
Bayesian Analysis (2024) TBA, Number TBA, pp. 1–23

Bayesian Multi-Arm De-Intensification Designs

Steffen Ventz∗ and Lorenzo Trippa†

Abstract. In recent years, new cancer treatments have improved survival in mul-
tiple histologies. Some of these therapeutics, and in particular treatment combi-
nations, are often associated with severe treatment-related adverse events (AEs).
Therefore, It is important to identify alternative de-intensified therapies, such as
dose-reduced therapies with reduced AEs and similar efficacy. We introduce a
sequential design for multi-arm de-intensification studies. Based on joint model-
ing of toxicity and efficacy endpoints, the design evaluates multiple de-intensified
therapies at different dose levels, one at a time. We study the utility of the design
in oropharynx cancer de-intensification studies. We use a joint Bayesian model for
efficacy and toxicity outcomes to define decision rules at interim and final analyses.
Interim decisions include early termination of the study due to inferior survival
of experimental arms compared to a standard of care (SOC), and the transitions
from one de-intensified treatment arm to another with a further reduced dose
when there is sufficient evidence of non-inferior survival. We evaluate the operat-
ing characteristics of the design using data from recent de-intensification studies
in oropharynx cancer.

Keywords: Bayesian designs, de-intensification clinical studies, multi-arm clinical
trials.

1 Introduction
In the last two decades, several new cancer treatments have improved patient survival
(Semenza, 2008). Many new therapies consist of a backbone treatment, often chemother-
apy or radiation therapy, combined with an additional drug, for instance, an immune
checkpoint inhibitor. Some of these combination therapies improved survival, but they
are associated with severe AEs. Intensity-modulated radiotherapy (IMRT) in combina-
tion with cisplatin is a SOC in oropharynx cancer (Ang et al., 2010) with three-year
survival rates close to 90% (Ang et al., 2010; Gillison et al., 2019). However, adding cis-
platin to IMRT is associated with a substantial increase in acute and late AEs compared
with IMRT alone (Munker et al., 2001). Similarly, a combination treatment including
chemotherapy is the SOC for early-stage HER2-positive breast cancer and has a high
rate of treatment-related AEs Mathew and Brufsky (2017).

AEs associated with new treatments are the main motivation for testing if de-
intensified therapies maintain efficacy similar to the SOC and reduce AEs. For in-
stance, the recent studies E1308 (Marur et al., 2017), OPTIMA (Seiwert et al., 2019),
RTOG1016 (Gillison et al., 2019), DeEscalate (Mehanna et al., 2019), PAMELA
(Llombart-Cussac et al., 2017) and KRISTINE (Hurvitz et al., 2018) evaluated de-
intensified oropharynx cancer and breast cancer therapies. De-intensification studies
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consider therapies that (i) are dose-reductions of SOC therapies, (ii) replace one com-
ponent of a SOC combination therapy with a potentially less toxic drug, or (iii) eliminate
the backbone treatment from the SOC treatment. In all these cases, the study seeks
to demonstrate that the de-intensified treatment has survival outcomes similar to the
SOC and reduces AEs.

The design that we introduce is motivated by a study in HPV-associated oropharynx
cancer. Several ongoing studies are evaluating de-intensified therapies (Mirghani and
Blanchard, 2018). A trial we designed evaluates two de-intensified therapies that differ
in the IMRT dose levels. Two large de-intensification studies RTOG1016 (Gillison et al.,
2019) and De-ESCALaTE (Mehanna et al., 2019) in HPV-associated oropharynx cancer
recently reported strongly inferior survival under the de-intensified therapy compared
to the SOC (estimated overall survival (OS) hazard ratios of 1.45 and 5 for RTOG1016
and De-ESCALaTE) without reducing AEs. De-intensified studies tend to use large
non-inferiority margins (D’Agostino et al., 2003) for non-inferiority testing to reduce
the study’s sample size for targeted type I/II error rates. These margins and inadequate
interim analyses can lead - as the results of RTOG1016 and De-ESCALaTE suggest - to
a large number of patients exposed to treatments with reduced efficacy. This indicates
the importance for de-intensification designs to handle trade-offs between power and
the number of patients exposed to inferior or toxic treatments using adequate interim
analyses (IAs).

We introduce a de-intensification design that allows investigators to test multiple
treatments sequentially, for instance, two treatments with 80% and 40% of the original
SOC IMRT dose. Using Bayesian modeling for the distribution of survival times and
the AEs, we specify sequential decision rules to evaluate treatments, including early
futility-stopping rules that are tuned to balance (i) the risk of patients receiving inferior
treatments that reduce survival and (ii) the need to identify non-inferior treatments that
reduce AEs. The design evaluates de-intensified therapies one at a time, starting from
the therapy closest to the SOC. Subsequent arms are only tested if there is evidence
of non-inferiority and reductions of AEs for the previous de-intensified treatments. We
discuss algorithms to tune early futility-stopping rules according to pre-defined stop-
ping probabilities under the null hypothesis of inferior survival or AEs identical to the
SOC. Additionally, the design calibrates the type I error rate to approximately match
a targeted α level. We evaluate the operating characteristics of the design using data
from recent de-intensification studies in oropharynx cancer.

