̂“ argminλ1PΛt{MSEpλ1qu.

The above algorithm is nearly identical to that of Storey, Taylor and Sieg-
mund (2004)’s automatic λ selection algorithm (Section 6), except that Storey,
Taylor and Siegmund (2004) omit the additive factor “1” in the numerator of
all the estimators for π involved, but we retain it to robustify the FDRdir con-
trolling property of the resulting procedure. Regardless, the intuition behind is
the same, i.e. choose a λ which minimizes an estimated mean square error.

Appendix B: Additional content for Section 3

B.1. Computation of the component loglikelihoods

We discuss computations of the likelihoods in (3.14) when fi,θ belongs to the
normal family Npθ, σ2

i q or the noncentral t-distributional family NCT pθ, νiq.

(i) Npθ, σiq: In this case, each lk,i,t in (3.14) has the explicit analytic form

lk,i,t “

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Φpzi{σiq´Φppzi´akq{σiq

ak
`

Φpqzi{σiq´Φppqzi´akq{σiq

ak

if i P Mt and k ě 1
Φpzi{σiq´Φppzi´akq{σiq

ak

if i P rmszMt and k ě 1
Φppzi´akq{σiq´Φpzi{σiq

´ak
`

pΦpqzi´akq{σiq´Φpqzi{σiq

´ak

if i P Mt and k ď ´1
Φppzi´akq{σiq´Φpzi{σiq

´ak

if i P rmszMt and k ď ´1

.

(ii) NCT pθ, νiq: Without sophisticated numerical integration methods, it may
be hard to obtain good numerical values for the quantities in (3.14). How-
ever, approximation methods can be potentially leveraged; in what follows
we assume the common use case where νi “ ν for all i P rms. In a variance-
stabilizing manner, Laubscher (1960, Section 2) suggests that, if zi is a
noncentral t-distributed random variable with noncentrality parameter θ
and degree ν ě 4, by bijectively transforming zi to the variable

ξi ” α sinh´1
pβziq,
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where α “ αpνq and β “ βpνq are positive numbers depending only on ν,

ξi is approximately distributed as Npγ, 1q

for the mean

γ ” α sinh´1

˜

β ¨ θ ¨
Γpν{2 ´ 1{2q

a

ν{2
Γpν{2q

¸

,

which is also strictly increasing in θ. Hence, by also letting qξi ”α sinh´1
pβqziq,

one can alternatively implement ZDIRECT by replacing the component
likelihoods in (3.14) with

l1k,i,t “

$

’

’

’

’

&

’

’

’

’

%

Φpξiq´Φpξi´akq

ak
`

Φpqξiq´Φpqξi´akq

ak
if i P Mt and k ě 1

Φpξiq´Φpξi´akq

ak
if i P rmszMt and k ě 1

Φpξi´akq´Φpξiq

´ak
`

Φpqξi´akq´Φpqξiq

´ak
if i P Mt and k ď ´1

Φpξi´akq´Φpξiq

´ak
if i P rmszMt and k ď ´1

.

In doing so, we have essentially imposed the prior gp¨,wq in (3.12) on γ
instead of θ, but it doesn’t change things in the grand scheme as it still
approximates a unimodal density about zero on θ; note that sinh´1

p0q “

0. Importantly, we are still working with the partial data tz̃i,tuiPrms so
strong FDRdir control is guaranteed by virtue of Theorem 3.1. Other such
strategies may also be explored, possibly based on ideas from Kraemer
and Paik (1979) and other references therein.

B.2. Proof of Theorem 3.1

We first quote Lei and Fithian (2018, Lemma 2), a fundamental tool for devel-
oping data-masking algorithms.

Lemma B.1. Suppose that, conditionally on the σ-field G´1, b1, . . . , bn are
independent Bernoulli random variables with P pbi “ 1 | G´1q “ ρi ě ρ ą 0,
almost surely. Also suppose that rns Ě C0 Ě C1 Ě ¨ ¨ ¨ , with each subset Ct`1
measurable with respect to

Gt “ σ

#

G´1, Ct, pbiqiRCt ,
ÿ

iPCt

bi

+

.

If t̂ is an almost-surely finite stopping time with respect to the filtration
pGtqtě0, then

E

«

1 ` |Ct̂|
1 `

ř

iPCt̂
bi

| G´1

ff

ď ρ´1.

