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Emerging Directions in Bayesian
Computation
Steven Winter, Trevor Campbell, Lizhen Lin, Sanvesh Srivastava and David B. Dunson

Abstract. Bayesian models are powerful tools for studying complex data,
allowing the analyst to encode rich hierarchical dependencies and leverage
prior information. Most importantly, they facilitate a complete characteriza-
tion of uncertainty through the posterior distribution. Practical posterior com-
putation is commonly performed via MCMC, which can be computationally
infeasible for high-dimensional models with many observations. In this ar-
ticle, we discuss the potential to improve posterior computation using ideas
from machine learning. Concrete directions are explored in vignettes on nor-
malizing flows, statistical properties of variational approximations, Bayesian
coresets and distributed Bayesian inference.
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1. INTRODUCTION

There is immense interest in performing inference and
prediction for complicated real-world processes within
science, industry and policy. Bayesian models are ap-
pealing because they allow specification of rich gen-
erative models encompassing hierarchical structures in
the data, natural inclusion of information from experts
and/or previous research via priors and a complete charac-
terization of uncertainty in learning/inference/prediction
through posterior and predictive distributions. The pri-
mary hurdle in applying Bayesian statistics to complex
real-world data is posterior computation. In practice,
posterior computation—evaluating posterior probabili-
ties/expectations, credible intervals for parameters, pos-
terior inclusion probabilities for features, posterior pre-
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dictive intervals, etc.—is typically based on posterior
samples using the Markov chain Monte Carlo (MCMC).
Standard MCMC approaches often fail to converge in
practice when the posterior has complicated geome-
try, such as multiple modes or geometric/manifold con-
straints. Even sampling from simple posteriors can be
challenging when the data has tens or hundreds of mil-
lions of observations. This article focuses on the fu-
ture of Bayesian computation, with emphasis on poste-
rior inference for high-dimensional, geometrically com-
plicated targets with potentially millions or more data-
points.

The recent explosive success of machine learning is key
to shaping our vision for the future of Bayesian com-
putation. This paper consists of four vignettes covering
recent work on cutting-edge computational techniques,
all involving ideas from machine learning. The first vi-
gnette covers normalizing flows as a new tool for adap-
tive MCMC with complicated targets; the second covers
recent progress on characterizing the theoretical proper-
ties of variational approximations; the third covers data
compression via Bayesian coresets to improve the scala-
bility of inference for large data sets and the fourth cov-
ers modern techniques in distributed Bayesian inference.
All sections focus heavily on promising avenues for fu-
ture research. For the purposes of this paper, we will gen-
erally omit technical details (spaces, measurability, dom-
inating measures, etc.) in the interest of simplicity and
brevity.
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2. MOTIVATION AND CHALLENGES

We consider the problem of estimating Bayesian poste-
rior expectations of the form

E[f ] =
∫

f (θ)π(θ |x)dθ(1)

π(θ |x) = 1

C
exp

(
U(x, θ)

)
π0(θ),(2)

where π denotes the posterior density of the model pa-
rameter θ , π0 denotes the prior density, x denotes the data,
U denotes the potential (typically a log-likelihood) func-
tion and C denotes the unknown normalizing constant. By
selecting the appropriate function f , equation (1) could
correspond to the posterior mean, variance, credible inter-
vals, etc. We consider two approaches to Bayesian com-
putation: (1) (approximately) sampling from equation (2),
and (2) replacing equation (2) with a tractable distribu-
tion.

2.1 Computation via Sampling

The Metropolis–Hastings (MH) algorithm, often com-
bined with Gibbs sampling, underpins many popular
methods for obtaining approximate draws from Bayesian
posterior distributions [46]. MH is an iterative procedure
that generates a sequence of Markovian samples, {θt }Tt=1,
which after appropriate burn-in can be used for Monte
Carlo estimation of equation (1). Each step of MH con-
sists of drawing a new state θ ′ from a proposal kernel
g(·|θt ), followed by setting the next state θt+1 to θ ′ with
probability

(3) acc
(
θt , θ

′) = min
{

1,
π(θ ′|x)g(θt |θ ′)
π(θt |x)g(θ ′|θt )

}
,

and setting θt+1 = θt otherwise. Two high level chal-
lenges with MH include (1) designing efficient proposals
and (2) efficiently evaluating equation (3) when the po-
tential is computationally expensive.