De-intensification designs use non-inferiority (NI) testing procedures with a pre-
defined NI margin and evaluate if the efficacy of an experimental treatment is com-
parable to the SOC (D’Agostino et al., 2003). Statistical considerations for NI studies
concern the selection of a suitable testing procedure, the specification of the NI margin
Δ, and the study design, including early stopping rules and the selection of the sam-
ple size (Blackwelder, 1982; Rothmann et al., 2003; Freidlin et al., 2007; Joshua Chen
and Chen, 2012; Korn and Freidlin, 2017). Blackwelder (1982) discussed NI tests based
on asymptotic techniques and (Farrington and Manning, 1990; Tu, 1998; Laster et al.,
2006) focused on the finite-sample operating characteristics of NI tests. Exact NI tests
have been discussed in (Chan, 2003; Laster et al., 2006), and extensions to time-to-
event outcomes have been proposed in (Rothmann et al., 2003; Freidlin et al., 2007).
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Other contributions focused on the selection of suitable NI margins Δ (Snapinn, 2004;
Holmgren, 1999) and on the specification of early stopping rules for sequential NI exper-
iments (Freidlin and Korn, 2002; Lachin, 2009; Korn and Freidlin, 2017). Bayesian work
on NI experiments includes NI testing methodologies and the use of data from previous
clinical studies in the analysis of NI experiments (Simon, 1999; Schmidli et al., 2013).
Wellek (2005) and Williamson (2007) discussed NI tests for binary endpoints using beta
prior distributions, and Osman and Ghosh (2011) proposed the use of Bernstein priors.
Gamalo et al. (2011) used Bayesian modeling to select the NI margin Δ and (Daimon,
2008; Chen et al., 2011) investigated Bayesian sample size calculations for single-stage
NI tests.

The main difference between these non-sequential single-stage non-inferiority testing
procedures and our work is that we introduce a sequential design for de-intensification
studies with efficacy and toxicity co-primary endpoints. The design utilizes a non-
parametric Bayesian model to analyze survival data and AEs during the study. Key
decisions to pause, stop, or continue evaluating de-intensified treatments are based on
data summaries that quantify the trade-off between the risk of exposing patients to
inferior treatments and the likelihood of demonstrating relevant reductions of AEs.

After introducing some notation in Section 2.1, we present the de-intensification
designs for studies with efficacy primary endpoints (Section 2.2) and efficacy and toxi-
city (Section 2.3) co-primary endpoints. Section 3.1 compares several de-intensification
strategies in HPV-associated oropharynx cancer with efficacy endpoints. Section 3.2 ex-
tends this comparison to oropharynx cancer studies with efficacy and toxicity co-primary
endpoints.

2 De-intensification design
2.1 Notation and setup

We consider a phase II clinical study with K ≥ 1 de-intensified treatments. In practice,
K = 2 or 3, K = 2 in our motivating study. We assume the study does not include a SOC
(control) arm. Simple modifications of our design allow the conclusion of a SOC arm.
The SOC (k = 0) survival and toxicity distributions have been estimated previously, and
the treatment is associated with a substantial risk of AEs. The de-intensified treatments
likely present better AE profiles but may reduce survival. We evaluate if one or multiple
de-intensified treatments are non-inferior to the SOC and reduce AEs. The treatments
are ranked; for instance, if k = 1, · · · ,K are K de-intensified dose levels, the study starts
testing the highest one k = 1, followed by the reduced doses k = 2, . . . ,K.

A maximum of N patients will be enrolled. For each patient 1 ≤ i ≤ N , (Ci, Yi, Xi)
indicates the assignment to treatment Ci ∈ {1, · · · ,K}, Yi and Xi are the efficacy and
toxicity outcomes. In our study, Yi indicates the progression-free survival (PFS) time,
and Xi is the time of the first AE (grade ≥ 3). We use nt,k and nt to indicate the
number of enrollments to arm k and the total number of enrollments by time t, and Σt

denotes the data collected until time t since the first enrollment. Table 1 summarizes
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notation frequently used throughout the manuscript. Supplementary Table S1 (Ventz
and Trippa, 2024) contains a complete list of notation.

Ci, Yi, Xi treatment assignment, efficacy and toxicity outcome of patient i
Σt data collected until time t since the first enrollment
nt, nt,k number of enrollments and enrollments to arm k by time t
mmax maximum number of enrollments per treatment arm
mA,m0,mT minimum number of enrollment to arm k before H0,k can be

rejected (mA), or arm k can be stopped for inferiority (m0) or
toxicity (mT )

Sk,j(t) efficacy (j = Y ) and toxicity (j = X) survival function for therapy
k

Sk,Y |X(y) conditional survival function
θk, βk efficacy and toxicity summaries for treatment k
Δ,Δk,ΔL,Δβ margins for testing and IA
bj(·), j = 0, T, A PFS (j = 0) and toxicity (j = T ) safety boundaries, and

non-inferiority (j = T ) boundary
bj(Σt) = 1 − ηj × max

[
0, nk,t −mj

mmax −mj

]νj

tFU time between the last enrollment to treatment k and the final
analysis

Table 1: Notation frequently used in the manuscript.

2.2 De-intensification studies with efficacy primary outcomes
In some cases, AE reductions of de-intensified treatment compared to the SOC can be
anticipated or have been demonstrated before the study. In other cases, it is necessary
to estimate toxicity and efficacy during the trial. In this subsection, we first introduce
a design for studies that utilize efficacy outcomes Yi for decisions. We then extend it in
Section 2.3 to trials with toxicity Xi and efficacy Yi co-primary endpoints.

The probability model. We use Sk,Y (t) = Pr(Yi ≥ t|Ci = k) to indicate the survival
function for therapy k = 1, . . . ,K. Our design can be combined with any Bayesian model
for Sk,Y . In our motivating study, we considered several parametric models. Based on
available prior data, we observed unsatisfactory model fits and used a nonparametric
model. Sk,Y are random functions with independent prior distributions.

We use a Beta-Stacy (BS) prior distribution (Walker and Muliere, 1997), Sk,Y ∼
BS(Sk,Y |VY , cY ), where VY (t) = E[Sk,Y (t)] is the prior mean, and the continuous
function cY (t) > 0 controls the prior variability of Sk,Y around VY . The prior is strictly
related to Dirichlet and Beta processes (Ferguson, 1973; Hjort et al., 1990). Under the
BS prior, {− log(1−Sk,Y (t))}t≥0 is a monotone, right-continuous random function with
independent increments, and Sk,Y (0) = 0 and limt→+∞ − log(1 − Sk,Y (t)) = ∞ with
probability one (Walker and Muliere, 1997). Unlike the Dirichlet process, the BS prior
is conjugate with respect to right censored data (Walker and Muliere, 1997). If Y =
{Yi}ni=1 is an independent, right-censored sample from a distribution Sk,Y and Sk,Y ∼
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BS(Sk,Y |VY , cY ), then p(Sk,Y |Y ) = BS(Sk,Y |VY,n, cY,n) is again a BS distribution with
closed from expressions for the posterior mean VY,n and uncertainty parameter cY,n
(Walker and Muliere, 1997). An advantage of using the BS prior is that conditionally
on right censored data, the posterior distribution is available in closed form, and the
summaries θk = θ(Sk) can be easily simulated from the posterior.

