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Abstract

In this paper, we give the moderate deviation principle from the hydrodynamic limit
of the simple symmetric exclusion process on the 1-dimensional torus starting from
a nonequilibrium state, which extends the result given in Gao and Quastel (2003)
about the case where the process starts from an equilibrium state. The exponential
tightness of the scaled density field of the process and a replacement lemma play key
roles in the proof of the main result. We utilize Grownwall’s inequality and the upper
bound of the large deviation principle given in Kipnis, Olla and Varadhan (1989) to
prove the above exponential tightness and the replacement lemma respectively in the
absence of the invariance of the initial distribution.
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1 Introduction

In this paper, we will give moderate deviation principles from hydrodynamic limits of
the simple symmetric exclusion process on the one dimensional torus starting from a
nonequilibrium state, which extend the result given in [1] about the equilibrium case.
We first recall the definition of the simple symmetric exclusion process. For each integer
N ≥ 1, let TN = {0, 1, 2, . . . , N − 1}. The simple symmetric exclusion process {η̂t}t≥0 on

TN is a continuous-time Markov process with state space XN = {0, 1}TN and generator
L̂N given by

L̂Nf(η) =
∑
x∈TN

[
f(ηx,x+1)− f(η)

]
(1.1)

for any η ∈ XN and f from XN to R, where ηx,x+1 ∈ XN is defined as

ηx,x+1(y) =


η(y) if y 6= x, x+ 1,

η(x+ 1) if y = x,

η(x) if y = x+ 1.
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Nonequilibrium MDP of SEP

Note that, throughout this paper operations on TN are under the (mod N)-meaning. For
example, (N − 1) + 1 = 0.

According to Equation (1.1), the simple symmetric exclusion process describes a
traffic flow on TN . At each x ∈ TN , there is at most one particle. All particles perform
random walks on TN . In detail, a particle at x jumps to the neighbor y = x± 1 at rate 1

when y is not occupied by other particles.
Here we recall invariant measures of the simple symmetric exclusion process. For

0 < α < 1, let να be the product measure on TN under which {η(x)}0≤x≤N−1 are
independent and να(η(x) = 1) = α for all 0 ≤ x ≤ N − 1, then by Equation (1.1), it is
easy to check that να is a reversible distribution and hence an invariant distribution of
{η̂t}t≥1. The measure να is called the global invariant measure of the process. For a
given integer 1 ≤ K ≤ N − 1, let

νK(·) = να

(
·
∣∣∣ ∑
x∈TN

η(x) = K

)
.

Since the total number of particles is conserved for the simple symmetric exclusion
process, we have

1{
∑
x∈TN η̂t(x)=K} = 1{

∑
x∈TN η̂0(x)=K}

for ant t ≥ 0, where 1A is the indicator function of the event A. As a result, for any f
from XN to R,

Eνα

(
f(η̂t)1{

∑
x∈TN η̂0(x)=K}

)
= Eνα

(
f(η̂t)1{

∑
x∈TN η̂t(x)=K}

)
= Eνα

(
f(η̂0)1{

∑
x∈TN η̂0(x)=K}

)
and hence

EνKf(η̂t) =
Eνα

(
f(η̂t)1{

∑
x∈TN η̂0(x)=K}

)
να(
∑
x∈TN η(x) = K)

=
Eνα

(
f(η̂0)1{

∑
x∈TN η̂0(x)=K}

)
να(
∑
x∈TN η(x) = K)

= EνKf(η̂0).

In conclusion, νK is an invariant measure of the process which is called the local invariant
measure. Note that νK is independent of the choice of α since the process is irreducible
and has finite states conditioned on the total number of particles being K.

For other basic properties of the simple symmetric exclusion process, readers could
see Chapter 8 of [5] and Part III of [6] for a detailed survey.

Now we recall hydrodynamic limits of the simple symmetric exclusion process. From
now on, we write η̂Nt instead of η̂t to emphasize the N -dependence. We denote η̂NtN2 by

ηNt . Then, the generator LN of {ηNt }t≥0 is given by LN = N2L̂N . Let T = [0, 1) be the
one dimensional torus. We denote by µNt the empirical density field of ηNt , i.e.,

µNt (du) =
1

N

∑
x∈TN

ηNt (x)δ x
N

(du),

where δa is the Dirac measure concentrated at a. The following hydrodynamic limit
theorem is given in Chapter 4 of [3].

Proposition 1.1 (Kipnis and Landim, [3]). If {ηN0 (x)}0≤x≤N−1 are independent and

P (ηN0 (x) = 1) = φ
( x
N

)
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Nonequilibrium MDP of SEP

for some φ ∈ C(T) and all N ≥ 1, x ∈ TN , then µNt (f) converges in probability to∫
T
ρt(u)f(u)du as N → +∞ for any t ≥ 0 and f ∈ C(T), where {ρt}t≥0 is the unique weak

solution to the heat equation{
∂tρ(t, u) = ∂2

uuρ(t, u) for any t ≥ 0,

ρ0 = φ.
(1.2)

The proof of Proposition 1.1 utilizes Dynkin’s martingale formula to show that
any weak limit of a subsequence of {µNt }N≥1 is absolutely continuous with respect
to Lebesgue measure and the corresponding Radon-Nikodym derivative is a weak solu-
tion to Equation (1.2).

It is natural to further investigate central limit theorems, large and moderate devia-
tions from hydrodynamic limits given in Proposition 1.1. The central limit theorem from
the hydrodynamic limit is also called the fluctuation. It is shown in Chapter 11 of [3]
that the fluctuation of the simple symmetric exclusion process is driven by a generalized
Ornstein-Uhlenbeck process introduced in [2]. The large deviation principle from the
hydrodynamic limit of the simple symmetric exclusion process is given in [4], the proof
of which utilizes an exponential martingale strategy. A moderate deviation principle
is given in [1] in the case where the initial distribution of the process is να, the proof
of which extends the strategy given in [4] and relies heavily on the fact that να is an
invariant measure of the process.