In Lemma B.1, we remark that pGtqtě0 defines a filtration precisely because
Ct`1 P Gt.
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Proof of Theorem 3.1. The arguments below are inspired by those from Barber
et al. (2019) for establishing the FDRdir controlling property of the knockoff
filter for variable selection in linear regressions. To begin our proof, write the
directional false discovery proportion as

FDPdirpt̂q “
|ti : sgnpθiq ‰ sgnpziq and i P Rt̂u|

1 _ |Rt̂|

“
|ti : sgnpθiq ‰ sgnpziq and i P Rt̂u|

1 ` |At̂|

1 ` |At̂|

1 _ |Rt̂|
.

Since zFDRdirpt̂q “
1`|At̂|

1_|Rt̂|
ď q by definition, it suffices to show that

Eθ

„

|ti : sgnpθiq ‰ sgnpziq and i P Rt̂u|

1 ` |At̂|

j

ď 1. (B.1)

For each i P rms, we define the variables

bi ” 1
´

ui P p0.25, 0.75q

¯

and

Ei ” 1 ´ 2bi “

#

`1 if |zi| ě |qzi|

´1 if |qzi| ą |zi|
,

where, by the symmetry of fi,0p¨q from Assumption 1, the latter is equal to `1
if ui is at least as close as qui to the endpoints of the unit interval r0, 1s, or equal
to ´1 otherwise. In particular, since

Rt̂ ” ti : i P Mt̂ and ui P p0, 0.25s Y r0.75, 1qu,

any i P Rt̂ must have its corresponding ui at least as close to the two endpoints
of r0, 1s as its reflection qui P r0.25, 0.75s. As such, it must always be that

Rt̂ Ď ti : Ei “ `1u, (B.2)

i.e., an element i can possibly be a discovery only if Ei “ `1. Moreover, define

Si “ sgnpziqEi,

which will take on the same sign as zi if Ei “ `1 and zi ‰ 0, as well as the set

Ĥ0 ” ti : Si ‰ sgnpθiqu.

Here, Ĥ0 can act like a “random null set” since a false discovery precisely
amounts to declaring a non-zero sign for any i P Ĥ0 X ti : Ei “ `1u, in light
of (B.2) being always true. Hence,

Eθ

„

|ti : sgnpθiq ‰ sgnpziq and i P Rt̂u|

1 ` |At̂|

j

“ Eθ

«

|Rt̂ X Ĥ0|

1 ` |At̂|

ff

ď Eθ

«

|Rt̂ X Ĥ0|

1 ` |At̂ X Ĥ0|

ff

.
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The last inequality in the preceding display implies that (B.1) can be proved if
it is true that Eθ

”

|Rt̂XĤ0|

1`|At̂XĤ0|

ı

ď 1, which, in turn, we will prove by showing

Eθ

«

|Rt̂ X Ĥ0|

1 ` |At̂ X Ĥ0|

ˇ

ˇ

ˇ

ˇ

σtĤ0u

ff

ď 1. (B.3)

The rest of the proof proceeds by setting the scene to apply Lemma B.1.
First, recall M0 “ rms and let G´1 ” σtĤ0u. For t “ 0, 1, . . . , define

Ct ” Ĥ0 X Mt,

and the filtrations

Gt ” σ

#

G´1, Ct, pbiqiRCt ,
ÿ

iPCt

bi

+

;

note that Ct`1 P Gt since Ĥ0 P G´1 and Mt`1 P Gt by respecting the condition
(C1). By the definitions of At and Rt, we must have that

|At X Ĥ0| “
ÿ

iPCt

bi and |Rt X Ĥ0| “ |Ct| ´
ÿ

iPCt

bi. (B.4)

Writing

|At| “ |At X Ĥ0| ` |ti : i R Ĥ0, i P Mt and ui P p0.25, 0.75qu|

“ |At X Ĥ0| ` |ti : i P prmszĤ0q X Mt and bi “ 1u|

and

|Rt| “ |Rt X Ĥ0| ` |ti : i R Ĥ0, i P Mt and ui P p0, 0.25s Y r0.75, 1qu|

“ |Rt X Ĥ0| ` |ti : i P prmszĤ0q X Mt and bi “ 0u|,

one can see that |At|, |Rt| P Gt for two reasons: First, |At X Ĥ0| and |Rt X Ĥ0|

belong to Gt because of (B.4). Second, for any i P prmszĤ0q X Mt, it must also
be true that i R Ct (by the definition of Ct), which implies that bi belongs to
Gt; as such, both |ti : i P prmszĤ0q X Mt and bi “ 1u| and |ti : i P prmszĤ0q X

Mt and bi “ 0u| are measurable with respect to Gt. Hence, t̂ is a stopping time
with respect to pGtqtě0, and is almost surely finite because ZDIRECT guarantees
to terminate in light of the condition (C2).

