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In this paper, we obtain the exact asymptotic behavior of Green functions of homo-
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1 Introduction

The asymptotic behavior of Green functions of a transient Markov chain (Z(n)) on an
infinite countable state space is an important problem in probability theory. Determining
all possible limits of the associated Martin kernel, the ratio of Green functions, gives the
Martin compactification of the state space, and in particular an integral representation of
all non-negative harmonic functions, by the Poisson-Martin representation theorem, The-
orem (24.7) of [21]. Additionally, an almost sure convergence theorem, Theorem (24.10)
of [21], gives a description of how the transient Markov chain escapes to the infinity. For
an introduction to the theory of Martin compactification for countable Markov chains,
see the classical references Doob [5] and [8], Sawyer [19], and Chapter IV of [21] for a
thorough presentation of boundary theory of random walks.

A large number of results in this domain has been already obtained for homogeneous
random walks in Zd. In this setting, the exact asymptotics of the Green function has been
obtained by Ney and Spitzer [17] by using the local central limit theorem. An alternative
approach to this result is due to Woess [21]. It is based on an integral representation of
the Green function and on Fourier analysis techniques. The Martin compactification of a
homogeneous random walk in the lattice space Zd is in this case homeomorphic to the
closure of the set {

w = z/(1 + |z|) : z ∈ Zd
}
⊂ Rd.

The exact asymptotics of the Green function has been obtained, and the Martin boundary
identified, for more general homogeneous Markov chains such as random walks on free
groups, hyperbolic graphs and Cartesian products. See [21].
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Green function of killed random walks in a cone

For non homogeneous Markov chains, much less is known. For random walks on
non-homogeneous trees the Martin boundary is obtained in Cartier [3]. Doney [4]
identified the harmonic functions and the Martin boundary of a homogeneous random
walk (Z(n)) on Z killed on the negative half-line {z : z<0}. For the space-time random
walk S(n)=(n,Z(n)) of a homogeneous random walk Z(n) on Z killed on the negative
half-line {z : z<0} the Martin boundary is obtained in Alili and Doney [1]. The proof of
these results relies on the one-dimensional structure of the process.

For two dimensional random walks in Z2
+ with reflection or with an absorbing bound-

ary, asymptotics of the Green function have been obtained in Kurkova and Malyshev [15]
and Kurkova and Raschel [16] with complex analysis methods. To identify the full Martin
boundary of killed or reflected random walks, methods of additive Markov processes have
been used in Ignatiouk and Loree [14] and also in the references Ignatiouk [10] and [11]
with additional arguments of large deviations arguments and Choquet-Deny theory. It
should be mentioned that the approach of [10] and [11] is valid for Markov-additive
processes, i.e. when transition probabilities are invariant with respect to translations in
some directions. Ignatiouk et al. [13] obtains the Martin boundary of a class transient
random walks in Z2

+ by combining methods of additive Markov processes and complex
analysis. For centered random walks in Zd, killed upon the first exit from some cone
C⊂Rd the exact asymptotics of the Green function are obtained in Duraj et al. [7]. Their
approach relies on the diffusion approximation of centered random walks.

In this paper we consider a random walk in Zd killed at the first exit of a cone C of Rd,
its state space E=Zd∩C, the transition probabilities of (Z(n)) are invariant with respect
to the shifts in the interior of C and are associated to a probability measure µ on Zd.
Our approach to investigate the asymptotic behavior of Green functions (GC(j, k), j, k∈E)

combines the method of functional equations, an integral representation of the Green
function and Woess’ approach for the asymptotics of Green functions of homogeneous
random walk in Zd. A general overview is given in Section 2.

The approach of Ney and Spitzer [17] to get the exact asymptotics of the Green
function of homogeneous random walks in Zd relies on estimates of local limit theorems
and could be perhaps extended to the case of the killed random walks we consider. This
approach has been proposed in Borovkov and Mogulskii [2]. Such a method should
certainly work, probably at the price of serious technicalities. But, to the best of our
knowledge, several technical proofs are lacking.

We believe that our approach could be useful to investigate the asymptotics of the
Green function for more general situation. For example, in the case when a random
walk is homogeneous in some cone of the state space and the influence of its stochastic
behavior outside of the cone is small. In [9], this approach is used to identify the
asymptotic behavior of the Green functions for random walks with reflected boundary
conditions in Z2

+.

2 Main results

Consider a non-empty open cone C in Rd having a vertex at the origin 0 ∈ Rd, a
homogeneous random walk (Z(n)) on the lattice Zd with transition probabilities

Pj(Z(1) = k) = µ(k − j), j, k ∈ Zd,

where µ is a probability measure on Zd, and the first time when the process (Z(n)) exits
from C:

τ = inf{n : Z(n) 6∈ C}.