Proposal Design

Good mixing—roughly, how well {θt }Tt=1 approxi-
mates T i.i.d. draws from π—is critically dependent on
the choice of the proposal distribution. Although mod-
ern high-dimensional targets with complicated geometry
could benefit greatly from flexible, parametrized proposal
distributions, these have traditionally been too difficult
to tune to be practical. Consequently, it is routine to set-
tle for simpler proposals, such as a multivariate Gaussian
centered around the current point, perhaps perturbed by
the log-density gradient [174], or trajectories generated
by dynamics driven by the target [131, 76, 108]. Param-
eters of these proposals are then tuned to encourage effi-
cient exploration, for example, by adaptively learning the
geometry of the target [72, 171, 199], or by targeting a
particular average acceptance probability [9], Section 4.

A major limitation of such local methods is their prac-
tical inability to cross low-probability regions and adapt
to locally varying target geometry, resulting in, for ex-
ample, poor convergence rates for multimodal distribu-
tions [112]. Many solutions have been proposed, ranging
from slightly modifying local kernels to encourage cross-
ing low probability regions [95, 140, 107] to constructing
entirely new kernels, which are mixtures of a local and
global component [8, 3, 159]. Despite these advances,
there is still no general solution for sampling complicated
high-dimensional distributions.

We believe deep learning ill play an integral role in de-
veloping better general solutions. Deep generative models
have demonstrated remarkable success in estimating and
approximately sampling complicated, high-dimensional
distributions, achieving state-of-the-art performance in
image/audio/video synthesis, computer graphics, physi-
cal/engineering simulations, drug discovery and other do-
mains [74, 93]. Section 3 explores the use of deep genera-
tive models to design better proposal distributions for use
in MH.

Large-Scale Data

Modern statistical inference problems have another key
challenge: large sample sizes. Even the simplest MH al-
gorithms must evaluate the posterior density (cf. equation
(3)) at each step, which generally requires a pass over
the full data. This requirement makes inference, iterative
model development, tuning and verification arduous and
error-prone in settings with massive amounts of data. Uni-
formly subsampling the data at each iteration, as in sub-
sampling MCMC, [13, 94, 110, 217, 4], improves com-
putation speed with the potential cost of slower mixing
[81, 128, 14, 160, 161]. In certain situations, it is possi-
ble to mitigate these drawbacks by designing an effective
control variate for the log-likelihood [160, 133]. Alterna-
tively, one might hope a Gaussian approximation to equa-
tion (2) [181, 83, 204, 73, 16] would suffice in the large-
data limit. But this is not necessarily the case in modern
high-dimensional models with local latent variables, weak
or nonidentifiability, discrete variables, low-dimensional
manifold structure, model selection priors, etc. We require
general-purpose, easy-to-use and statistically rigorous ap-
proaches for dealing with large-scale data.

In this work, we consider two generic approaches to
the large data problem: (1) compressing redundant data
prior to expensive computation and (2) splitting the data,
performing potentially expensive operations on smaller
subsets of data, and then combining the results. The first
approach is formalized by Bayesian coresets [78], which
represent the large-scale data by a small, weighted sub-
set that can be passed to any standard inference algo-
rithm, providing posterior inference at a reduced cost.
Section 5 introduces coresets and discusses recent advan-
tages as well as important open challenges. The second
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approach we consider is distributed Bayesian inference,
which takes three general forms: (1) one-shot methods
that run MCMC in parallel on disjoint subsets of data,
and combine the results on a central machine (e.g., [213,
123, 132, 185, 214, 178]); (2) distributed extensions of
stochastic gradient MCMC that involve several rounds of
communication (e.g., [4, 94, 32, 48]) and (3) variable aug-
mentation approaches (e.g., [20, 157]) based on stochastic
extensions of distributed consensus methods, (e.g., [17,
150]). Section 6 formally introduces the three paradigms
and discusses future research directions.