Lastly, by writing

Eθ

«

|Rt̂ X Ĥ0|

1 ` |At̂ X Ĥ0|

ˇ

ˇ

ˇ

ˇ

G´1

ff

“Eθ

«

|Ct| ´
ř

iPCt
bi

1 `
ř

iPCt
bi

ˇ

ˇ

ˇ

ˇ

G´1

ff

“Eθ

«

1 ` |Ct|
1 `

ř

iPCt
bi

ˇ

ˇ

ˇ

ˇ

G´1

ff

´1,

in light of Lemma B.1, one only need to show that

P pbi “ 1 | G´1q ě 0.5 for each i P Ĥ0
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to wrap up the proof of (B.3). We can break this into three cases; in what
follows we also use the operator symbols Pθi“0p¨q, Pθią0p¨q and Pθiă0p¨q defined
immediately before Lemma A.2 to emphasize the underlying value of θi driving
the law:

• Case 1, θi ą 0: Since i P Ĥ0, under θi ą 0 it must be that Si “ ´1
or 0. This can be true with either ui P r0.5, 0.75q or ui P p0, 0.25s, only
the former of which can give bi “ 1. These two events respectively have
probabilities

Pθią0pui P r0.5, 0.75qq “

ż

rF´1
i,0 p0.5q,F´1

i,0 p0.75qq

fi,θipzqdz

“

ż

rF´1
i,0 p0.5q,F´1

i,0 p0.75qq

fi,θipzq

fi,0pzq
fi,0pzqdz

and

Pθią0pui P p0, 0.25sq “

ż

p´8,F´1
i,0 p0.25qs

fi,θipzqdz

“

ż

p´8,F´1
i,0 p0.25qs

fi,θipzq

fi,0pzq
fi,0pzqdz.

By the MLR property in Assumption 2, Pθią0pui P r0.5, 0.75qq ěPθią0pui P

p0, 0.25sq and hence

Pθią0pbi “ 1 | G´1q “
Pθią0pui P r0.5, 0.75qq

Pθią0pui P r0.5, 0.75qq ` Pθią0pui P p0, 0.25sq
ě 0.5.

• Case 2, θi ă 0: The derivations are completely analogous to that of Case 1.
• Case 3, θi “ 0: In that case, Si can be `1 or ´1. Since ui is uniformly

distributed under θi “ 0, it is easy to see that Pθi“0pbi “ 1 | G´1q “ 0.5.

(We remark that the arguments above work precisely because G´1 only pro-
vides the meager knowledge of Ĥ0, without any other knowledge about the data
tziu

m
i“1.)

B.3. Proof of Theorem 3.2

For two procedures pysgn
p1q

i qiPRp1q and pysgn
p2q

i qiPRp2q , pysgn
p2q

i qiPRp2q is said to
improve upon pysgn

p1q

i qiPRp1q if ETDrpysgn
p2q

i qiPRp2q s ě ETDrpysgn
p1q

i qiPRp1q s and
FDRdirrpysgn

p2q

i qiPRp2q s ď FDRdirrpysgn
p1q

i qiPRp1q s.
Let z “ pz1, . . . , zmq, and let pysgniqiPR be a certain procedure with

FDRdirrpysgniqiPRs ď q. We also write R “ Rpzq and ysgni “ ysgnipzq to em-
phasize that both are functions in z. It suffices to show that the two statements
below are true:
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• Statement 1: If there exists j P rms such that one or both of the disjoint
events

Zp1q

j ”

$

&

%

z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j P Rpzq;
P pθj ď 0|zjq ă P pθj ě 0|zjq;
ysgnjpzq “ ´1.

,

.

-

and

Zp2q

j ”

$

&

%

z

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

j P Rpzq;
P pθj ď 0|zjq ą P pθj ě 0|zjq;
ysgnjpzq “ 1.

,

.