Efficacy summaries. For each de-intensified treatment k, efficacy is quantified by a
summary θk = θ(Sk,Y ) ∈ R. Large θk values correspond to large efficacy. Examples
include the median, the mean θk = E[Yi|Ci = k], or the restricted mean survival time
(RMST) θk = E[min(Yi, tE)|Ci = k] at a pre-specified tE > 0.

Hypothesis testing. For each k = 1, · · · ,K the null and alternative hypotheses are

H0,k = {θk ∈ R : θk ≤ θ0 − Δ} and HA,k = {θk ∈ R : θk > θ0 − Δk}. (1)

Here Δ ≥ Δk > 0 are pre-specified margins. Values of θk below θ0−Δ make treatments
k inferior, whereas θk ≥ θ0 − Δk indicates an attractive alternative to the SOC.

Decision rules

We assume that de-intensified treatments can be ordered according to their expected
efficacy levels θk. For instance, in our motivating study, treatments k = 1, · · · ,K con-
sist of decreasing dose-levels of the backbone treatment, and prior data (Bhide et al.,
2012; Jensen et al., 2007; Eisbruch et al., 2004; Levendag et al., 2007) suggest that θk
is non-increasing in k. The design (Figure 1 for an illustration) evaluates treatments
sequentially, one after another, starting with treatment k = 1, which is the least likely
to be inferior.

A maximum of mmax ≤ N patients will be assigned to each treatment, and a mini-
mum of mA ≤ mmax enrollments to the treatment are required before it can be declared
non-inferior. At regular time intervals t = 1, 2, . . . (e.g., monthly, quarterly, etc.) IAs
are conducted and the active treatment k may be (Figure 1(B))

(i) declared non-inferior to the SOC, and the trial progresses to evaluate treatment
k + 1,

(ii) declared inferior to the SOC and the study terminates,

(iii) enrollment to treatment k continues or,

(iv) enrollment is paused for a maximum time tFU after the last enrollment to arm k,
to allow the accumulation of sufficient information for testing H0,k.

Let Dt = (Dt,1, Dt,2) ∈ {∅, 1, . . . ,K}×{dE , dP , dT } indicate the de-intensified treat-
ment Dt,1 that is evaluated between IA t and t+1 (∅ if the study is terminated at IA t),
and Dt,2 denotes the status of the study during this time interval, where dE = “enroll-
ment is open”, dP = “enrollment is paused”, and dT = “the study has been terminated”
(Figure 1).
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Figure 1: Schematic representation of the trial design with K = 2 treatments.

Stopping rules. Let bA(·) be a predefined non-inferiority stopping boundary with
0 ≤ bA(Σt) ≤ 1 (see Section 2.2 for details), and Dt−1 = (k, dE) between IA t− 1 and
t. Arm k is stopped for non-inferiority and H0,k is rejected at IA t, if the probability of
non-inferiority crosses the boundary, i.e., if

p(θk > θ0 − Δ|Σt) ≥ bA(Σt). (2)

Conditionally on the availability of sufficient sample size, i.e., nt ≤ n−mmax, the study
then proceeds to evaluate the next treatment k + 1, i.e., Dt = (k + 1, dE). Whereas if
nt > N −mmax, the study is terminated, Dt = (∅, dT ).

If the null hypothesis was not rejected and there is evidence of lack of non-inferiority,
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i.e., if

p(θk ≤ θ0 − Δk|Σt) ≥ b0(Σt), (3)

then treatment k is stopped early for inferiority and the study terminates. Here 0 ≤
b0(Σt) ≤ 1 is a pre-specified futility safety stopping boundary.

Pause enrollment. If the probabilities in (2) and (3) don’t cross the stopping bound-
aries, then enrollment to arm k continues until the maximum enrollment per arm mmax
is reached. When nt,k = mmax, enrollment will pause until either (i) treatment k is
stopped for safety (inferiority) or non-inferior according to (3) and (2) at later times,
or (ii) the maximum follow-up time tFU since the last enrollment to treatment k is
reached. In the latter case, the first (last) patient enrollment to arm k was followed for
tFU + tenr (tFU ) months or until the time of progression, whichever comes first, where
tenr,k to indicate the time between the 1st and the mmax-th enrollment to arm k. If the
probabilities in (2) don’t cross the boundaries at the FA, the study is closed and H0,k
is not rejected.

Calibration of the design thresholds

We use stopping boundaries of the form

bj(Σt) = 1 − ηj × max
[
0, nt,k −mj

mmax −mj

]νj

for t ≥ 1 and j = 0, A. (4)

The parameter νj ≥ 0 determines the shape of bj(·), which is decreasing from 1 to
1 − ηj ∈ [0, 1] when νj > 0, and is constant across IAs t (such that nt,l ≥ mj) when
νj = 0. Here mj , j = 0, A, indicate the minimum number of enrollments nk,t to a
treatment k necessary before H0,k can be rejected (j = A) and before the treatment
can be stopped early for inferiority (j = 0).

Different summary information could be utilized as an input for bj(Σt), including
the cumulative number of follow-up times or the number of observed PFS events for arm
k up to time t. For instance, Figure 2 summarizes simulations to compare the boundary
(4) and an alternative boundary b′j(·) that uses the number of PFS events by time t
to summarize information by IA t in simulation tailored to our motivating study (see
Section 3.1). In these simulations, we observed nearly identical type I/II error rates for
both boundaries.