We assume that the following conditions are satisfied:
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Green function of killed random walks in a cone

(A1):
(i) The random walk (Z(n)) is irreducible in Zd.

(ii) The jump generating function

P (α)=̇
∑

k=(k1,...,kd)∈Zd

exp(α · k)µ(k)

is finite in a neighborhood of the set D=̇{α ∈ Rd : P (α) ≤ 1}.
(iii) The mean jump E0(Z(1)) is non zero, or equivalently, that the interior

◦
D of the set

D is non-empty.

α · k denotes here and throughout the paper, the usual scalar product in Rd.

(A2): The random walk (Z(n)) is irreducible on E=Zd ∩ C, i.e. that for any k,m ∈ E , there
is n ∈ N∗ such that

Pk(Z(n) = m, τ > n) > 0.

Remark that the cone C is not supposed to be convex. For instance, all our results are
valid for C = Rd \Rd+.

The purpose of the present paper is to determine the exact asymptotic of the Green
function

GC(k,m) =

∞∑
n=0

Pk(Z(n) = m, τ > n), k,m ∈ E ,

as m tends to infinity along a direction u, for each u ∈ C.
To formulate our results the following notations are needed: Recall that under the

hypotheses (A1), the set D is strictly convex and compact (see [17]) and that the mapping

α→ ∇P (α)/‖∇P (α)‖ (2.1)

determines a homeomorphism from the boundary ∂D of the set D to the unit sphere
Sd−1 in Rd.

Definition 2.1. 1) We denote by u→ α(u) the inverse mapping to (2.1) and we let for
u ∈ Sd−1, r(u) = (eα1(u), . . . , eαd(u)).

2) For u ∈ Sd−1, we consider

– the twisted random walk (Zu(n)) with transition probabilities

Pk(Zu(1) = m) = exp(α(u) · (m− k))µ(m− k), k,m ∈ Zd, (2.2)

– the mean jump vector m(u) = ∇P (α)|α=α(u) = E0(Zu(1)) of the twisted random
walk (Zu(n)) and the matrix of the second moments

Q(u) =
(
Qi,j(u)

)d
i,j=1

,

with
Qi,j(u) =

∑
k∈Zd

ki kj exp(α(u) · k)µ(k), i, j ∈ {1, . . . , d};

– the rotation Ru in Rd that sends the vector u to the first vector e1 of the canonical
basis of Rd and leaves the orthogonal complement to {u, e1} invariant;

– and the (d − 1) × (d − 1) matrix Qu = (Qu(i, j))
d
i,j=2 obtained from the matrix

RuQ(u)Rtu by deleting the first row and column:

Qu(i, j) =
∑
k∈Zd

[Ruk]i [Ruk]j exp(α(u) · k)µ(k), i, j ∈ {2, . . . , d},

where for i ∈ {1, . . . , d}, [Ruk]i denotes the i-th coordinate of the vector Ruk in the
canonical basis of Rd.
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– for a non-zero m ∈ Zd, we let um = m/‖m‖.

Under the above assumptions, for the random walk (Z(n)) killed when leaving the
cone C, the results of Duraj [6] provide a collection of strictly positive harmonic functions.
Recall that a non-negative function h on E is harmonic for the random walk (Z(n)) killed
when leaving the cone C, if for any j ∈ E ,

Ej(h(Z(1)), τ > 1) = h(j).

In his Proposition 1.1, Duraj [6] proved that for any point α on the boundary ∂D of the
set D, for which the gradient ∇P (α) of the function P at α belongs to the cone C, the
function hα defined on E by

hα(k) = exp(α · k)− Ek
(
exp(α · Z(τ)), τ < +∞

)
, ∀k ∈ E ,

is strictly positive on E and harmonic for the random walk (Z(n)) killed when leaving the
cone C. Remark that the results of [6] were obtained for a convex cone satisfying some
additional condition, but in our setting, one can extend this results for a general open,
and not necessarily convex, cone C (see Lemma 3.5 below).

The main result of our paper is the following statement.

Theorem 2.2. Under the hypotheses (A1) and (A2), for any k,m ∈ E and u ∈ Sd−1 ∩ C,
as ‖m‖ → ∞ and um = m/‖m‖ → u,

GC(k,m) ∼ hα(um)(k)‖m(um)‖−1
√

det(Q(um))
(
2π‖m‖)−(d−1)/2 exp(α(um) ·m). (2.3)

As a straightforward consequence of this result, one gets

Corollary 2.3. Under the hypotheses (A1) and (A2), for any u ∈ Sd−1 ∩ C, and any
sequence of points mn ∈ E with lim ‖mn‖ = +∞ and limmn/‖mn‖ = u,

lim
n→+∞

GC(k,mn)

GC(k0,mn)
=

hα(u)(k)

hα(u)(k0)
.