-

have non-zero probabilities, the procedure pysgn
1

iqiPR1 defined by

R1
pzq “ Rpzq for all z

and, for i P R “ R1,

ysgn
1

ipzq “

$

’

&

’

%

1 if i “ j and z P Zp1q

j

´1 if i “ j and z P Zp2q

j

ysgnipzq if otherwise

improves upon pysgniqiPR.
• Statement 2: If there exist two distinct j, l P rms such that the event

Zjl “ tz : lfsrj ă lfsr l, l P R and j R Ru

has non-zero probability, then it is possible to construct an improved pro-
cedure pysgn

1

iqiPR1 with the property that

R1
pzq “

#

pRpzqztluq Y tju if z P Zjl

Rpzq if z R Zjl

.

Suppose both statements can be shown. Then any procedure can be im-
proved by repeatedly applying Statement 2, until we end up with a procedure
for which P pZjlq “ 0 for all pj, lq pairs. We can then further improve this
procedure by applying Statement 1, and end up with a procedure for which
P pZp1q

j q “ P pZp2q

j q “ 0 for all j, and hence satisfying the conditions piq and piiq
in Theorem 3.2; since the ODP cannot be improved, it must have the latter two
conditions satisfied.

Proof of Statement 1. We write

ETDrpysgn
1

iqiPR1 s ´ ETDrpysgniqiPRs

“

ż

ÿ

iPR1pzq

P pysgn
1

ipzq “ sgnpθiq|zqP pzqdz

´

ż

ÿ

iPRpzq

P pysgnipzq “ sgnpθiq|zqP pzqdz
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“

ż

Zp1q
j YZp2q

j

ÿ

iPR1pzq

rP pysgn
1

ipzq “ sgnpθiq|zq ´ P pysgnipzq “ sgnpθiq|zqsP pzqdz

“

ż

Zp1q
j YZp2q

j

rP pysgn
1

jpzq “ sgnpθjq|zq ´ P pysgnjpzq “ sgnpθjq|zqsP pzqdz

“

ż

Zp1q
j

rP pysgn
1

jpzq “ sgnpθjq|zq ´ P pysgnjpzq “ sgnpθjq|zqsP pzqdz

`

ż

Zp2q
j

rP pysgn
1

jpzq “ sgnpθjq|zq ´ P pysgnjpzq “ sgnpθjq|zqsP pzqdz

“

ż

Zp1q
j

rP pθj ą 0|zjq ´ P pθj ă 0|zjqsP pzqdz

`

ż

Zp2q
j

rP pθj ă 0|zjqq ´ P pθj ą 0|zjqsP pzqdz ą 0,

where the second and third equalities come from the fact that pysgn
1

iqiPR1 and
pysgniqiPR differ only on Zp1q

j Y Zp2q

j and for j, the fourth equality is from the
disjointness of Zp1q

j and Zp2q

j , and the last equality is from how ysgn
1

j is defined
on Zp1q

j and Zp2q

j as well as the independence across all i “ 1, . . . ,m. Similarly,

FDRdirrpysgniqiPRs ´ FDRdirrpysgn
1

iqiPR1 s

“

ż

ř

iPRpzq
P pysgnipzq ‰ sgnpθiq|zq

1 _ |Rpzq|
P pzqdz

´

ż

ř

iPR1pzq
P pysgn

1

ipzq ‰ sgnpθiq|zq

1 _ |R1pzq|
P pzqdz

“

ż

Zp1q
j

«

P pysgnjpzq ‰ sgnpθjq|zq

1 _ |Rpzq|
´

P pysgn
1

jpzq ‰ sgnpθjq|zq

1 _ |R1pzq|

ff

P pzqdz

`

ż

Zp2q
j

«

P pysgnjpzq ‰ sgnpθjq|zq

1 _ |Rpzq|
´

P pysgn
1

jpzq ‰ sgnpθjq|zq

1 _ |R1pzq|

ff

P pzqdz

“

ż

Zp1q
j

„

P pθj ě 0|zjq

1 _ |Rpzq|
´

P pθj ď 0|zjq

1 _ |R1pzq|

j

P pzqdz

`

ż

Zp2q
j

„

P pθj ď 0|zjq

1 _ |Rpzq|
´

P pθj ě 0|zjq

1 _ |R1pzq|

j

P pzqdz ě 0.

so pysgn
1

iqiPR1 improves upon pysgniqiPR.

Proof of Statement 2. The proof for Statement 2 follows in a similar vein. We
first define

Zp1q

jl ”

"

z
ˇ

ˇ

ˇ

ˇ

z P Zjl;
P pθj ď 0|zjq ă P pθj ě 0|zjq.