We fix {νA,mA, η0, ν0,m0}, see Supplementary Section S1 for a discussion on the
selection of these parameters. We then calibrate the parameter ηA of the boundary bA(·)
to bound the type I error rate at a desired α level across a set S0 of survival distributions
that satisfy θ(S) = θ0−Δ for each S ∈ S0. We use the historical control S0,Y (published
PFS Kaplan-Meier estimator of the SOC) and select a set of transformations S = g(S0)
(proportional hazards, accelerated failure time, proportional odds, etc.) such that θ(S) =
θ0 − Δ for each S in S0.

Controlling the type I error rate. For each S ∈ S0, we determine the largest value
ηA(S) that bounds the type I error rate of the design for arm 1 at level α when S1,Y = S.
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Figure 2: Panel (A) shows PFS Kaplan-Meier curves extracted from recent de-
intensification studies (RTOG 1016, DeEscalate, Optima, and E1308) which we use to
generate outcomes. Panels (B) to (D) show selected operating characteristics of treat-
ment k = 1 for a maximum sample sizes mmax = 75, · · · , 350. Panel (E) shows, for
mmax = 150, p0 = 0, ν1 = 6,m1 = 50, power when θ1 = 22 (black bars), θk = 20.7 (yel-
low bars) and θk = 22 (brown bars) for the proposed Bayesian design and the three RCI
methods with O’Brien-Fleming (O’Brien and Fleming, 1979), Pocock (Pocock, 1977)
and linear spending functions (Reboussin et al., 2000) (OF-RCI, P-RCI and L-RCI).

We then set ηA = minS∈S0 ηA(S). Relevant operating characteristics, such as power and
the average study duration, depends on the selected {νA,mA, η0, ν0,m0}. We discuss
the selection of these parameters In Supplementary Section S1.

Calibration. We estimate ηA(S) using a Monte-Carlo (MC) procedure, by simulating
C trials (we use C = 2000 in Section 3) with individual outcomes generated from S
and random enrollment times of mmax patients with a fixed enrollment rate. For each
simulation c = 1, . . . , C, we compute the number of enrollments n

(c)
t by IA t ≥ 1 and

the posterior probabilities p
(c)
0,t in (3) and p

(c)
A,t in (2). Since p

(c)
A,t ≥ bA(n(c)

t ) in (2) is
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equivalent to ηA,F ≤ η
(c)
t , where

η
(c)
t =

(
1 − p

(c)
A,t

)/
max

[
0, n

(c)
t −mmin

mmax −mmin

]νA

, (5)

the simulated trial c does not reject the null hypothesis H0,1 at time t, or at any other
interim analysis, if ηA(S) is larger than η(c) = min η

(c)
t where the minimum is over all

t such that p
(c)
0,t′ < b0(n(c)

t′ ) for t′ ≤ t. We then estimate ηA(S) as the α-percentile of
{η(c)

A }Cc=1.

Multiplicity Adjustments. There is an ongoing debate in the literature about the need
for multiplicity-adjustments in multi-arm clinical studies (Wason et al., 2014; Proschan
and Waclawiw, 2000). In our setting, where the θk’s are assumed to be non-increasing
with k = 1, . . . ,K, i.e., θk ≥ θk+1, it can be shown that the family-wise type I error
rate (FWER) of the design is bounded by FWER ≤ α(1−αK)

1−α < α
1−α , where α is the

treatment-specific maximum type I error rate. For instance, the FWER ≤ 0.112 (0.0527)
for α = 0.1 (0.05). In confirmatory trials, where regulatory restrictions may require the
control of the FWER at level α̃, one can set the arm-specific type-I error levels α equal
to α = α̃/(1+ α̃) to bound the FWER below α̃. In Sections 3.1 and S2, we evaluate our
design and alternative designs when treatment-specific (Section 3.1) and family-wise
(Section S2) control of the type I error rate is desirable.

2.3 Efficacy and toxicity co-primary outcomes
When little is known about AEs of the de-intensified treatments, it becomes necessary
to evaluate them together with efficacy as co-primary endpoints.

Probability Model. Recall that Xi indicates the time (months since enrollment) of
the first grade ≥ 3 AE for patient i. The joined probability model for Yi and Xi given
Ci = k is specified via a probability distribution for Xi and for Yi|Xi. The survival
distributions Sk,X(·) = P (Xi > ·|Ci = k), k = 1, . . . ,K follow again independent
BS prior probabilities, Sk,X ∼ BS(VX , cX), with mean distribution VX and precision
function cX . For the conditional survival function of Yi|Xi, Ci = k, we use a proportional
hazards model

− log{Sk,Y |X=x(t)} =
∫ t

0
hk(z) exp{γkI(z > x)}dz, (6)

with treatment-specific baseline hazard rate hk(·) for patients that do not experience
an AE, and the effect γk ≥ 0 of an AE at time Xi = x < +∞ on the hazard rate.
For γk we use a truncated normal prior γk ∼ N(0, σ2

γ)I(γk ≥ 0). The hazard rate hk(t)
is approximated by a piecewise-constant model, hk(z) =

∑J
j=1 hkjI(zj ,zj+1)(t), where

zj < zj+1, with independent Gamma priors for the hazard rate hkj ∼ Ga(vY , vY /hj) of
interval (zj , zj+1] with prior mean E[hkj ] = hj and variance h2

j/vY .

Efficacy summaries. We use βk to indicate a toxicity summary. Small values of βk

indicate high toxicity. Examples for βk include the median, the mean βk = E[Xi|Ci = k],
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the RMST βk = E[min(Xi, tT )|Ci = k] and the probability βk = P [Xi > tT |Ci = k] of
no AE by time tT for pre-specified tT > 0. In Section 4.2, we consider the RMST.

We consider the null and alternative hypotheses

H0,k = {(θk, βk) ∈ R
2 : θk ≤ θ0 − Δ or βk ≤ β0}, and (7)

HA,k = {(θk, βk) ∈ R
2 : θk > θ0 − Δk and βk > β0 + Δβ},

where Δβ > 0, and extend the design in Section 2.2 to include toxicity outcomes.