2.2 Computation via Approximation

It may not be feasible to sample from equation (2) for
complicated potentials, regardless of proposal kernel or
sample size. Variational inference is a popular alterna-
tive approach, which involves selecting a family of prob-
ability distributions Q on θ , finding the “closest” distri-
bution q� ∈ Q to π , and using q� for downstream in-
ference. This has the major computational advantage of
replacing sampling with an optimization problem. Most
commonly, the family Q is both tractable—that is, en-
ables i.i.d. draws and pointwise density evaluation—and
parametric—that is, can be written Q = {qλ : λ ∈ �} for
a finite-dimensional parameter space �. In addition the
“closest” distribution q� is usually taken to be the mini-
mizer of the Kullback–Leibler divergence,

(4) q� = arg min
λ∈�

DKL
(
qλ||π)

.

The optimization in equation (4) is written as a maximiza-
tion of the evidence lower bound (see equation (20)) as is
commonly done in the literature; note that the unknown
C is removed as it is a constant that does not influence the
optimization. Further, note that there are many examples
of exceptions to this setup (f -divergences instead of KL
[206, 42, 102], nonparametric families [120, 71], families
that do not enable density evaluation [193, 225], etc.); we
focus on equation (4) as it constitutes the vast majority of
the literature.

Most of the variational literature is dedicated to two pri-
mary challenges. The first is designing a family Q that is
flexible enough to enable a good approximation q� ≈ π ,
but simple enough to enable fast i.i.d. draws and point-
wise density evaluation. Historically, mean-field approx-
imations have been the most popular class (i.e., qλ(θ) =∏d

i=1 qλi
(θi) for multivariate parameter θ = (θ1, . . . , θd))

(e.g., [83, 204]). Modern research considers more flexi-
ble families, including normalizing flows, for which qλ

is the pushforward of a base distribution q0 through a
parametrized diffeomorphism Tλ [149]; variational au-
toencoders [91] and annealing families, which augment
both the variational family qλ(θ, z) and target π(θ, z)

[176, 228, 191] and amortized families that specify λ =
λβ(x) as a function of the data x with its own parameters

β [91]. The second challenge is designing an optimization
method for equation (4). Generally stochastic first-order
methods are used (e.g., ADAM [89]) relying on unbiased
stochastic gradient estimates based on Monte Carlo ap-
proximations of the objective in equation (4).

Theoretical Guarantees

Two important questions for analyzing variational pro-
cedures are (1) how accurate the approximation is in terms
of properties of the optimal distribution in a family Q for
a particular target π and (2) how quickly and reliably does
a computational method find that optimum (or at the very
least a local optimum). These two questions align with the
two primary methodological challenges mentioned above.

Methodology for variational inference has developed
rapidly over the past decade in both variational family
and optimization algorithm design. However, the litera-
ture on theoretical analysis has only recently started mak-
ing progress. The reason is that even for very simple fami-
lies Q (e.g., multivariate Gaussians), the problem in equa-
tion (4) is a difficult-to-analyze nonconvex stochastic op-
timization. For modern flexible families, the challenge is
even greater. In situations where there is an interpretable,
empirical objective of downstream performance (e.g., pre-
dictive accuracy), the lack of theory is not a major barrier
to use of variational inference but in the typical Bayesian
inferential setting, convergence guarantees (both statisti-
cal and optimization-related) are crucial for reliable sta-
tistical inference. In Section 4, we discuss the theory of
variational Bayes.

The paper now proceeds in four vignettes—on MH pro-
posal design via deep learning in Section 3, theory of
variational inference in Section 4, Bayesian coresets in
Section 5 and distributed Bayesian inference in Section 6.
Emphasis is placed on influential recent advances and im-
portant future work.