*

and

Zp2q

jl ”

"

z
ˇ

ˇ

ˇ

ˇ

z P Zjl;
P pθj ď 0|zjq ą P pθj ě 0|zjq.

*

.
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Since R1 has been defined, we only have to define ysgn
1

i for each i P R1, as

ysgn
1

ipzq “

$

’

&

’

%

1 if i “ j and z P Zp1q

jl

´1 if i “ j and z P Zp2q

jl

ysgnipzq if otherwise
.

One can then write

ETDrpysgn
1

iqiPR1 s ´ ETDrpysgniqiPRs

“

ż

Zp1q
jl

rP pysgn
1

jpzq “ sgnpθjq|zq ´ P pysgnlpzq “ sgnpθlq|zqsP pzqdz

`

ż

Zp2q
jl

rP pysgn
1

jpzq “ sgnpθjq|zq ´ P pysgnlpzq “ sgnpθlq|zqsP pzqdz

“

ż

Zp1q
jl

rP pθj ą 0|zq ´ P pysgnlpzq “ sgnpθlq|zqsP pzqdz (B.5)

`

ż

Zp2q
jl

rP pθj ă 0|zq ´ P pysgnlpzq “ sgnpθlq|zqsP pzqdz. (B.6)

by a similar train of equalities as in the proof for Statement 1. For z P Zp1q

jl ,
P pθj ď 0|zq “ lfsrj ă lfsr l ď P pysgnlpzq ‰ sgnpθlq|zq, where the last in-
equality comes from the fact that lfsr l “ P pθl ď 0|zq ^ P pθl ě 0|zq is the
smallest conditional probability of making a false discovery that can possibly be
achieved by ysgnlpzq. This in turns implies P pθj ą 0|zq ą P pysgnlpzq “ sgnpθlq|zq,
which means that the term in (B.5) is greater than 0. Similarly one can show
that the term in (B.6) is also greater than 0, which gives ETDrpysgn

1

iqiPR1 s ´

ETDrpysgniqiPRs ą 0.
We can also show that FDRdirrpysgn

1

iqiPR1 s ď FDRdirrpysgniqiPRs similarly; to
avoid repetitions, we leave the details to the reader.

Appendix C: Additional content for Section 4

C.1. Implementation of the LSFR procedure

An exact implementation of the ODP described in Theorem 3.2 involves solv-
ing a rather complex infinite integer programming problem (Heller and Rosset,
2021) to determine a threshold for the local false sign rates. As an alternative,
in Section 4, LFSR is a similar oracle procedure with an attractively simpler
implementation first suggested by Sun and Cai (2007), and it suffices to serve as
an oracle benchmark for the power of our compared procedures. Suppose we de-
note this procedure as pysgn

SC
i qiPRSC

in our notation. Then the signs ysgn
SC
i are

declared as in Table 1, i.e., ysgn
SC
i “ ysgn

ODP
i , and the discovery set is defined

by
RSC ” ti : lfsr i ď lfsr pjqu



734 D. Leung and N. Tran

with the index

j “ jpqq ” max
#

i1
P rms :

ři1

i“1 lfsr piq

i1
ď q

+

,

where lfsr p1q ď ¨ ¨ ¨ ď lfsr pmq are the order statistics of true local false sign rates,

and RSC is the empty set if j is not well-defined. The ratio
ři1

i“1 lfsrpiq
i1 in the

definition of j is precisely the conditional FDRdir

E

«

|ti : ysgn
SC
i ‰ sgnpθiq and lfsr i ď lfsr pi1qu|

i1

ˇ

ˇ

ˇ
tziuiPrms

ff

of optimally declaring the signs for the subset ti : lfsr i ď lfsr pi1qu given the data,
which also implies the FDRdir of pysgn

SC
i qiPRSC

,

E

«

ysgn
SC
i ‰ sgnpθiq

1 _ |RSC |

ff

“ E

«

E

«

ysgn
SC
i ‰ sgnpθiq

1 _ |RSC |

ˇ

ˇ

ˇ
tziuiPrms

ffff

“ E

«

řj
i“1 lfsr piq

j

ˇ

ˇ

ˇ
RSC ‰ ∅

ff

P pRSC ‰ ∅q,

is less than q by how j was defined, under the Bayesian formulation (3.8).