According to the definition of the Martin boundary, this proves that for any u ∈ Sd−1∩C,
any sequence of points mn ∈ E with lim ‖mn‖ = +∞ and limmn/‖mn‖ = u, converges
to some point ηu of the Martin boundary ∂ME of the random walk (Z(n)) killed upon
the time τ , and that the mapping u→ ηu is continuous and one to one from Sd−1 ∩ C to
{ηu : u ∈ Sd−1 ∩ C} ⊂ ∂ME . The last result was obtained earlier in the paper [12] for a
convex cone C. In the present paper, the convexity of the cone C is not assumed.

Throughout the paper, to simplify the notations, for x∈Cd and k∈Zd, we denote
xk=xk11 · · ·x

kd
d and k+1=(k1+1, . . . , kd+1).

The main idea of the proof of Theorem 2.2 is the following: We first show that for any
k ∈ E , the functions

x→ P(x) =
∑
m∈Zd

xmµ(m), (2.4)

x→ 1/(1− P(x)), (2.5)

x→ Hk(x) =
∑
m∈E

GC(k,m)xm, (2.6)

and

x→ Fk(x) = Ek
(
xZ(τ), τ < +∞

)
(2.7)

=
∑

m∈Zd\C

Pk(Z(τ) = m, τ < +∞)xm (2.8)
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are analytic in the multicircular set

{x = (x1, . . . , xd) ∈ Cd : P(|x1|, . . . , |xd|) < 1}, (2.9)

and satisfy there the identity

Hk(x) =
xk − Fk(x)

1− P(x)
. (2.10)

This is a subject of Lemma 3.1 and Corollary 3.2 below. With this result, for any point
r = (r1, . . . , rd), such that P(r) < 1, and k,m ∈ Zd, we get the integral representation

GC(k,m) =
1

(2πi)d

∫
|x1|=r1

. . .

∫
|xd|=rd

xk − Fk(x)

xm+1(1− P(x))
dx1 . . . dxd. (2.11)

Next, to investigate the asymptotic behavior of the Green function GC(k,m) as ‖m‖ → ∞
and m/‖m‖ → u for a given u ∈ Sd−1∩C, we show that for some neighborhood V (r(u)) of
the point r(u) = (eα1(u), . . . , eαd(u)) in Rd, the function Fk can be extended as an analytic
function to the multicircular set

{x = (x1, . . . , xd) ∈ Cd : (|x1|, . . . , |xd|) ∈ V (r(u))}

(this is a subject of Lemma 3.3) and we move the point r in the integral representa-
tion (2.11) to the point r(u) = (eα1(u), . . . , eαd(u)). In this way, the following integral
representation of GC(k,m) is obtained:

GC(k,m) = e−α(u)·m
∫
[−π,π]d

ψu(s)

es·m(1− φu(s))
ds1 . . . dsd (2.12)

where

φu(s) = P(eα(u)+is1 , . . . , eαd(u)+isd) = P (α1(u) + is1, . . . , αd(u) + isd).

and
ψu,k(s) = eα(u)·k+is·k − Fk(eαi(u)+is1 , . . . , eαd(u)+isd). (2.13)

Such an integral representation of GC(k,m) is quite similar to those of the Green function

G(k,m) =

∞∑
n=0

Pk(Z(n) = m)

of the homogeneous random walk (Z(n)) obtained in the proof of Theorem 25.15 of
[21]: the only difference is that for the homogeneous random walk, one has ψu,k(s) =

eα(u)·k+is·k instead of (2.13). The natural idea is therefore to investigate the asymptotic
behavior of the integral (2.12) as ‖m‖ → ∞ and m/‖m‖ → u, by using the method of
Woess [21]. This is a subject of Lemma 3.4. It should be mentioned however that in
Theorem 25.15 of [21], the jumps of the random walk (Z(n)) were assumed bounded,
and consequently the function α → P (α) was analytic everywhere in Cd, while in our
case, this function is analytic only in a neighborhood of the set

{(α1, . . . , αd) ∈ Cd : P (<e(α1), . . . ,<e(αd)) ≤ 1}.