3. SAMPLING USING DEEP GENERATIVE MODELS

In this vignette, we discuss the use of deep generative
models to design better proposal distributions for use in
MH, both by augmenting existing kernels and by con-
structing entirely new distributions. Most deep genera-
tive models use a neural network (NN) to transform a
simple-based distribution to closely match a prespecified
empirical distribution. The setting of posterior compu-
tation via MH introduces two practical problems. First,
samples from the target are not available prior to sam-
pling, complicating the process of training the NN. Sec-
ond, each iteration of MH requires computing the accep-
tance probability, hence evaluating the proposal density.
If the proposal is a simple distribution transformed by an
NN, then this requires inverting an NN, which is gener-
ally impossible, and computing the Jacobian, which can
be numerically intractable in high dimensions. We focus
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on adaptively tuning normalizing flow (NF) proposals as
a means of resolving these challenges. Section 3.1 intro-
duces NFs; Sections 3.2–3.3 cover applications to MH
and straightforward generalizations, Section 3.4 covers al-
ternative uses of NFs, and Section 3.5 discusses exciting
future research.

3.1 Introduction to Normalizing Flows

In this section, we provide a brief introduction to NFs
and highlight their useful properties. One method for gen-
erating a flexible class of proposal distributions is to trans-
form a simple D-dimensional random variable Z (e.g.,
Z ∼ N(0, ID)) with a diffeomorphism f parameterized
by an NN. Carefully tuning f can result in proposals
Y = f (Z) that closely conform to the target. Comput-
ing the acceptance probability in each iteration of MH
requires evaluating the proposal density,

(5) πY (y) = πZ

(
f −1(y)

)∣∣Jf −1
(
f −1(y)

)∣∣,
where πZ is the density of Z and Jf −1 is the Jacobian of
f −1. Inverting NNs is generally intractable, and evaluat-
ing Jacobians is O(D3) in the worst case.

NFs impose additional structure on f to resolve these
problems. Specifically, discrete NFs decompose f as the
composition of K simple component functions:

(6) f = fK ◦ · · · ◦ f1.

Component functions are constructed to facilitate fast in-
version (either exactly or approximately) and fast Jaco-
bian calculations (e.g., by ensuring Jacobians are up-
per/lower triangular). The change of variables rule be-
comes

(7) πY (y) = πZ

(
f −1(y)

) K∏
i=1

∣∣J
f −1

i
(zi)

∣∣,
where f −1 = f −1

1 ◦ · · · ◦f −1
K and zi = f −1

i+1 ◦ · · · ◦f −1
K (y)

with zK = y. By the inverse function theorem, J
f −1

i
=

J−1
fi

, so it is sufficient to compute the Jacobian of fi or

f −1
i . For example, a planar normalizing flow [168] uses

component functions

(8) fi(z) = z + aih
(
wT

i z + bi

)
,

where ai,wi ∈ R
D , bi ∈ R are parameters to be tuned and

h is an invertible, differentiable nonlinearity applied ele-
mentwise. The matrix determinant lemma allows one to
express the Jacobian as

(9)
∣∣Jfi

(z)
∣∣ = 1 + h′(wT

i z + b
)
aT
i wi,

which is O(D) to compute. Planar flows are not in-
vertible for all choices of parameters and nonlineari-
ties, however, efficient constrained optimization algo-
rithms are available, which ensure invertibility [168]. Pla-
nar flows have relatively limited expressivity, and many

layers may be needed to construct suitably complicated
high-dimensional proposals. Improved component func-
tions have been proposed, including radial [168], spline
[47], coupling [43], autoregressive [90], etc. See [93] for
a review of NFs and [149] for theory on the expressively
of discrete flows.