In this paper, we will extend the result given in [1] to cases where initial distribu-
tions of our processes are not invariant. The proof of our main result still utilizes the
exponential martingale strategy as that in [1] but two technical details are improved.
We give new approaches to check a replacement lemma and the exponential tightness of
the scaled density field of the process, where the invariance of the initial distribution is
not needed. For mathematical details, see Section 3.

2 Main result

In this section, we give our main result. For later use, we first introduce some
notations and definitions. Let T = [0, 1) be the one dimensional torus defined as in
Section 1. Throughout this paper, operators on T are under (mod 1)-meaning. For
example, 0.2− 0.3 = 0.9. We denote the dual of C∞(T) endowed with the weak topology
by S, i.e., νn → ν in S if and only if

lim
n→+∞

νn(f) = ν(f)

for any f ∈ C∞(T). Let {aN}N≥1 be a positive sequence such that

lim
N→+∞

aN
N

= lim
N→+∞

√
N

aN
= 0.

Throughout this paper, we adopt the following assumption.
Assumption (A): {ηN0 (x)}x∈TN are independent and

P
(
ηN0 (x) = 1

)
= φ

( x
N

)
for all x ∈ TN , where φ ∈ C(T) such that 0 < φ(u) < 1 for all u ∈ T.

Let E be the expectation operator. For any t ≥ 0 and N ≥ 1, we define the scaled
density field θNt as

θNt (du) =
1

aN

∑
x∈TN

(
ηNt (x)− EηNt (x)

)
δ x
N

(du).
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Nonequilibrium MDP of SEP

We can consider θNt as a random element in S such that

θNt (f) =
1

aN

∑
x∈TN

(
ηNt (x)− EηNt (x)

)
f
( x
N

)
for any f ∈ C∞(T). For a given T > 0, we denote {θNt }0≤t≤T by θN . Then θN is a random
element in D([0, T ],S), which is the set of càdlàg functions from [0, T ] to S endowed with
the Skorokhod topology.

We first give the moderate deviation rate function of the dynamic of the process. For
any W ∈ D([0, T ],S), we define

Idyn(W ) = sup
F∈C1,∞([0,T ]×T)

{
WT (FT )−W0(F0)−

∫ T

0

Ws((∂s + ∂2
uu)Fs)ds

−
∫ T

0

∫
T

ρs(u)(1− ρs(u))(∂uFs(u))2dsdu

}
, (2.1)

where {ρt}t≥0 is the unique weak solution to Equation (1.2). Note that, in Equation (2.1),(
(∂s + ∂2

uu)Fs
)

(u) = ∂sF (s, u) + ∂2
uuF (s, u)

for any u ∈ T and hence (∂s + ∂2
uu)Fs ∈ C∞(T) for any given 0 ≤ s ≤ T . Then, since

W ∈ D([0, T ],S), {Ws((∂s + ∂2
uu)Fs)}0≤s≤T is a real-valued càdlàg function on [0, T ].

Secondly, we give the moderate deviation rate function of the intial state of the process.
For any ν ∈ S, we define

Iini(ν) = sup
f∈C∞(T)

{
ν(f)− 1

2

∫
T

φ(u) (1− φ(u)) f2(u)du

}
. (2.2)

Now we can give our main result.

Theorem 2.1. Under Assumption (A),

lim sup
N→+∞

N

a2
N

logP
(
θN ∈ C

)
≤ − inf

W∈C
(Iini(W0) + Idyn(W )) (2.3)

for any closed set C ⊆ D([0, T ],S) and

lim inf
N→+∞

N

a2
N

logP
(
θN ∈ O

)
≥ − inf

W∈O
(Iini(W0) + Idyn(W )) (2.4)

for any open set O ⊆ D([0, T ],S).

If φ ≡ α for some α ∈ (0, 1), then ρs(u)(1− ρs(u)) ≡ α(1− α) and hence Theorem 2.1
reduces to Theorem 1.1 of [1].

The proof of Theorem 2.1 is divided into two sections. In Section 3, we give a
replacement lemma and show that {θN}N≥1 are exponentially tight. To prove the
above replacement lemma, we utilize the upper bound of the large deviation principle
given in [4]. To check the exponential tightness of {θN}N≥1, we utilize Grownwall’s
inequality. According to Grownwall’s inequality, the exponential tightness of {θN}N≥1

is a consequence of the exponential tightness of another class of stochastic processes
{ZNt : 0 ≤ t ≤ T}N≥1, which make a class of exponential martingales {MN

t : 0 ≤
t ≤ T}N≥1 can be written as MN

t = exp
(
a2
N

N

(
ZNt +O(1)

))
for all N ≥ 1. As a result,

the exponential tightness of {ZNt : 0 ≤ t ≤ T}N≥1 follows from Doob’s inequality and
consequently the exponential tightness of {θN}N≥1 is derived. In Section 4, we complete
the proof of Theorem 2.1. The replacement lemma and the exponential tightness of
{θN}N≥1 given in Section 3 are analogues of Lemmas 2.1 and 3.2 of [1] respectively,
which makes the strategy introduced in [1] apply to the case discussed in this paper.
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3 Exponential tightness and replacement lemma

In this section, we prove following two lemmas.

Lemma 3.1. Under Assumption (A), {θN}N≥1 are exponentially tight.