Moreover, in our case, for any k ∈ E , the function (u, s)→ ψu,k(s) is defined only when
u ∈ Sd−1 ∩ C, and we can be sure only that for a given u ∈ Sd−1 ∩ C, the function
s→ ψu,k(s) is analytic only in a set

{s = (s1, . . . , sd) ∈ Cd : max{[=m(s1)|, . . . , |=m(sd)|} < εu}

for some εu > 0 depending on u. Hence, in our case, we should extend the arguments of
the proof of Theorem 25.15 of [21] for the case of unbounded jumps, and moreover, we
will be able to get the asymptotics (2.3) uniformly with respect to u only on the compact
subsets of Sd−1 ∩ C and not on the whole set Sd−1 ∩ C.
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3 Proof of Theorem 2.2

Throughout our proof, the following notations will be used: We denote by Dom(P) the
domain of convergence of the Laurent series (2.5) (i.e. the set of all those x ∈ [0,+∞[d

for which xk is well defined for all k ∈ Zd such that µ(k) > 0 and the Laurent series (2.5)
converges) and we let

D = {(x1, . . . , xd) ∈ Dom(P) : P(x1, . . . , xd) ≤ 1}.

For a given set V ⊂ [0,+∞[d, we denote by
◦
V the interior of the set V in Rd and we let

Ω(V ) = {(x1, . . . , xd) ∈ Cd : (|x1|, . . . , |xd|) ∈ V }.

Lemma 3.1. Under the hypotheses (A1), the following assertions hold:

1. the set D is compact and the function P is analytic in some neighborhood of the
set Ω(D);

2. for any k ∈ E , the functions (2.5), (2.6) and (2.7) are analytic in the multicircular

set Ω(
◦
D), and satisfy there the functional equation (2.10).

Proof. Under our hypotheses, the random walk (Z(n)) is irreducible in Zd and con-
sequently, for any i ∈ {1, . . . , d} there is k = (k1, . . . , kd) ∈ Zd with ki < 0 such that
µ(k) > 0. Hence, the domain of convergence Dom(P) of the Laurent series (2.5) has
no intersection with the hyperplanes {x = (x1, . . . , xd) ∈ Rd : xi = 0}, i ∈ {1, . . . , d} and
consequently, the set Dom(P) is included to ]0,+∞[d. Remark now that the mapping

(α1, . . . , αn)→ (eα1 , . . . , eαd)

determines a homeomorphism fromRd to ]0,+∞[d and maps the set D to the set D. Since
under our hypotheses, the set D is compact (see Lemma 1.1 of Ney and Spitzer [17])
this proves that D ⊂]0,+∞[d is also compact. Moreover, since under our hypotheses, the
series (2.4) converges in some neighborhood V of D in Rd and since according to the
definition of the functions P and P,

P(x1, . . . , xd) = P (lnx1, . . . , lnxd), ∀(x1, . . . , xd) ∈ Dom(P),

we conclude that the Laurent series (2.5) converges absolutely in the neighborhood
{(x1, . . . , xd) ∈ Cd : (ln |x1|, . . . , ln |xd|) ∈ V } of Ω(D) in Cd, and consequently, the function
P is analytic in {(x1, . . . , xd) ∈ Cd : (ln |x1|, . . . , ln |xd|) ∈ V }.

Since the function P is analytic in a neighborhood of the set Ω(D) in Cd, to show that

the function x → 1/(1 − P(x)) is analytic in Ω(
◦
D) it is sufficient to notice that for any

(x1, . . . , xd) ∈ Ω(
◦
D), one has

|P(x1, . . . , xd)| ≤ P(|x1|, . . . , |xd|) < 1.

The second assertion of our lemma is therefore also proved.

Furthermore by the Fubini-Tonelli theorem, for any x ∈
◦
D,

∑
m∈Zd

∞∑
n=0

Pk(Z(n) = m)xm =

∞∑
n=0

xkP(x)n =
xk

1− P(x)
. (3.1)

Since for any k,m ∈ Zd,

GC(k,m) ≤
∞∑
n=0

Pk(Z(n) = m)
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and

Pk(X(τ) = m, τ < +∞) ≤
∞∑
n=0

Pk(Z(n) = m),

from this it follows that the series

Fk(x) = Ek
(
xZ(τ), τ < +∞

)
=

∑
m∈Zd\C

Pk(Z(τ) = m, τ < +∞)xm

and
Hk(x) =

∑
m∈E

GC(k,m)xm

converge absolutely in Ω(
◦
D). The functions Fk and Hk are therefore also analytic in

Ω(
◦
D).
Remark finally that by the Markov property, for any k,m ∈ E ,

∞∑
n=0

Pk(Z(n) = m) =
∑

`∈Zd\C

Pk(Z(τ) = `, τ < +∞)

∞∑
n=0

P`(Z(n) = m) +GC(k,m).

and consequently, using (3.1), throughout the set Ω(
◦
D), one gets

xk

1− P(x)
=

Fk(x)

1− P(x)
+Hk(x).

As a consequence of Lemma 3.1, we obtain

Corollary 3.2. Integral representation of the Green function. Under the hypothe-

ses (A1), and for any r = (r1, . . . , rd) ∈
◦
D, and k,m ∈ E , the integral representation (2.11)

holds.