Continuous normalizing flows [35] are an extension of
the discrete framework, potentially enhancing expressiv-
ity while requiring fewer parameters and lower memory
complexity. The key insight is to reconceptualize discrete
NFs as a method for computing the path x(t) of a par-
ticle at discrete times t ∈ {0,1/K,2/K...,1}. The ini-
tial location x(0) is drawn from Z. At time 1/K , the
location is updated to x(1/K) = f1(x(0)). This is re-
peated iteratively, moving from x(i/K) at time i/K to
x((i + 1)/K) = fi(x(i/K)) at time i + 1. The result is a
path (x(0), . . . , x(1)) where the final location is a sample
from Y . Continuous NFs consider the limit K → ∞, with
the intuition that one can obtain a more flexible distribu-
tion for Y by flowing samples of Z through continuous
paths instead of discrete paths. This can be formalized as
the initial value problem

(10)
dx(t)

dt
= f

(
x(t), t

)
,

where f is a function parameterized by an NN and x(0)

is a sample from Z. In practice, equation (10) cannot be
solved analytically, however, approximate samples of Y

can be generated using an ODE solver. Euler’s method
with a step size of 1/K exactly recovers a discrete NF
with K layers, but greater expressivity can be obtained
using higher order solvers. This framework has a number
of surprising technical advantages; see [35] for an exposi-
tion.

3.2 Normalizing Flow Proposals

In this section, we outline methods for constructing pro-
posals with NFs. A NF with parameters φ will be denoted
fφ : RD → R

D ; this yields a new density π̂φ by pushing
forward a simple random variable Z with density πZ .

Independent proposals. The simplest approach is to
use an NF to generate proposals in independent MH [19].
At each iteration, a proposed state θ ′ is generated by push-
ing a sample of Z through the NF. This state is accepted
with probability (3) where g(·|θt ) = π̂φ(·). In high dimen-
sions, almost all choices of φ will result in low overlap be-
tween π̂φ and π ; hence small acceptance ratios and poor
mixing. Consequently, we focus our discussion on more
elaborate proposals, which result in better practical per-
formance.

Dependent proposals. A more practical approach is to
let proposals depend on the current state. This can be
achieved by using a larger NF fφ : RD × R

M → R
D ×

R
M , which maps the current state x and M-dimensional



66 S. WINTER ET AL.

noise z to a proposal θ ′ and transformed noise z′. The M-
dimensional noise can be thought of as an auxiliary pa-
rameter, such as momentum or temperature in dynamics-
based MCMC. Song, Zhao and Ermon [184] construct
a dependent proposal that is symmetric, thus eliminating
the ratio of proposal densities in equation (3) and reduc-
ing the problem of extremely low early acceptance rates.
The proposal is constructed in two stages: first, sample
u ∼ Uniform[0,1] and z from Z. If u > 0.5, propose
θ ′ using (θ ′, z′) = fφ(x, z). Otherwise propose θ ′ using
(θ ′, z′) = f −1

φ (θ, z). Using a mixture of fφ and f −1
φ en-

sures that θ ′ is as likely to be proposed when starting
at θ as θ is to be proposed when starting at θ ′. Key to
the proof of symmetry is the assumption that the NF is
volume-preserving. This is a restrictive assumption: cur-
rent volume-preserving architectures are outperformed by
nonvolume-preserving architectures.

Mixture kernels. Higher initial acceptance rates can be
obtained by combining NF proposals with classical ker-
nels, for example, by alternating proposing samples with
Hamiltonian Monte Carlo (HMC) and a conditional flow.
Samples from the classical kernel provide data with which
to tune the NF. Eventually, the NF becomes a good ap-
proximation to the posterior, proposing efficient global
moves and resulting in better mixing than the classical
kernel alone. Gabrié, Rotskoff and Vanden-Eijnden [53]
construct a proposal, which deterministically alternates
between ten MALA proposals and one independent NF
proposal. The resulting sampler efficiently explores mul-
timodal distributions: MALA locally explores each mode,
and NF teleports the chain between modes. It is critical
to initialize the sampler with at least one particle in each
mode, as the local dynamics are unlikely to discover new
modes on their own. The algorithm is shown to converge
with an exponential rate in the continuous time limit. Par-
tial ergodic theory is available when the flow is adaptively
learned by minimizing the KL divergence, although other
loss functions remain unstudied.