Lemma 3.2. Under Assumption (A), for any ε > 0 and G ∈ C1,0([0, T ]×T),

lim sup
N→+∞

N

a2
N

logP

(∣∣∣∣∣
∫ T

0

1

N

∑
x∈TN

ηNs (x)ηNs (x+ 1)Gs

( x
N

)
ds

−
∫ T

0

∫
T

ρ2
s(u)Gs(u)duds

∣∣∣∣∣ > ε

)
= −∞. (3.1)

Lemmas 3.1 and 3.2 are analogues of Lemmas 2.1 and 3.2 of [1] respectively. In [1],
the simple symmetric exclusion process ηNt follows an invariant distribution να at any
moment t. With this property, Lemma 2.1 of [1] is proved by utilizing Jensen’s inequality
and Cauchy-Schwarz inequality. Lemma 3.2 of [1] is proved by utilizing Garsia-Rademich-
Rumsey inequality. For mathematical details, see [1]. Above approaches do not apply
to cases discussed in this paper since the initial distribution of the simple symmetric
exclusion process in this paper is not invariant. Hence we prove above two lemmas in
different ways than those in [1]. By utilizing Grownwall’s inequality, we reduce the check
of the exponential tightness of θN to that of the logarithm of an exponential martingale
and then Lemma 3.1 holds according to Doob’s inequality. For mathematical details, see
Subsection 3.1. By utilizing the upper bound of the large deviation principle given in [4],
Lemma 3.2 follows from the fact that the minimum of the large deviation rate function
given in [4] on a closed set without {ρt}0≤t≤T is strictly positive. For mathematical
details, see Subsection 3.2.

3.1 Proof of Lemma 3.1

In this subsection, we prove Lemma 3.1. We first introduce some notations and
definitions for later use. For integer n ≥ 0, we denote cos(2nπu) by en(u). For integer
n ≥ 1, we denote sin(2nπu) by e−n(u). For n ∈ Z, N ≥ 1, c > 0 and t ≥ 0, we define

Y N,n,ct = exp

(
a2
N

N
θNt (cen)

)
.

Furthermore, we define

MN,n,c
t =

Y N,n,ct

Y N,n,c0

exp

(
−
∫ t

0

(∂s + LN )Y N,n,cs

Y N,n,cs

ds

)
.

Note that ∂tY
N,n,c
t in the above definition does not refer to lim∆t→0

Y N,n,ct+∆t −Y
N,n,c
t

∆t since

{Y N,n,ct }t≥0 is not continuous. According to our notations, Y N,n,ct = Vc(t, η
N
t ), where

Vc(t, η) = exp
(
caN
N

∑
x∈TN

(
η(x)− EηNt (x)

)
en(x/N)

)
. Then, for given η, Vc(·, η)∈C1([0, T ])

and

∂tVc(t, η) = Vc(t, η)

(
caN
N

∑
x∈TN

(
− d

dt
EηNt (x)

)
en(x/N)

)
.

So, in the above definition ofMN,n,c
t , we denote ∂tVc(t, η)

∣∣∣
η=ηNt

by ∂tY
N,n,c
t .

By Feynman-Kac formula, {MN,n,c
t }t≥0 is a martingale with mean 1.

Now we give the proof of Lemma 3.1
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Nonequilibrium MDP of SEP

Proof of Lemma 3.1. Since span{en : −∞ < n < +∞} are dense in C∞(T), according
to the criterion given in [7], to complete this proof we only need to show that

lim sup
M→+∞

lim sup
N→+∞

N

a2
N

logP

(
sup

0≤t≤T
|θNt (en)| > M

)
= −∞ (3.2)

and

lim sup
δ→0

lim sup
N→+∞

N

a2
N

log sup
σ∈T

P

(
sup

0≤t≤δ

∣∣θNt+σ(en)− θNσ (en)
∣∣ > ε

)
= −∞ (3.3)

for any n ∈ Z and ε > 0, where T is the set of stopping times of {ηNt }t≥0 bounded by T .
We first check Equation (3.2). According to Chapman-Kolmogorov equation, we have

∂sY
N,n,1
s

Y N,n,1s

=
∂sV1(s, η)

∣∣
η=ηNs

Y N,n,1s

= −aN
N

∑
x∈TN

N2
(
EηNs (x+ 1) + EηNs (x− 1)− 2EηNs (x)

)
en(x/N)

= −aN
N

∑
x∈TN

EηNs (x)(∆Nen(x/N)),

where ∆Nen(u) = N2
(
en(u+ 1

N ) + en(u− 1
N )− 2en(u)

)
. Using the definition of LN and

the fact that

V1(s, ηx,x+1)− V1(s, η) = V1(s, η)
(
e
aN
N ζN − 1

)
,

where

ζN =
[(
η(x+ 1)− EηNt (x)

)
en(x/N) +

(
η(x)− EηNt (x+ 1)

)
en((x+ 1)/N)

]
−
[(
η(x)− EηNt (x)

)
en(x/N) +

(
η(x+ 1)− EηNt (x+ 1)

)
en((x+ 1)/N)

]
= (η(x+ 1)− η(x)) (en(x/N)− en((x+ 1)/N)) ,

we have

LNY N,n,1s

Y N,n,1s

=
N2
∑
x∈TN

(
V1

(
s, (ηNs )x,x+1

)
− V1(s, ηNs )

)
V1(s, ηNs )

= N2
∑
x∈TN

(
exp

(aN
N

(ηNs (x+ 1)− ηNs (x))(en(x/N)− en((x+ 1)/N))
)
− 1
)
.

Using that ex − 1 = x+ x2

2 +O(x3), we have

LNY N,n,1s

Y N,n,1s

= I +
a2
N

N
(II + o(1)) ,

where

I = N2
∑
x∈TN

aN
N

(
ηNs (x+ 1)− ηNs (x)

)
(en(x/N)− en((x+ 1)/N))

=
aN
N

∑
x∈TN

ηNs (x)(∆Nen(x/N))

and

II =
N2

2N

∑
x∈TN

(ηNs (x+ 1)− ηNs (x))2

(
en

(
x

N

)
− en

(
x+ 1

N

))2

.
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Then, according to the expression of ∂sY
N,n,1
s

Y N,n,1s
given above,

∂sY
N,n,1
s

Y N,n,1s

+ I =
aN
N

∑
x∈TN

(
ηNs (x)− EηNs (x)

)
(∆Nen(x/N)) =

a2
N

N
θNs
(
∆Nen

)
.