Stopping rules. At IA t ≥ 1, treatment k is declared non-inferior and less toxic than
the SOC and the null hypothesis is rejected if the posterior probability of H0,k becomes
smaller than a pre-defined threshold bA(·), i.e. when

p
(
{θk > θ0 − Δ} ∩ {βk > β0}|Σt

)
≥ bA(Σt). (8)

Here the boundary bA(·), as well as the safety boundaries bT (·) and b0(·) introduced
below, belong to the same family as (4). When the null hypothesis is rejected, the trial
starts enrolling patients to arm k + 1 if the sample size nt ≤ N −mmax; otherwise, the
study terminates.

Toxicity safety rules. If H0,k was not rejected at IA t, then treatment k can be
stopped early due to safety concerns, i.e., insufficient reductions of AEs or inferior
survival. Specifically, treatment k will be dropped at IA t due to insufficient early
evidence of toxicity reductions if the posterior probability of the event {βk ≤ β0 + Δβ}
exceeds the toxicity boundary bT , i.e. p

(
βk ≤ β0 +Δβ |Σt

)
≥ bT (Σt). If, at this point, (i)

nt ≤ n −mmax and (ii) treatment k shows sufficiently evidence for non-inferiority, i.e.
p
(
θk ≥ θ0 + Δ|Σt

)
≥ bC for a pre-specified bC ∈ [0, 1], then the trial starts enrollment

to treatment k+1. The study then evaluates if a further de-intensification of treatment
k+1 reduces treatment-related AEs and has non-inferior survival. Otherwise, the study
terminates.

Efficacy safety rules. If H0,k was not rejected, and p
(
βk ≤ β0 + Δβ |Σt

)
< bT (Σt),

then therapy k can be stopped for inferiority, and the study terminates, if the posterior
probability p

(
θk ≤ θ0−Δk|Σt

)
≥ b0(Σt) becomes larger than the boundary b0(Σt). The

margin Δk = Δk(Σt) now depends on the current evidence of toxicity reductions and
can vary during the study. In particular, with low evidence of toxicity reductions, we
use a smaller margin than in presence of strong evidence,

Δk(Σt) = Δ − (Δ − ΔL) × max
(

0,
p
(
βk ≤ β0 + Δβ |Σt

)
− pβ

1 − pβ

)νβ

, (9)

where pβ ∈ [0, 1] and ΔL, νβ ≥ 0 are fixed design parameters such that Δ ≥ ΔL. The
function Δk(Σt) ∈ [ΔL,Δ], is constant and equal to Δk(Σt) = ΔL when νβ = 0. It is
equal to Δk(Σt) = Δ when pβ = 0, νβ > 0. While it is monotone decreasing from Δ to
ΔL otherwise.

Pause enrollment. Similar to Section 2.2, if the posterior probabilities don’t cross
the stopping boundaries, the study continues enrollment to arm k until a maximum of
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mmax enrollments to arm k are reached. If nt,k = mmax, enrollment is paused, and IAs
are conducted until the maximum follow-up time tFU is reached.

Calibration. Supplementary Section S3.2 outlines a modification of the calibration
algorithm detailed in Section 2.2 to tune the rejection boundary bA(·) in (8) to approx-
imately bound that treatment-arm specific type I error rates of the design at a target
level α for a set of reference scenarios. We developed our Bayesian design for applica-
tions in non-confirmatory Phase II clinical settings where regulatory agencies typically
do not require the control of FWERs. In confirmatory settings, regulatory restrictions
may demand the control of the FWER at level α̃ > 0. For such settings, we can specify
arm-specific type I error levels αk ≥ 0 such that α̃ =

∑K
k=1 αk, and tune individually

the parameters ηA,k of arm-specific rejection boundaries for type I error levels αk.

3 Application in HPV-associated oropharynx cancer
We evaluate the de-intensification designs with efficacy outcomes (Sections 3.1) and with
efficacy and toxicity co-primary outcomes (Sections 3.2) in HPV-associated oropharynx
cancer. Section S1 discusses the sensitivity of the operating characteristics of our design
for different values of the parameters {νA,mA, η0, ν0,m0} and different prior parameters.

3.1 De-escalation design with efficacy endpoint
Data. We apply the design of Section 2.2 to four studies in HPV-associated orophar-
ynx cancer. We extracted published PFS distributions (Figure 2(A)) from the de-
intensification studies RTOG 1016, DeEscalate, Optima and E1308 (Gillison et al.,
2019; Mehanna et al., 2019; Seiwert et al., 2019; Marur et al., 2017) using the software
DigitizeIt (I. Bormann, 2018). RTOG 1016 is a large randomized phase III study (849
patients); the remaining studies were smaller single-arm studies. The IMRT+Cisplatin
SOC (black curve) has a 24-month RMST of θ0 = 22 months.

Simulation Setup. We consider a study with two de-intensified therapies, an average
of 5 enrollments per month, monthly IAs, tFU = 12 months follow-up time after the last
enrollment, and the null hypotheses θk ≤ 20.7 (Δ = 1.3) are tested at an 0.1 significance
level. The last patients will be enrolled to arm k approximately tenr = 30 months after
the 1st assignment to arm k, and the final analysis will be conducted approximately
42 = 30 + 12 months after the 1st enrollment to arm k. At this time point, about 90
of the 150 enrolled patients have been followed for the full 24 months or until disease
progression (whichever occurred first). Patients that did not progress within the first
tE = 24 months also contribute to the posterior distribution of θk =

∫ tE
0 SY,k(z)dz since

the posterior of Sk,Y (z), for z ∈ [0, tE ], depends on the data through the number of
events at time z and the number of patients that progressed after time z.