C.2. Other simulation results

An R package for our methods is available at https://github.com/ninhtran02/
zdirect. We also conducted additional simulation studies to evaluate the per-
formance of different methods under dependent z-values. Specifically, given
θ “ pθ1, . . . , θmq generated exactly as described in Section 4.1 using the same
simulation parameters, we generate z “ pz1, . . . , zmq with a multivariate normal
distribution Npθ,Σq and an autoregressive covariance structure Σij “ ρ|i´j| for
1 ď i, j,ď m. The following values of ρ are experimented with:

C.2.1. Positive autoregressive dependence

Weak and strong positive dependence with ρ “ 0.5 and ρ “ 0.8.

C.2.2. Negative autoregressive dependence

Weak and strong negative dependence with ρ “ ´0.5 and ρ “ ´0.8.

C.2.3. Brief summary

The performances of different methods are included in Figures C.1 and C.2 for
the positively dependent settings in Appendix C.2.1, and Figures C.3 and C.4 for

https://github.com/ninhtran02/zdirect
https://github.com/ninhtran02/zdirect


Adaptive directional FDR control 735

the negatively dependent settings in Appendix C.2.2. Note that, in addition to
the existing methods from Section 4.2, we have included an extra method called
“dBHdir” in our results. The term “dBH” refers to the dependence-adjusted
BH procedure, a recent advancement in FDR testing under arbitrary depen-
dence proposed by Fithian and Lei (2022). It serves as a theoretically valid and
more powerful alternative to the widely recognized but very conservative BY
procedure (Benjamini and Yekutieli, 2001). We note that dBH requires prior
knowledge of the underlying dependence structure, distinguishing it from the
BY procedure. dBHdir is a variant of dBH designed specifically for multivariate
normal z-values and FDRdir control. It is implemented through the function
dBH_mvgauss in the R package dbh, where the gamma parameter is set to 0.9
following the recommendation by Fithian and Lei (2022) for two-sided testing.
Its exact FDRdir control for our settings with dependent z-values is established
by Fithian and Lei (2022, Corollary 7).

The FDRdir and power of each method under the dependent settings outlined
in Appendix C.2.1 and Appendix C.2.2 are similar to those under the indepen-
dent setting outlined in Section 4. Nevertheless, subtle differences emerge. For
strong autoregressive dependence ρ P t´0.8, 0.8u, when w “ 0.8 and ξ P t0.5, 1u,
the methods STSdir, aSTSdir, BHdir, LFSR, GR and dBHdir exhibited slight
FDRdir decreases by approximately 0.01 to 0.02. Conversely, ZDIRECT dis-
played slight FDRdir increases by approximately 0.01. Despite these increases in
FDRdir under strong autoregressive dependence, ZDIRECT consistently main-
tained empirical control of FDRdir below the designated level of q “ 0.10
throughout our additional simulations.

We observed that dBHdir is slightly more conservative in FDRdir control and
less powerful than BHdir across our additional simulations. This difference in
performance may be attributed to the recommended gamma parameter choice
of 0.9 by Fithian and Lei (2022), chosen to reduce the likelihood of obtaining
a randomly “pruned” rejection set; see Fithian and Lei (2022, Section 2.2) for
an explanation of why it is preferable to avoid the randomized pruning step
built into dBH-type methods. This cautious parameter choice may compromise
any potential power advantage dBHdir could have over BHdir in the presence of
autoregressive dependence.
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Fig C.1. Empirical directional false discovery rate and true positive rates of the eight com-
pared methods for the simulations in Appendix C.2.1 with ρ “ 0.5; each method was imple-
mented at a target FDRdir level q “ 0.1 (black horizontal lines).
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Fig C.2. Empirical directional false discovery rate and true positive rates of the eight com-
pared methods for the simulations in Appendix C.2.1 with ρ “ 0.8; each method was imple-
mented at a target FDRdir level q “ 0.1 (black horizontal lines).
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Fig C.3. Empirical directional false discovery rate and true positive rates of the eight com-
pared methods for the simulations in Appendix C.2.2 with ρ “ ´0.5; each method was imple-
mented at a target FDRdir level q “ 0.1 (black horizontal lines).



Adaptive directional FDR control 739

Fig C.4. Empirical directional false discovery rate and true positive rates of the eight com-
pared methods for the simulations in Appendix C.2.2 with ρ “ ´0.8; each method was imple-
mented at a target FDRdir level q “ 0.1 (black horizontal lines).
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