Consequently, we have

MN,n,1
t = exp

(
a2
N

N

(
θNt (en)− θN0 (en)−

∫ t

0

θNs (∆Nen)ds− εN,n1,t + o(1)

))
,

where

εN,n1,t =
1

2

∫ t

0

N2

N

∑
x∈TN

(ηNs (x+ 1)− ηNs (x))2

(
en

(
x

N

)
− en

(
x+ 1

N

))2

ds

and hence supt≤T |ε
N,n
1,t | ≤ 2n2π2T according to Lagrange’s mean value theorem. Let

ZN,nt = θNt (en)− θN0 (en)−
∫ t

0
θNs (∂2

uuen)ds, then

MN,n,1
t = exp

(
a2
N

N

(
ZN,nt − εN,n1,t + o(1)

))
, (3.4)

since |∆Nen(u)− ∂2
uuen(u)| = O(N−1). According to the fact that ∂2

uuen = −(2nπ)2en and
Grownwall’s inequality,

|θNt (en)| ≤
(
|θN0 (en)|+ sup

0≤t≤T
ZN,nt

)
e(2nπ)2T

for any 0 ≤ t ≤ T . According to Assumption (A), it is easy to check that

lim sup
M→+∞

lim sup
N→+∞

N

a2
N

logP
(
|θN0 (en)| > M

)
= −∞.

Hence, to prove Equation (3.2) we only need to show that

lim sup
M→+∞

lim sup
N→+∞

N

a2
N

logP

(
sup

0≤t≤T
ZN,nt > M

)
= −∞. (3.5)

By Equation (3.4) and Doob’s inequality, for sufficiently large N ,

P

(
sup

0≤t≤T
ZN,nt > M

)
≤ P

(
sup

0≤t≤T
MN,n,1

t ≥ exp

(
a2
N

N
(M − 2n2π2T − 1)

))
≤ exp

(
−a

2
N

N
(M − 2n2π2T − 1)

)
and hence Equation (3.5) holds. Consequently, Equation (3.2) holds.

Now we check Equation (3.3). According to the definition of ZN,nt ,∣∣θNt+σ(en)− θNσ (en)
∣∣ ≤ sup

0≤s≤δ

(
ZN,nσ+s(en)− ZN,nσ (en)

)
+ (2nπ)2δ sup

0≤s≤T+δ
|θNs (en)|

for 0 ≤ t ≤ δ. Hence, by Equation (3.2), to prove Equation (3.3) we only need to show
that

lim sup
δ→0

lim sup
N→+∞

N

a2
N

log sup
σ∈T

P

(
sup

0≤s≤δ

(
ZN,nσ+s(en)− ZN,nσ (en)

)
> ε

)
= −∞. (3.6)

According to an analysis similar with that leading to Equation (3.4), we have

MN,n,c
t+σ

MN,n,c
σ

= exp

(
a2
N

N

(
c(ZN,nσ+t(en)− ZN,nσ (en))− c2εN,n2,t + o(1)

))
(3.7)
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for any c > 0, where εN,n2,t = 1
2

∫ σ+t

σ
N2

N

∑
x∈TN (ηNs (x+ 1)− ηNs (x))2(en( xN )− en(x+1

N ))2ds

and hence |εN,n2,t | ≤ 2n2π2δ for t ≤ δ. Therefore, by Doob’s inequality,

P

(
sup

0≤s≤δ

(
ZN,nσ+s(en)− ZN,nσ (en)

)
> ε

)
≤ P

(
sup

0≤s≤δ

MN,n,c
σ+s

MN,n,c
σ

≥ exp

(
a2
N

N

(
1

2
cε− 2n2π2c2δ

)))
≤ exp

(
−a

2
N

N

(
1

2
cε− 2n2π2c2δ

))
for sufficiently large N and hence

lim sup
δ→0

lim sup
N→+∞

N

a2
N

log sup
σ∈T

P

(
sup

0≤s≤δ

(
ZN,nσ+s(en)− ZN,nσ (en)

)
> ε

)
≤ −1

2
cε.

Since c is arbitrary, let c → +∞ and then Equation (3.6) holds. Consequently, Equa-
tion (3.3) holds and the proof is complete.

3.2 Proof of Lemma 3.2

In this subsection, we prove Lemma 3.2. We first recall the upper bound of the large
deviation principle given in [4]. We denote by M the set of measures ν on T such that
ν(T) ≤ 1. Let M be endowed with the weak topology. For any ν ∈ M, let Jini(ν) be
defined as

Jini(ν) = sup
f1,f2∈C(T)

{
ν(f1 − f2) +

∫
T

f2(u)du−
∫
T

log
(
φ(u)ef1(u) + (1− φ(u))ef2(u)

)
du

}
,

where we denote
∫
T
f(u)ν(du) by ν(f) for any ν ∈ M, f ∈ C(T). Note that the above

definition of Jini is equivalent with that given in Equation (4.3) of [4] in the sense that
we identify a measurable function h : T→ [0, 1] with ν ∈M such that ν(A) =

∫
A
h(u)du

for any measurable A ⊆ T. Let D([0, T ],M) be the set of càdlàg functions from [0, T ]

to M endowed with the Skorokhod topology. For any W ∈ D([0, T ],M), let Jdyn(W ) be
defined as

Jdyn(W ) = sup
F∈C1,2([0,T ]×T)

{
WT (FT )−W0(F0)−

∫ T

0

Ws((∂s + ∂2
uu)Fs)ds

−
∫ T

0

∫
T

dWs

du
(u)(1− dWs

du
(u))(∂uFs(u))2dsdu

}

if Ws is absolutely continuous with respect to Lebesgue measure for all 0 ≤ s ≤ T and
Jdyn(W ) = +∞ otherwise. The following proposition is given in [4].

Proposition 3.3 (Kipnis, Olla and Varadhan, [4]). Let µNt be defined as in Section 1 and
µN = {µNt }0≤t≤T , then

lim sup
N→+∞

1

N
logP

(
µN ∈ C

)
≤ − inf

W∈C
(Jdyn(W ) + Jini(W0))

for any closed set C ⊆ D([0, T ],M).