For the Bayesian design we used (νA, ν0,mA,m0) = (6, 5, 50, 0). In each scenario we
consider below, we used a different pair of distributions from Figure 2(A), to sample
PFS outcomes for the 1st and 2nd treatment. Blue and black survival functions have
RMSTs, which are non-inferior to the SOC. The remaining two survival functions in
yellow and brown have inferior RMSTs.
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Sample size determination. We initially determined a sample size mmax for the first
experimental arm to achieve ≈ 90% power when S1,Y = S0,Y , see Figure 2(B). For
each candidate mmax, we tuned the safety stopping boundary such that under H0,1,
when θ1 = 20.7, the study would stop with predefined probability p0 early due to
inferiority. Supplementary Section S3.1 outlines our tuning algorithm. The power shows
little sensitivity to the choice of p0 when θ1 = 22, whereas for θ1 = 21.5, the power varies
substantially with p0 > 0.6. Based on Figure 2(B), we select (mmax, p0) = (150, 0.7).

Supplementary Table S3, reports additional simulations for different combinations
(tFU , tE) of the restriction time tE of the RMST and the time tFU between the last
enrollment and final analysis. Follow-up times tFU > 12 only slightly increase power; we
selected tFU = 12 as a compromise between power and the average study duration. For
general recommendation on the selection of (tFU , tE) we refer the reader to (Royston
and Parmar, 2013; Nemes et al., 2020; Tian et al., 2020).

Comparator designs. We compare the Bayesian design to alternative de-intensification
designs with different combinations of testing and futility-stopping rules (Jennison and
Turnbull, 1989; O’Brien and Fleming, 1979; Pocock, 1977; Reboussin et al., 2000). Sim-
ilar to our Bayesian design, these designs may declare a treatment k non-inferior at
an IA or FA, and start evaluating arm k + 1, or declare treatment k inferiority and
stop the study. Noninferiority IAs are conducted monthly for all designs, starting after
mmin = 50 enrollments.

Non-inferiority is tested in the comparator designs using the RCI method (Jennison
and Turnbull, 1989; Gillison et al., 2019) based on O’Brien-Fleming (O’Brien and Flem-
ing, 1979), Pocock (Pocock, 1977) and linear (Reboussin et al., 2000) error-spending
functions (OF-RCI, P-RCI, and L-RCI, see Section S4 for details). We consider three
frequently used rules for futility IAs (F1, F2 and F3) in the comparator designs. (1)
At each IA t we compute a p-value for the ‘’null” hypothesis (θk ≥ 22) using a normal
approximation for the distribution of θ̂k, and stop the study if the p-value ≤ 0.0025
as suggested in (Freidlin et al., 2010; Gillison et al., 2019). (2) Alternatively, (Lachin,
2009) suggested a p-value ≤ 0.05 cut-off. (3) The last rule Freidlin et al. (2010) stops
early if the (1 − αt) confidence interval (−∞, Ût] for θk doesn’t include θ0 = 22, with
overall

∑
t αt = 0.025.

Operating characteristics for the 1st treatment. We first compared type I error rates
and the power of the designs for the first de-intensified therapy (k = 1) in three scenarios
with θ1 = 20, 20.7, 22 and mmax = 150 patients (Panel E of Figure 2). To simplify the
evaluation, we don’t consider interim futility analyses in these three scenarios. RCIs
with Pocock (Pocock, 1977) and linear (Reboussin et al., 2000) spending functions do
not control the type I error rate at the targeted α = 0.1 level with empirical type
I error rates of 0.26 and 0.23 across 10,000 simulations. O’Brien-Fleming boundaries
have type I error rates nearly identical to the nominal α level. Figure S1(A) shows that
the normal approximation of the RMST estimates θ̂k in the RCI is not accurate for the
initial IAs, which leads to these inflated error rates. The approximation becomes better
towards the end of the study (Panel B). O’Brien-Fleming boundaries are significantly
more conservative during the initial IAs than the linear and Pocock’s boundaries. Hence,
they are less affected by these approximation errors. We, therefore, use O’Brien-Fleming
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RCI boundaries for the remaining comparisons, in combination with each of the three
futility-stopping rules described above (RCI-F1, RCI-F2, and RCI-F3).

Tables S4 and S5 report simulations for longer follow-up and restriction times
(tFU , tE) = (24, 36). We observed a similar relative performance of the designs com-
pared to simulations with (tE , tFU ) = (24, 12). The Bayesian and OF design had the
highest power (Table S4 scenarios 1 and 2, Bayesian: 83% and 77%, OF-RCI: 81% and
74%), P-RCI and L-RCI had inflated type I error rates.

Operating characteristics for K = 2 treatments. Figure 3(A) summarizes the eight
scenarios we consider in the two-arm study. For each scenario (x-axis), the two vertical
bars indicate the RMSTs θ1 and θ2 that we consider with distributions S1,Y and S2,Y
selected from Figure 2 (same colors). Treatments k = 1, 2 are non-inferior in the first
three scenarios, whereas the second de-intensified treatment is inferior in the last four
scenarios.

In scenario 1, both de-intensified treatments are non-inferior to the SOC with iden-
tical RMSTs θ0 = θ1 = θ2. The Bayesian design has 94% and 88% power to declare
the two treatments non-inferior, compared to 89% and 80% for the RCI-F1 design, Fig-
ure 3(B). The remaining two designs RCI-F2 and RCI-F3 have lower power (74% and
54% for RCI-F2 and 75% and 57% for RCI-F3), respectively. The power in Figure 3(B)
for the second experimental arm is defined as the probability that the study starts test-
ing treatment two and rejects H0,2 at final or IAs. Panel C shows, for both treatments
k = 1, 2, the probability that the study started testing treatment k and stopped treat-
ment k early for futility at IAs (solid vertical bar). For the 2nd treatment, we also show
the probability that the study does not start testing the therapy (dashed vertical bar).
For instance, for the Bayesian design in scenario 5, the inferior 2nd treatment is not
tested or stopped early for futility with a probability of 0.95. Here, the study does not
start testing the therapy with a probability 0.40 and is stopped early for futility with a
probability 0.45. Panel C shows that the futility-stopping rule of RCI-F1 leads to a low
probability of stopping inferior treatments early (scenario 8, θ1 = 20.7) early for futility
(38%) compared to the RCI-F2 (93%) and RCI-F3 (53%) and the proposed Bayesian
design (81%). This leads in scenarios 5 and 7, where the first de-intensified treatment
is non-inferior, but θ1 is close to θ0 −Δ = 20.7 (θ1 = 21.5 and 21.3), to a slightly larger
power of the RCI-F1 compared to the remaining designs.