Proof. Indeed, recall that by Lemma 3.1, the function Hk is analytic in Ω(
◦
D). Hence,

for any r = (r1, . . . , rd) ∈
◦
D and k,m ∈ E , using the Cauchy integral formula for the

Laurent’s coefficients of Hk we obtain

GC(k,m) =
1

(2πi)d

∫
|x1|=r1

. . .

∫
|xd|=rd

Hk(x)

xm1+1
1 · · ·xmd+1

d

dx1 . . . dxd,

and using next the identity (2.10), we get (2.11).

Lemma 3.3. Analytic continuation of the functions Fk. Under the hypotheses (A1)
and (A2), for any u ∈ Sd−1 ∩ C and k ∈ E , the function Fk can be continued as an analytic
function to the set Ω(Vu) for some neighborhood Vu of the point r(u) in Rd.

Proof. Before proving this result, let us notice that for any u ∈ Sd−1, the point α(u) ∈ ∂D
is the only point of the set D where the function α→ α ·u achieves its maximum over the
set D. Indeed, for any u ∈ Sd−1, by Corollary 23.7.1 of Rockafellar [18] and according to
the definition of the mapping α→ u(α), the function α→ α · um achieves its maximum

over D at the point α(um) and by Theorem 32.1 of [18], for any α ∈
◦
D,

α · u < α(u) · u.

Since under our hypotheses the set D is strictly convex (see Ney and Spitzer [17]), from
this it follows that for any u ∈ Sd−1, the point α(u) ∈ ∂D is the only point of the set D
where the function α→ α · u achieves its maximum over the set D.
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Now we are ready to prove Lemma 3.3. For this it is sufficient to show that for any
u ∈ Sd−1 ∩ C and k ∈ E , the series

Fk(x) = Ek(xZ(τ), τ < +∞) =
∑

m∈Zd\C

Pk
(
Z(τ) = m, τ <∞

)
xm (3.2)

converges in some neighborhood Vu of the point r(u) in Rd.
To get this result, we notice first that for any x = (x1, . . . , xd) ∈ D, k ∈ E , and n ∈ N,

Ek
(
xZ(τ), τ = n

)
≤
∑
m∈Zd

Pk(Z(n) = m)xm = xkPn(x)

and consequently, for any x = (x1, . . . , xd) ∈ D, k ∈ E , n ∈ N and m ∈ Zd \ C,

Pk
(
Z(n) = m, τ = n

)
≤ xk−mPn(x).

Since according to the definition of the set D, for any r ∈
◦
D, we have 0 < P(r) < 1

and according to the definition of the mapping u → r(u), for any u ∈ Sd−1, we have
P(r(u)) = 1, using the above relation with x = r(um) ∈ ∂D for n ≤ N and with x = r0 for

some r0 ∈
◦
D in the case when n > N , we obtain

Ek
(
Z(τ) = m, τ <∞

)
≤ N

(
r(um)

)k−m
+

(P(r0))N+1

1− P(r0)
(r0)k−m

≤ N exp
(
α(um) · (k −m)

)
+

(r0)k

1− P (α0)
exp
(
(N + 1) ln(P (α0))− α0 ·m

)
with α0 = (ln r01, . . . , ln r

0
d) ∈

◦
D. Remark now that α0 6= α(um) because the point α0

belongs to the interior of the set D and the point α(um) belongs to its boundary. Since
the point α(um) is the only point in the set D where the function α→ α · um achieves its
maximum over D, from this it follows that

α0 ·m < α(um) ·m,

and consequently, choosing N = Nm ∈ N such that

Nm ≤
(α(um)− α0) ·m

ln(1/P (α0))
< Nm + 1

one gets

Ek
(
Z(τ) = m, τ <∞

)
≤
(

(α(um)− α0) ·m
ln(1/P (α0))

eα(um)·k +
(x0)k

(1− P (α0))

)
e−α(um)·m

≤ (Ak‖m‖+Bk) exp(−‖m‖α(um) · um) (3.3)

with Ak = 2 supα∈D ‖α‖eα(uk)·k/ ln(1/P (α0)) and Bk = eα
0·k/(1− P (α0)).

Consider now u ∈ Sd−1 ∩ C and remark that for any v ∈ Sd−1 \ C,

α(v) · v > α(u) · v

because the point α(v) is the only point in the set D where the function α → α · v
achieves its maximum over D, and in this case v 6= u. Since the functions v → α(v) · v
and v → α(u) · v are continuous on Sd−1 \ C and the set Sd−1 \ C is compact, from this it
follows that for some ε > 0,

α(v) · v > α(u) · v + ε, ∀v ∈ Sd−1 \ C.
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The last relation implies that for any α ∈ Rd such that ‖α(u)− α‖ < ε/2, the inequality

α(v) · v > α · v + ε/2

holds for any v ∈ Sd−1 \ C and consequently, for any m ∈ Zd \ C,

α(um) ·m = ‖m‖α(um) · um > ‖m‖α · um + ε/2‖m‖ = α ·m+ ε/2‖m‖.