Now we introduce some notations and definitions for later use. For any t ≥ 0, let
µt(du) = ρt(u)du, where {ρt}t≥0 is the unique weak solution to Equation (1.2) defined as
in Section 1. We further define

µ = {µt}0≤t≤T .
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For any f ∈ C(T) and u ∈ T, let τuf be the element in C(T) such that τuf(v) = f(v − u)

for any v ∈ T. For any ε > 0 and f ∈ C(T), we define

Cε,f =

W ∈ D([0, T ],M) : sup
u∈T,

0≤s≤T

|Ws(τuf)− µs(τuf)| ≥ ε

 .

The following two lemmas are crucial for the proof of Lemma 3.2.

Lemma 3.4. For any closed set C ⊆ D([0, T ],M), if C 63 µ, then

lim sup
N→+∞

N

a2
N

logP (µN ∈ C) = −∞.

Lemma 3.5. For any ε > 0 and f ∈ C(T), Cε,f is a closed subset of D([0, T ],M).

We prove Lemmas 3.4 and 3.5 at the end of this subsection. Now we utilize Lem-
mas 3.4 and 3.5 to prove Lemma 3.2.

Proof of Lemma 3.2. The weak solution {ρt}t≥0 to Equation (1.2) has a C([0,+∞)×T)-
valued version

ρt(u) = Eφ(u+
√

2Bt),

where {Bt}t≥0 is the standard Brownian motion starting at 0. Using that G and {ρt}0≤t≤T
are uniformly continuous, for any ε > 0, there exists δ1 = δ1(ε) such that∣∣∣∣∣∣ 1

2δN

∑
−δN≤j≤δN

Gs

(
x+ j

N

)
−Gs

( x
N

)∣∣∣∣∣∣ ≤ ε
and ∣∣∣∣∣ 1

2δ

∫ δ

−δ
ρs(u+ v)dv − ρs(u)

∣∣∣∣∣ ≤ ε
for any δ ≤ δ1, x ∈ TN , 0 ≤ s ≤ T, u ∈ T and sufficiently large N . Then, according to the
fact that

1

N

∑
x∈TN

ηNs (x)ηNs (x+ 1)

 1

2δN

∑
−δN≤j≤δN

Gs

(
x+ j

N

)
=

1

N

∑
x∈TN

 1

2δN

∑
−δN≤j≤δN

ηNs (x+ j)ηNs (x+ j + 1)

Gs

( x
N

)
,

to prove Lemma 3.2 we only need to show that

lim sup
δ→0

lim sup
N→+∞

N

a2
N

logP

(∣∣∣∣∣
∫ T

0

1

N

∑
x∈TN

V Ns (ηN , x, δ)Gs

( x
N

)
ds

−
∫ T

0

∫
T

(
1

2δ

∫ δ

−δ
ρs(u+ v)dv

)2

Gs(u)duds

∣∣∣∣∣ > ε

)
= −∞ (3.8)

for any ε > 0, where

V Ns (ηN , x, δ) =
1

2δN

∑
−δN≤j≤δN

ηNs (x+ j)ηNs (x+ j + 1).

ECP 29 (2024), paper 7.
Page 9/16

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP573
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
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According to Theorem 2.1 of [4],

lim sup
δ→0

lim sup
N→+∞

1

N
logP

(∣∣∣∣∣
∫ T

0

1

N

∑
x∈TN

V Ns (ηN , x, δ)Gs

( x
N

)
ds

−
∫ T

0

1

N

∑
x∈TN

(
UNs (ηN , x, δ)

)2
Gs

( x
N

)
ds

∣∣∣∣∣ > ε

)
= −∞,

where

UNs (ηN , x, δ) =
1

2δN

∑
−δN≤j≤δN

ηNs (x+ j) = µNs (
1

2δ
τ x
N

1[−δ,δ]).

Hence, to prove Equation (3.8) we only need to show that

lim sup
N→+∞

N

a2
N

logP

(∣∣∣∣∣
∫ T

0

1

N

∑
x∈TN

(
UNs (ηN , x, δ)

)2
Gs

( x
N

)
ds

−
∫ T

0

∫
T

(
1

2δ

∫ δ

−δ
ρs(u+ v)dv

)2

Gs(u)duds

∣∣∣∣∣ > ε

)
= −∞ (3.9)

for any ε, δ > 0. Note that

1

2δ

∫ δ

−δ
ρs(u+ v)dv = µs(

1

2δ
τu1[−δ,δ]).

Since

lim
N→+∞

1

N

∑
x∈TN

∫ T

0

(
µs

(
1

2δ
τx/N1[−δ,δ]

))2

Gs

( x
N

)
ds

=

∫ T

0

∫
T

(
µs

(
1

2δ
τu1[−δ,δ]

))2

Gs(u)dsdu,

to prove Equation (3.9) we only need to show that

lim sup
N→+∞

N

a2
N

logP

(∣∣∣∣∣
∫ T

0

1

N

∑
x∈TN

RNs (ηN , x, δ)Gs

( x
N

)
ds

∣∣∣∣∣ > ε

)
= −∞ (3.10)

for any ε, δ > 0, where

RNs (ηN , x, δ) =

∣∣∣∣∣
(
µNs

(
1

2δ
τx/N1[−δ,δ]

))2

−
(
µs

(
1

2δ
τx/N1[−δ,δ]

))2
∣∣∣∣∣ .