Scenarios 4 to 8, where the 2nd treatment is inferior to the SOC, show the benefit
of testing experimental arms sequentially. For instance, if the first experimental arm is
inferior (θ1 = 20.7, scenario 8), all designs start testing the inferior 2nd treatment with
less than 10% probability (10% for RCI-F1, RCI-F3, and the Bayesian design, and 7%
for RCI-F2).

Supplementary Figure S3 reports operating characteristics for two additional scenar-
ios (Scenarios 9 and 10) when both de-intensified treatments are inferior to the SOC.
Across all ten simulation scenarios, we observed a maximum FWER of 11%, 10%, 10%,
and 6% (in Scenario 9) for RCI-F1, RCI-F3, RCI-F3, and the Bayesian design (recall
that both de-intensified treatments are inferior to the SOC in Scenarios 8-10). Supple-
mentary Section reports the results of a simulation study nearly identical to the one
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Figure 3: Operating characteristics of the de-intensification designs for a two-arm study
with efficacy primary endpoint and a maximum of mmax = 150 patients for each treat-
ment. Panel A summarizes the 24-month RMSTs θ1 and θ2 (y-axis) in each of the eight
scenarios (x-axis) that we consider. Panel B shows the power of the Bayesian design
and the three alternative designs (RCI-F1, RCI-F3, and RCI-F3). Panel C shows the
probability of stopping treatments 1 and 2 at an IA for futility (solid vertical line),
and the probability that the 2nd treatment is not tested due to early termination of
the study (dashed vertical line). Panel D shows the average enrollment of the two-arms
trial on the 1st and 2nd de-intensified treatments.
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presented here for settings where regulatory restrictions require the control of the FWER
level α̃ = 0.1, using arm-specific type I error levels α = 0.1/(1 + 0.1) for testing. We
observed a similar relative performance for our design compared to alternative designs.

3.2 Using efficacy and toxicity co-primary outcomes
Testing. We consider testing non-inferior survival and toxicity reductions. We assume
the same enrollment rate (5/month), tFU = 12 months, 24-month RMST of θ0 = 22
for the historical SOC, and a 24-month RMST for the 1st grade ≥ 3 AE of β0 = 12.5
months (estimated from data of RTOG-1016). We are testing H0,k = {(θk, βk) ∈ R

2 :
θk ≤ 20.7 or βk ≤ 12.5}, k = 1, 2 at levels α1 = α2 = 0.05 to control the FWER at level
α̃ = 0.1.

Prior distribution. The BS-prior for Sk,X was centered at an exponential model with
a 24-month RMST of 12.5. For the conditional efficacy survival distribution, we used a
piecewise constant hazard model with J = 5 intervals, (z0, . . . , z5) = (0, 6, 12, 18, 24, 80),
and parameters σλ = vY = 10 for the prior precision of the baseline-hazard (vY ) and the
prior standard deviation (σλ) of for the effect of toxicity on survival. See Supplementary
Section S1.1 for recommendations on selecting these prior parameters.

Outcome scenarios and design parameters. We consider scenarios with efficacy dis-
tributions Sk,Y (and θk) identical to Kaplan-Meier curves Figure 2(A) and exponential
distributions Sk,X for the time Xi until the 1st grade ≥ 3 AE (jointly generated from
a gaussian copulas (Nelsen, 2006) with correlation 0.5) with 24-month RMST equal to
βk = 12.5 or 14.5 months. We used (Δ,ΔL,Δβ) = (2, 1, 0), νβ = 2, pβ = 0 in (9), and
νA = ν0 = νT = 6 for the shape parameters of the boundaries bA, b0, bT in (4) and
required 75 assignments before applying (toxicity, futility, and non-inferiority) early
stopping rules. We tuned the parameters ηj for b0, bT in (4) so that with probability 0.5
inferior treatments or treatments that do not reduce toxicities are stopped early at IAs.

Sample size determination. We determined for the 1st arm the power of the Bayesian
design with a maximum arm-specific sample size mmax (Figure 4(A)) when θ1 = θ0 and
β1 = β0 + 2. With a α = 0.05 significance level, the design requires ≈ 250 patients to
achieve 90% power, respectively. We then considered a two-arm de-intensification study
(K = 2) with a maximum overall sample size per arm of mmax = 250 patients. We
evaluated the operating characteristics of the proposed Bayesian design in 8 scenarios
that are summarized in Figure 4(C). PFS parameters θk are represented by vertical bars
in Panel C (the bars and colors for θ1 and θ2 are consistent with Sk,Y ’s in Figure 2(A)).
Toxicity parameters are indicated by green triangles (βk = 14.5) and red stars (βk =
12.5) on top of the vertical bars.

Results. Figure 4(B) shows the benefit of interim monitoring of efficacy and toxic-
ity endpoints. The figure shows, for the first treatment, the cumulative probability of
stopping the therapy for futility (y-axis), i.e. for inferiority or toxicity, by time t since
the first enrollment (x-axis) for four scenarios (combinations of θ1 = θ0 − Δ, θ0 and
β1 = β0, β0 + 2). For instance, if the treatment is inferior with θ1 = θ0 − Δ = 20.7 but
reduces toxicities (β1 = β0 + 2), then 56% of all simulated de-intensification trials are
stopped early for futility at IAs (scenario 8, dashed golden curve). In comparison, if
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Figure 4: Operating characteristics of Bayesian de-intensification design for a study
with efficacy and toxicity co-primary endpoints. Panel A shows the power for treatment
k = 1 when θ1 = θ0 and β1 = β0 + 2 with maximum sample size mmax between 170
and 350 patients. Panel B shows the probability of stopping treatment k = 1 for futility
(either for inferior survival or low evidence of reduced toxicities) when θ1 = θ0 (black
curves) and β1 = β0, β0 +2 (red cross and green triangles) and when θ1 = θ0−Δ = 20.7
(yellow curves) and β1 = β0, β0 + 2 (red cross and green triangles) for a study with
maximum sample size mmax = 250 patients. Panel C summarizes the 24-month RMSTs
(θk, βk), k = 1, 2 in each of the eight scenarios (x-axis) that we consider. The vertical
bars (y-axis) indicate θk, whereas green arrows (βk = 14.5) and red stars (βk = 12.5) on
top of the vertical bars indicate toxicity parameters. Panel D shows, for both treatments,
the power (solid bar), the probability of stopping treatment evaluation early for futility
at IAs (dashed bars), and the probability that the 2nd treatment is not tested due to
early termination of the study (dotted bars).
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the treatment fails to reduce toxicities (θ1 = 20.7 and β1 = β0), then the treatment is
stopped early for futility in 75% of the simulations (scenarios 7, solid golden curve).