Using this relation at the right hand side of (3.3) we conclude therefore that for any
α ∈ Rd such that ‖α(u)− α‖ < ε/2, the following relation holds∑

m∈Zd\C

Ek
(
Z(τ) = m, τ <∞

)
exp(α ·m) ≤

∑
m∈Zd\C

(Ak‖m‖+Bk) exp(−‖m‖ε/2).

Since the series at the right hand side of the last relation converges, this proves that in
some neighborhood of the point r(u) = (eα1(u), . . . , eαd(u)), the series (3.2) converges.

Lemma 3.4. Suppose that the condition (A1) is satisfied and let for some ε > 0 and
u0 ∈ Sd ∩ C, a function x→ Ψ(x) be analytic in the multicircular set

{x = (x1, . . . , xd) ∈ Cd :
∣∣|x1| − r1(u0))

∣∣ < ε, . . .
∣∣|xd| − rd(u0)

∣∣ < ε}, (3.4)

and do not vanish in the point r(u0) = (r1(u0), . . . , rd(u
0)). Then for any m ∈ Zd, the

integral

Im = Im(r) =
1

(2πi)d

∫
|x1|=r1

. . .

∫
|xd|=rd

Ψ(x)

xm+1(1− P(x))
dx1 . . . dxd (3.5)

is well defined and does not depend on the point r = (r1, . . . , rd) throughout the set

{r ∈
◦
D :

∣∣r1 − r1(u0))
∣∣ < ε, . . . ,

∣∣rd − rd(u0)
∣∣ < ε}, (3.6)

and as ‖m‖ → +∞, uniformly with respect to um = m/‖m‖ in some neighborhood of u0,

Im ∼ Ψ(r(um))‖m(um)‖−1
√

det(Q(um))
(
2π‖m‖)−(d−1)/2(r(um))−m. (3.7)

Proof. Indeed, recall that (see Lemma 3.1) the function x → 1/(1 − P(x) is analytic
in the multicircular set (2.9). Since under our hypotheses, the function Ψ is analytic
in the multicircular set (3.4), and since the set (2.9) does not meet the hyper-planes
{x ∈ Cd : xi = 0}, i ∈ {1, . . . , d}, from this it follows that for any m∈Zd, the function

x = (x1, . . . , xd)→
Ψ(x)

xm+1(1− P(x))

is analytic in the multicircular set (3.6). This proves that throughout the set (3.6), the
integrals (3.5) are well defined and do not depend on r.

To get (3.7) we use the method of Woess, proposed in [21] in order to get the
asymptotics of the Green function for a homogeneous random walk in Zd. The idea
and the steps of our proof are the same as in [21] with a difference that in the proof of
Woess, instead of the function Ψ, one has a function x = (x1, . . . , xd)→ xk = xk11 · · ·x

kd
d

which is analytic everywhere in {x ∈ Cd : xi 6= 0, ∀1 ≤ i ≤ d}, and since Woess
considered a random walk with bounded jumps, in his proof, the jump generating
function of the random walk was also analytic everywhere in Cd. In our case, the
jump generating function P is assumed to be finite only in a neighborhood of the set
D = {α ∈ Rd : P (α) ≤ 1} and the function Ψ is assumed to be analytic only in the
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set (3.4). Hence, we should be careful when choosing a neighborhood of the point r(u0)

where all estimates will be performed.
Since under our assumptions, the function P is analytic in a neighborhood of the

set D, without any restriction of generality, we can assume that for a given ε > 0, it is
analytic in the multicircular set (3.4).

Furthermore, since under our assumptions, we investigate the asymptotic of GC(k,m)

as ‖m‖ → +∞ for um = m/‖m‖ closed to u0, and since the mapping u → r(u) is
continuous, without any restriction of generality, throughout our proof, we can suppose
that the point um = m/‖m‖ belongs to the set

Uε = {u ∈ C : |r1(u)− r1(u0)| ≤ ε/2, . . . , |rd(u)− rd(u0)| ≤ ε/2}. (3.8)

Moreover, since under our hypotheses, the function Ψ is analytic in a neighborhood
of the point r(u0) and Ψ(r(u0)) 6= 0, without any restriction of generality, we can suppose
that for a given ε > 0,

Ψ(r(u)) 6= 0, ∀u ∈ Uε. (3.9)

Now we are ready to perform the first step of the proof Woess, i.e. to show that for
any u ∈ Uε,

Im =
1

(2πi)d

∫
|x1|=r1(u)

. . .