For sufficiently large integer m ≥ 1, let gm ∈ C(T) be defined as

gm(u) =


1
2δ if |u| ≤ δ,
m
2δ (u+ δ + 1

m ) if − δ − 1
m ≤ u ≤ −δ,

−m
2δ (u− δ − 1

m ) if δ ≤ u ≤ δ + 1
m ,

0 else,

then∣∣∣∣µNs ( 1

2δ
τx/N1[−δ,δ]

)
− µNs (τx/Ngm)

∣∣∣∣ ≤ 1

δm
and

∣∣∣∣µs( 1

2δ
τx/N1[−δ,δ]

)
− µs(τx/Ngm)

∣∣∣∣ ≤ 1

δm
.
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Hence, to prove Equation (3.10) we only need to show that

lim sup
N→+∞

N

a2
N

logP

(∣∣∣∣∣
∫ T

0

1

N

∑
x∈TN

R̂N,ms (x)Gs

( x
N

)
ds

∣∣∣∣∣ > ε

)
= −∞ (3.11)

for any ε > 0 and m ≥ 1, where

R̂N,ms (x) =
∣∣∣(µNs (τx/Ngm)

)2 − (µs(τx/Ngm)
)2∣∣∣ .

Since µNs (T), µs(T) ≤ 1, to prove Equation (3.11) we only need to show that

lim sup
N→+∞

N

a2
N

logP
(
µN ∈ Cε,gm

)
= −∞ (3.12)

for any ε > 0 and m ≥ 1. Since µ 6∈ Cε,gm , Equation (3.12) follows from Lemmas 3.4
and 3.5. Consequently, the proof is complete.

At last, we prove Lemmas 3.4 and 3.5.

Proof of Lemma 3.4. Since limN→+∞
N
aN

= +∞, to prove Lemma 3.4, we only need to
show that

lim sup
N→+∞

1

N
logP (µN ∈ C) < 0. (3.13)

According to Proposition 3.3, to prove Equation (3.13), we only need to show that

inf
W∈C

(Jini(W0) + Jdyn(W )) > 0. (3.14)

It is shown in [4] that Jini(·0) + Jdyn(·) is a good rate function. Hence, to prove Equa-
tion (3.14), we only need to show that Jini(W0) = Jdyn(W ) = 0 implies that W = µ. For
W making Jini(W0) = Jdyn(W ) = 0, we define

l1(ε, F ) = WT (εFT )−W0(εF0)−
∫ T

0

Ws((∂s + ∂2
uu)(εFs))ds

−
∫ T

0

∫
T

dWs

du
(u)

(
1− dWs

du
(u)

)
(∂u(εFs)(u))2dsdu

for any ε ∈ R and F ∈ C1,2([0, T ]×T) and

l2(ε1, ε2, f1, f2)

= W0(ε1f1 − ε2f2) +

∫
T

ε2f2(u)du−
∫
T

log
(
φ(u)eε1f1(u) + (1− φ(u))eε2f2(u)

)
du

for any ε1, ε2 ∈ R and f1, f2 ∈ C(T). Note that l1(0, F ) = l2(0, 0, f1, f2) = 0 for any
F ∈ C1,2([0, T ]×T) and f1, f2 ∈ C(T) by direct calculation. For any f1, f2 ∈ C(T), since

sup
ε1,ε2

l2(ε1, ε2, f1, f2) ≤ Jini(W0) = 0 = l2(0, 0, f1, f2),

we have supε1,ε2 l2(ε1, ε2, f1, f2) = l2(0, 0, f1, f2) and hence

∂ε1 l2(0, 0, f1, f2) = ∂ε2 l2(0, 0, f1, f2) = 0.

Therefore, W0(f1) =
∫
T
φ(u)f1(u)du for any f1 ∈ C(T). Consequently, W0(du) = φ(u)du =

µ0(du). Similarly, Jdyn(W ) = 0 implies that supε l1(ε, F ) = l1(0, F ) and hence

∂εl1(0, F ) = 0
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for any F ∈ C1,2([0, T ] × T). We choose F with the form F (s, u) = h(s)f(u) for some
h ∈ C1([0, T ]) and f ∈ C∞(T), then we have

h(T )WT (f)− h(0)W0(f)−
∫ T

0

∂sh(s)Ws(f)ds =

∫ T

0

h(s)Ws(∂
2
uuf)ds.

Since h is arbitrary, {Wt(f)}0≤t≤T is absolutely continuous and

∂tWt(f) = Wt(∂
2
uuf) (3.15)

for any f ∈ C(T). Let en(u) = cos(2nπu) for n ≥ 0 and e−n(u) = sin(2nπu) for n ≥ 1

defined as in Subsection 3.1, then Equation (3.15) and the fact W0 = µ0 implies that

Wt(em) = µ0(em)e−(2mπ)2t

for any integer m. Since the span of {em}−∞<m<+∞ is dense in C(T), the solution to
Equation (3.15) with initial condition W0 = µ0 is unique. Since µ is also a solution to
Equation (3.15), we have W = µ and the proof is complete.

Proof of Lemma 3.5. Assuming that Wn ∈ Cε,f for n ≥ 1 and Wn → W in D([0, T ],M),
then we only need to show that W ∈ Cε,f . Since Wn ∈ Cε,f for n ≥ 1, there exist a
sequence {vn}n≥1 in T such that

lim inf
n→+∞

sup
0≤s≤T

|Wn
s (τvnf)− µs(τvnf)| ≥ ε.

Since T is compact, there exists v ∈ T such that v is the limit of a subsequence of
{vn}n≥1 in T. For simplicity, we still write this subsequence as {vn}n≥1. Since Wn →W

in D([0, T ],M) as n → +∞, there exist a sequence of increasing continuous functions
{ϕn}n≥1 from [0, T ] to [0, T ] such that ϕn(0) = 0, ϕn(T ) = T for all n, ϕn(s)→ s uniformly
for s ∈ [0, T ] and Wn

ϕn(s) → Ws uniformly for s ∈ [0, T ]. According to the triangle
inequality, for any n ≥ 1,

sup
0≤s≤T

|Wn
s (τvnf)− µs(τvnf)| = sup

0≤s≤T

∣∣∣Wn
ϕn(s)(τvnf)− µϕn(s)(τvnf)

∣∣∣ (3.16)

≤ sup
0≤s≤T

∣∣∣Wn
ϕn(s)(τvf)−Wn

ϕn(s)(τvnf)
∣∣∣

+ sup
0≤s≤T

∣∣∣Ws(τvf)−Wn
ϕn(s)(τvf)

∣∣∣
+ sup

0≤s≤T
|Ws(τvf)− µs(τvf)|

+ sup
0≤s≤T

∣∣µϕn(s)(τvnf)− µs(τvf)
∣∣ .