Figure 4(D) shows for both treatments the probability of rejecting H0,k (power,
solid vertical bars), and the probability that the study evaluates treatment k and stops
this arm early for futility (inferior survival or insufficient reduction of toxicities) at
IAs (dashed vertical bars). As before, the power for the 2nd treatment is defined as
the probability that the study starts testing treatment 2 and rejects H0,2. For the 2nd
treatment, Panel D also shows the probability that the 2nd treatment is not tested
due to the early termination of the study (dotted vertical bars). If both treatments
(k = 1, 2) improve the 24-month RMST βk by two months (β1 = β2 = 14.5) compared
to the SOC and have identical survival outcomes (θ1 = θ2 = 22) the 1st and 2nd
de-intensified treatment have 91% and 83% power (scenario 1). In comparison, with a
moderate non-inferior treatment effect of θk = 21.5 in scenario six, the power for the
1st treatment decreases to 36%. Similar to the Bayesian design with efficacy primary
endpoint of Section 2.2, Scenarios 7 and 8 indicate the advantage of testing the 1st
and 2nd treatment sequentially one after the other. If the first treatment is inferior,
the second treatment k = 2 is tested in 2% (scenario 7, β1 = 14.5) or in less than 1%
(scenario 8, β1 = 12.5) of all simulations.

4 Discussion
There has been a recent interest in developing de-intensified treatments with similar
survival rates and reduced AEs as the current SOC. (Elrefaey et al., 2014; Mirghani
and Blanchard, 2018) identified 12 de-intensification studies in oropharyngeal cancer
that are currently ongoing or recently reported results.

Compared to traditional superiority trials, which test the superiority of experimen-
tal treatments compared to the SOC, demonstrating similarity in survival between de-
intensified treatments and the SOC and reductions in AEs require large sample sizes.
Investigators often select large NI margins to reduce the size of the study (Ventz et al.,
2019). Recent results in oropharyngeal cancer showed that many de-intensification treat-
ments fail to reduce toxicities and have inferior survival compared to the SOC (Gillison
et al., 2019; Mehanna et al., 2019). As discusses in Ventz et al. (2019), many of these
studies (i) evaluate only survival or toxicity, (ii) do not have explicit futility early stop-
ping rules for survival and toxicity endpoints and (iii) tend to use conservative early
stopping rules to avoid power reductions.

Motivated by an oropharyngeal cancer study that tests two dose-reduced treatments,
we proposed a Bayesian design for multi-arm de-intensification trials. Using a Bayesian
semi-parametric model, our design sequentially tests non-inferior survival and toxicity
reductions. We proposed early safety and non-inferiority decision rules to monitor both
endpoints. The design parameters can be tuned to calibrate trade-offs between power
and the probabilities of stopping treatments early due to inferior survival or insufficient
evidence of toxicity reductions. We defined decreasing non-inferiority stopping bound-
aries that encourage the rejection of the null hypothesis H0,k for a non-inferior experi-
mental treatment k towards the end of the study when the data for arm k are mature.
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Since de-intensified treatments are typically dose-reduced versions of SOC treatments,
there is a high likelihood that these treatments might be inferior to the SOC. Exam-
ples include the recent RTOG1016 (Gillison et al., 2019) and De-ESCALaTE (Mehanna
et al., 2019) studies in oropharynx cancer, which tested treatments that were strongly
inferior to the SOC and showed no evidence of reductions in toxicities. We, therefore,
defined stringent early safety-stopping rules to limit the risk of exposing patients to
potentially toxic or ineffective treatments when there is sufficient early evidence for
inferiority. In oropharynx cancer, where survival rates five years after IMRT+cisplatin
treatment are > 90%, the number of OS and PFS events during the trial are typically
small. Standard frequentist methods based on large-sample normal approximations can
perform poorly in this setting, and the Bayesian approach is an attractive alternative.

Our design tests de-intensified treatments one at a time, starting with the treatment
with the highest dose level. This controls the number of patients exposed to inferior
treatments. The aim of our motivating de-intensification study was to recommend all
treatments that show strong evidence of non-inferior survival and reduce the risk of
AEs. Oncologists can then further personalize patient care and select one of the rec-
ommended treatments based on additional patient characteristics such as performance
status, smoking history, additional markers, and patient preferences. Consequently, our
design recommends a set of 0 ≤ KNI ≤ K treatments as an alternative to the SOC
at the end of the study. If only a single treatment should be recommended, one can
specify a treatment selection rule (see for instance (Domenicano et al., 2019; Houede
et al., 2010; Lee et al., 2015; Lin et al., 2021; Ventz et al., 2017)) to select a final de-
intensified treatment based on the available data Σ at the end of the study. Moreover,
we focused on non-controlled phase II de-intensification studies, but the design could
be modified to include a concurrent control arm. If the SOC is associated with severe
toxicities, continuing the assignment of patients to the SOC may be unethical after the
null hypothesis H0,1 has been rejected. In this case, the 1st de-intensified treatment
could be utilized as the new control arm for testing the 2nd de-intensified experimental
treatment.
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