∫
|xd|=rd(u)

Ψ(x)

xm+1(1− P(x))
dx1 . . . dxd. (3.10)

Remark that in our setting, to gets this relation, we can not use the method of Woess
(see the proof of Lemma 25.17 in [21]) in a straightforward way because we have no
an analogue of the formula of the Fourier inversion applied by Woess in his proof for
homogeneous random walk. Instead of that, let us notice that for any point r = (r1, . . . , rd)

in the set (3.6), the following relation holds

Im = lim
N→∞

1

(2πi)d

∫
|x|=r1

. . .

∫
|xd|=rd

Ψ(x)(1− (P(x))N+1)

xm+1(1− P(x))
dx1 . . . dxn

= lim
N→∞

N∑
n=0

1

(2πi)d

∫
|x|=r1

. . .

∫
|xd|=rd

Ψ(x)(P(x))n

xm+1
dx1 . . . dxn

because in this case |P(x)| ≤ P(r0) < 1 for any x = (x1, . . . , xd) ∈ Cd with |x1| =

r1, . . . , |xd| = rd. Moreover, for any n ∈ N and u ∈ Uε,∫
|x|=r1

. . .

∫
|xd|=rd

Ψ(x)(P(x))n

xm+1
dx1 . . . dxn

=

∫
|x|=r1(u)

. . .

∫
|xd|=rd(u)

Ψ(x)(P(x))k

xm+1
dx1 . . . dxn

because the function x→ Ψ(x)(P(x))nx−m1−1
1 · · ·x−md−1

d is analytic in the multicircular
set (3.4). Hence, to get (3.10) it is sufficient to show that for any u ∈ Uε,

lim
N→∞

∫
|x|=r1(u)

. . .

∫
|xd|=rd(u)

Ψ(x)

xm+1

(
N∑
n=0

(P(x))k

)
dx1 . . . dxn

=

∫
|x1|=r1(u)

. . .

∫
|xd|=rd(u)

Ψ(x)

xm+1(1− P(x))
dx1 . . . dxd. (3.11)

For this, we remark that for any u ∈ Uε, the function x→ Ψ(x)x−m−1 is continuous and
therefore bounded on the set

Wu = {x = (x1, . . . , xd) ∈ Cd : |x1| = r1(u), . . . , |xd| = rd(u)},
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and that for any x ∈Wu \ {r(u)}, because of Assumption (A1) (i) (see Proposition P7.5 of
Spitzer [20]), one has

|P(x)| < P(r(u)) = 1.

Hence, for any x ∈Wu \ {r(u)},

N∑
n=0

(P(x))k =
1− (P(x))N+1

1− P(x)
,

and consequently, by the dominated convergence theorem, to get (3.11), it is sufficient
to show that for any u ∈ Uε, the function

t = (s1, . . . , sd)→ 1/|1− P(r1(u)eis1 , . . . , rd(u)eisd)|

is integrable on [−π, π]d, or equivalently, that this function is integrable in a neighborhood
of the origin 0 = (0, . . . , 0) of Rd. The proof of this statement is given in the book of
Woess [21] (see the proof Lemma 25.17 of [21]) and in this proof, the condition of
the bounded jumps of the random walk was not used. For any u ∈ Uε, relation (3.10)
therefore holds and consequently,

Im =
1

(2π)d(r(u))m

∫
[−π,π]d

ψu(s)e−is·m

1− φu(s)
dt

where for u ∈ Uε and s = (s1 . . . , sd) ∈ [−π, π]d, we denote

ψu(s) = Ψ(r1(u)eis1 , . . . , rd(u)eisd) = Ψ(eα1(u)+is1 , . . . , eαd(u)+isd)

and

φu(s) = P(r1(u)eis1 , . . . , rd(u))eisd) = P(eα1(u)+is1 , . . . , eαd(u)+isd)

= P (α1(u) + is1, . . . , αd(u) + isd).

Next, with exactly the same arguments as in the book of Woess [21] (see the relation
(25.18) on the page 272), by using the Riemann-Lebesgue lemma, for any 0 < δ < ε/2 (we
will assume also that δ < π) and with a radial (i.e. invariant with respect to the rotations
of R2 around the origin) real valued function fδ ∈ C∞([−π, π]2) such that 0 ≤ fδ ≤ 1,
fδ(s) = 1 for ‖s‖ < δ/3 and fδ(s) = 0 for ‖s‖ > 2δ/3, one gets that for any u ∈ Uε

Im = Iδm(u) +
1

(r(u))m
ou(‖m‖−(d−1)/2)

where

Iδm(u) =
1

(2π)d(r(u))m

∫
{‖s‖≤δ}

ψu(s)fδ(s)e
−is·m

1− φu(s)
ds

and ‖m‖(d−1)/2ou(‖m‖−1/2)→ 0 as ‖m‖ → ∞ uniformly with respect to u ∈ Uε.
Remark finally that under our assumptions (since the functions Ψ and P are analytic
in the set (3.4)), for some δ > 0 small enough and any u ∈ Uε, the functions ψu and φu
are analytic in the multidisk {s = (s1 . . . , sd) ∈ Cd : |s1| < 2δ, . . . , |sd| < 2δ}, all their
derivatives depend continuously on u ∈ Uε, and by (3.9),

ψu(0) = Ψ(r(u)) 6= 0, ∀u ∈ Uε.