According to the definition of µ, µt is continuous in t and hence µϕn(s)(τvf) → µs(τvf)

uniformly for s ∈ [0, T ]. According to the uniform continuity of f , τvnf(u) → τvf(u)

uniformly for u ∈ T. As a result, according to facts that µϕn(s) ∈ M, Wn
ϕn(s) ∈ M and

Wn →W in D([0, T ],M), we have sup0≤s≤T

∣∣∣Ws(τvf)−Wn
ϕn(s)(τvf)

∣∣∣→ 0,

sup
0≤s≤T

∣∣µϕn(s)(τvnf)− µs(τvf)
∣∣

≤ sup
0≤s≤T

∣∣µϕn(s)(τvnf)− µϕn(s)(τvf)
∣∣+ sup

0≤s≤T

∣∣µϕn(s)(τvf)− µs(τvf)
∣∣

≤ sup
u∈T
|τvnf(u)− τvf(u)|+ sup

0≤s≤T

∣∣µϕn(s)(τvf)− µs(τvf)
∣∣→ 0
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and

sup
0≤s≤T

∣∣∣Wn
ϕn(s)(τvf)−Wn

ϕn(s)(τvnf)
∣∣∣ ≤ sup

u∈T
|τvnf(u)− τvf(u)| → 0

as n→ +∞. As a result, let n→ +∞ in Equation (3.16), we have

sup
0≤s≤T

|Ws(τvf)− µs(τvf)| ≥ lim inf
n→+∞

sup
0≤s≤T

|Wn
s (τvnf)− µs(τvnf)| ≥ ε

and hence W ∈ Cε,f , which completes the proof.

4 Proof of Theorem 2.1

In this section, we prove our main result Theorem 2.1. With Lemmas 3.1 and 3.2,
the strategy introduced in [1] applies to cases discussed in this paper. So we only give
outlines of the proof of Equations (2.3) and (2.4) to avoid repeating many similar details
with those in [1]. For later use, we define

Y Nt (F ) = exp

(
a2
N

N
θNt (Ft)

)
for any 0 ≤ t ≤ T and F ∈ C1,+∞([0, T ]×T). Furthermore, we define

MN
t (F ) =

Y Nt (F )

Y N0 (F )
exp

(
−
∫ t

0

(∂s + LN )Y Ns (F )

Y Ns (F )
ds

)
for 0 ≤ t ≤ T , then {MN

t (F )}0≤t≤T is a martingale according to Feynman-Kac formula.

Note that in the above definition of MN
t (F ), we denote ∂tV

N
F (t, η)

∣∣∣
η=ηNt

by ∂tY
N
t (F ),

where

V NF (t, η) = exp

{
aN
N

∑
x∈TN

(
η(x)− EηNt (x)

)
Ft(x/N)

}
.

For any g ∈ C(T), let PNg be the probability measure of our simple symmetric exclusion
process with initial condition ηN0 = {ηN0 (x)}x∈TN where {ηN0 (x)}x∈TN are independent
and

P
(
ηN0 (x) = 1

)
= φ(x/N) +

aN
N
g(x/N)

for all x ∈ TN . Then, for any F ∈ C1,∞([0, T ] × T), we define P̂N,Fg as the probability
measure such that

dP̂N,Fg

dPNg
=MN

T (F ).

Now we prove Equation (2.3).

Proof of Equation (2.3). According to the definition of LN and Chapman-Kolmogorov
equation, we have

∂sY
N
s (F )

Y Ns (F )
=
aN
N

∑
x∈TN

(
ηNs (x)− EηNs (x)

)
∂sFs (x/N)

−N2 aN
N

∑
x∈TN

(
EηNs (x+ 1) + EηNs (x− 1)− 2EηNs (x)

)
Fs(x/N)

=
a2
N

N
θNs (∂sFs)−

a2
N

N

1

aN

∑
x∈TN

EηNs (x)(∆NFs(x/N))
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and

LNY Ns (F )

Y Ns (F )

= N2
∑
x∈TN

(
exp

(aN
N

(
ηNt (x)− ηNt (x+ 1)

) (
FNt ((x+ 1)/N)− FNt (x/N)

))
− 1
)
.

Then, according to the fact that ex − 1 = x+ x2

2 +O(x3), we have

MN
T (F ) = exp

(
a2
N

N

(
ZNT (F )− εN3,T (F ) + o(1)

))
, (4.1)

where

ZNT (F ) = θNT (FT )− θ0(F0)−
∫ T

0

θNs ((∂s + ∂2
uu)Fs)ds

and

εN3,T (F ) =
1

2

∫ T

0

1

N

∑
x∈TN

(∂uFs(x/N))
2 (
ηNs (x) + ηNs (x+ 1)− 2ηNs (x)ηNs (x+ 1)

)
ds

=

∫ T

0

µNs ((∂uFs)
2)− 1

N

∑
x∈TN

(∂uFs(x/N))2ηNs (x)ηNs (x+ 1)ds+ o(1).

According to Lemma 3.4, we have

lim sup
N→+∞

1

N
logP

(∣∣∣∣∣
∫ T

0

µNs ((∂uFs)
2)ds−

∫ T

0

µs((∂uFs)
2)ds

∣∣∣∣∣ > ε

)
< 0

and hence

lim sup
N→+∞

N

a2
N

logP

(∣∣∣∣∣
∫ T

0

µNs ((∂uFs)
2)ds−

∫ T

0

µs((∂uFs)
2)ds

∣∣∣∣∣ > ε

)
= −∞

for any ε > 0. According to Lemma 3.2, we have

lim sup
N→+∞

N

a2
N

logP

(∣∣∣∣∣
∫ T

0

1

N

∑
x∈TN

ηNs (x)ηNs (x+ 1)(∂uFs(x/N))2ds

−
∫ T

0

∫
T

ρ2
s(u)(∂uFs(u))2duds

∣∣∣∣∣ > ε

)
= −∞.

In conclusion,

εN3,T (F ) =

∫ T

0

µs((∂uFs)
2)ds−

∫ T

0

∫
T

ρ2
s(u)(∂uFs(u))2duds+ εN4,T (F )

=

∫ T

0

ρs(u)(1− ρs(u))(∂uFs(u))2ds+ εN4,T (F ),

where

lim sup
N→+∞

N

a2
N

logP
(
|εN4,T (F )| > ε

)
= −∞ (4.2)

for any ε > 0. As a result, by Equation (4.1), we have

MN
T (F ) = exp

(
a2
N

N

(
I(θN , F ) + εN4,T (F ) + o(1)

))
, (4.3)
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where

I(W,F ) =WT (FT )−W0(F0)−
∫ T

0

Ws((∂s + ∂2
uu)Fs)ds

−
∫ T

0

∫
T

ρs(u)(1− ρs(u))(∂uFs(u))2dsdu

for any W ∈ D([0, T ],S). According to Assumption (A), it is easy to check that

E exp

(
a2
N

N
θN0 (f)

)
= exp

(
a2
N

2N

(∫
T

f2(u)φ(u)(1− φ(u))du+ o(1)

))
(4.4)

for any f ∈ C∞(T). By utilizing Markov’s inequality and the minimax theorem given in
[8], Equation (2.3) holds for all compact C ⊆ D([0, T ],S) according to Equations (4.3)
and (4.4). To show that Equation (2.3) holds for all closed C, we only need to show that
{θN}N≥1 are exponential tight and hence the proof is complete according to Lemma 3.1.

To prove Equation (2.4), we need following two lemmas.

Lemma 4.1. If W makes Iini(W0) + Idyn(W ) < +∞, then there exist g, F such that
Wt(du) = ρF,g(t, u)du for all 0 ≤ t ≤ T , where{

d
dtρ

F,g(t, u) = ∂2
uuρ

F,g(t, u)− 2 ∂
∂u (ρt(u)(1− ρt(u))∂uFt(u)) ,

ρF,g0 = g.

Furthermore, Iini(W0) = 1
2

∫
T

g2(u)
φ(u)(1−φ(u))du and

Idyn(W ) = I(W,F ) =

∫ T

0

∫
T

ρs(u)(1− ρs(u))(∂uFs(u))2dsdu.

Lemma 4.2. As N → +∞, θN converges in P̂N,Fg -probability to {ρF,g(t, u)(du)}0≤t≤T .

Lemmas 4.1 and 4.2 are analogues of Lemma 5.1 and Theorem 4.1 of [1] respectively.
With Lemmas 3.1 and 3.2, analyses given in proofs of Lemma 5.1 and Theorem 4.1 of [1]
apply to Lemmas 4.1 and 4.2 respectively. Hence we omit proofs of Lemmas 4.1 and 4.2
here. At last, we prove Equation (2.4).

Proof of Equation (2.4). We only deal with the case where infW∈O (Iini(W0) + Idyn(W )) <

+∞. Otherwise, Equation (2.4) is trivial. For any ε > 0, according to Lemma 4.1, there
exists W ε ∈ O such that

Iini(W
ε
0 ) + Idyn(W ε) < inf

W∈O
(Iini(W0) + Idyn(W )) + ε

and W ε
t (du) = ρF

ε,gε(t, u)du for some F ε, gε and 0 ≤ t ≤ T . According to Lemma 4.2, θN

converges in P̂N,F
ε

gε -probability to {ρF ε,gε(t, u)du}0≤t≤T = W ε. Then, we have

lim
N→+∞

P̂N,F
ε

gε
(
θN ∈ O

)
= 1 (4.5)

and
lim

N→+∞
P̂N,F

ε

gε
(
|I(θN , F ε)− I(W ε, F ε)| ≤ ε

)
= 1. (4.6)

According to Equation (4.2), Assumption (A) and Cauchy-Schwarz inequality, it is easy to
check that

lim
N→+∞

P̂N,F
ε

gε
(
|εN4,T (F ε)| ≤ ε

)
= 1.
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Then, by Equations (4.3), (4.5), (4.6) and Lemma 4.1, we have

lim
N→+∞

P̂N,F
ε

gε

(
θN ∈ O,MN

T (F ε) ≤ e
a2
N
N (Idyn(W ε)+3ε)

)
= 1. (4.7)

Under Assumption (A), it is easy to check that N
a2
N

log dP
dPN
gε

converges in P̂N,F
ε

gε -probability

to

−1

2

∫
T

(gε(u))2

φ(u)(1− φ(u))
du = −Iini(W ε

0 )

as N → +∞. Hence, by Equation (4.7),

lim
N→+∞

P̂N,F
ε

gε

(
θN ∈ O,MN

T (F ε) ≤ e
a2
N
N (Idyn(W ε)+3ε),

dP

dPNgε
≥ exp

(
−a

2
N

N
(Iini(W

ε
0 ) + ε)

))
= 1. (4.8)

According to the definition of P̂N,F
ε

gε , by Equation (4.8),

P
(
θN ∈ O

)
= E

P̂N,F
ε

gε

(
dP

dPNgε

(
MN

T (F ε)
)−1

1{θN∈O}

)
≥ exp

(
−a

2
N

N
(Iini(W

ε
0 ) + Idyn(W ε) + 4ε)

)
(1 + o(1)).

Hence,

lim inf
N→+∞

N

a2
N

logP
(
θN ∈ O

)
≥ −(Iini(W

ε
0 ) + Idyn(W ε))− 4ε

= − inf
W∈O

(Iini(W0) + Idyn(W ))− 5ε.

Since ε is arbitrary, let ε→ 0 and the proof is complete.
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