Letting u = um and using the same arguments as in the proof Theorem 25.15 of [21]
(where in the notations of [21], the function fu,k(s) = exp(iRuk · s)f(s)/Bu(is) should be
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replaced by hum
(s) = ψum

(Rtum
s)fδ(s)/Bum

(is)), we obtain therefore that as ‖m‖ → ∞
and uniformly with respect to um ∈ Uε,

Im ∼
ψum

(0)
√

det(Q(um))

‖m(um)‖
(
2π‖m‖)(d−1)/2(r(u))m

or equivalently, that (3.7) holds.

Lemma 3.5. Under the hypotheses (A1) and (A2), for any u ∈ Sd−1 ∩ C, the function
hα(u) : E → R is strictly positive everywhere in E

Proof. Consider the twisted random walk (Zu(n)) with transition probabilities (2.2), and
let τu(C) denote the first time when the twisted random walk (Zu(n)) exits from C. Recall
that by Lemma 3.1 of Duraj [6]), for any u ∈ Sd−1 ∩ C,

hα(u)(k) = exp(α(u) · k)Pk(τu(C) = +∞), ∀k ∈ E .

Since the function k → Pk(τu(C) = +∞) is clearly non negative and harmonic for the
twisted random walk (Zu(n)) killed when leaving the cone C, from this it follows that the
function hα(u) is non-negative and harmonic for the original random walk (Z(n)) killed
when leaving the cone C. Remark that to get this result neither convexity of the cone C
nor the irreducibility of the random walk (Z(n)) throughout the set E is needed.

Under the additional condition on the cone C, when the angle between any two points
of Sd−1 ∩ C is smaller than π, Duraj [6]) proved that for any u ∈ Sd−1 ∩ C, the probability
Pk(τu(C) = +∞) is non zero for some k ∈ E (see the proof of Proposition 1.1 of [6])).

Remark now that under our hypotheses, for any u ∈ Sd−1 ∩ C there is an open and
convex cone Ĉu satisfying the above additional condition of [6] and such that u ∈ Ĉu ⊂ C.
Hence, using the results of [6]), we get that for any u ∈ Sd−1 ∩ C, there is k ∈ Zd ∩ Ĉu
such that

hα(u)(k) = exp(α(u) · k)Pk(τu(C) = +∞) ≥ exp(α(u) · k)Pk(τu(Ĉu) = +∞) > 0.

Since for any u ∈ Sd−1 ∩ C, the function hα(u) is non-negative and harmonic for the
random walk (Z(n)) killed when leaving the cone C, and since we assume that the
random walk (Z(n)) is irreducible on Zd ∩ C, by the minimum principle for harmonic
functions, this proves that for any u ∈ Sd−1 ∩ C, the function hα(u) is strictly positive
everywhere in E .

Proof of Theorem 2.2: This theorem is a consequence of Corollary 3.2, Lemma 3.3,
Lemma 3.5 and Lemma 3.4: Under the hypotheses (A1), by Corollary 3.2, for any

r = (r1, . . . , rd) ∈
◦
D and k,m ∈ Zd,

GC(k,m) =
1

(2πi)d

∫
|x1|=r1

. . .

∫
|xd|=rd

xk − Fk(x)

xm+1(1− P(x))
dx1 . . . dxd.

By Lemma 3.3, for any k ∈ E and u ∈ Sd−1 ∩ C, and some ε > 0, the function x→ Ψk(x) =

xk − Fk(x) can be continued as an analytic function to the multicircular set

{x = (x1, . . . , xd) ∈ Cd : |x1 − x1(u)| < ε, . . . , |xd − xd(u)| < ε}.

And moreover, if the condition (A2) is also satisfied, then by Lemma 3.5, for any k ∈ E
and u ∈ Sd−1 ∩ C, according to the definition of the function Fk

Ψk(r(u)) = rk(u)− Fk(r(u)) = hα(u)(k) 6= 0.

Under the hypotheses (A1) and (A2), for any u0 ∈ Sd−1 ∩ C, the conditions of Lemma 3.4
are therefore satisfied and consequently, (2.3) holds.
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