Augmenting existing kernels. The previously discussed
mixtures rely on classical kernels for local exploration un-
til there is sufficient data to train the NF. An alternate ap-
proach is to use NFs to augment classical kernels, that is,
to improve the classical kernel as the chain runs instead
of tuning a separate auxiliary kernel. We use HMC as an
example, wherein a new state θ ′ is proposed by drawing
a momentum ν ∼ N(0, ID) and approximating the result-
ing Hamiltonian dynamics (usually) with the leapfrog in-
tegrator. One time step of the approximation proceeds by
taking a half-step of the momentum

ν1/2 = ν − ε

2
∇U(x),(11)

which is then used to update the momentum,

(12) ν′ = ν − ε

2
∇U

(
x′).

The process is repeated a prespecified number of times
to generate a final proposal; the final momentum is disre-
garded. The resulting proposal is symmetric and volume-
preserving, resulting in a simple acceptance ratio. Cross-
ing low-probability regions requires a large velocity,
which is unlikely if the momentum is sampled from a
Gaussian. Levy, Hoffman and Sohl-Dickstein [98] use
NFs to learn a collection of maps that dynamically rescale
the momentum and position to encourage exploration
across low-probability regions. Specifically, the momen-
tum half-step is replaced by

ν1/2 = exp
(
Sν(θ)

) 
 ν

− ε

2
exp

(
Qν(θ)

) 
 ∇U(θ) + Tν(θ),
(13)

where 
 is the elementwise product, Sν is a NF that
rescales the momentum, Qν is a NF that rescales the gra-
dient and Tν is a NF that translates the momentum. Simi-
larly, the position update is replaced with

θ ′ = exp
(
Sθ (ν1/2)

) 
 θ

+ ε exp
(
Qθ(ν1/2)

) 
 ν1/2 + Tθ(ν1/2),
(14)

where Sθ , Qθ and Tθ are NFs. The momentum is updated
again with equation (13) using θ ′ instead of θ , and the en-
tire procedure is iterated. When all of these NFs are zero,
we recover HMC exactly. Allowing the NFs to be nonzero
results in a very flexible family of proposal distributions,
which can be adaptively tuned to propel the sampler out
of low probability regions by rescaling and translating the
momentum/position. The invertibility and tractable Jaco-
bians allow efficient calculation of the proposal density.
This presentation has been simplified from [98], which
also includes random directions, random masking and
conditions NFs on the leapfrog iteration. So far, the above
augmentation technique has only been applied to HMC.
However, there is a broad class of dynamical systems that
can be used to generate proposals, including Langevin dy-
namics, relativistic dynamics, Nose–Hoover thermostats
and others [108]. NFs can be used to augment all of these
algorithms using the same recipe as above.

3.3 Tuning Proposals

Appropriately tuning NF parameters is critical for good
mixing. In practice, tuning is often performed by adap-
tively minimizing a loss. In this section, we cover a variety
of candidate loss functions, including measure-theoretic
losses, summary statistics and adversarial approaches.

Statistical deviance. The simplest approach is to de-
fine a function d measuring how close the proposal is
to the target and then to find NF parameters minimiz-
ing d(π̂φ,π). Let G be a space of probability densities
and d : G × G → R be any function measuring the dis-
tance/discrepancy/deviance between two probability mea-
sures. We assume:
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1. d(ρ,ρ) = 0 for all ρ ∈ G.
2. d(ρ,ρ′) > 0 for ρ �= ρ′ ∈ G, with equality interpreted

as equality almost everywhere.
3. d(π̂φ,π) has a gradient with respect to φ, ∇φd(πφ,π).

Conditions (1) and (2) ensure d(π̂φ,π) = 0 if and only if
π̂φ = π , hence minimizing d is a reasonable way to ap-
proximate the target. Condition (3) allows optimization
with gradient-based methods. Weaker notions of differen-
tiability are sufficient, such as having a tractable subgra-
dient.

For example, d may be the forward KL divergence,

(15) DKL(π‖π̂φ) =
∫
RD

π(θ) log
(

π(θ)

π̂φ(θ)

)
dθ

Adaptive estimation can be performed by alternating be-
tween generating a sample via MH and updating NF pa-
rameters using the gradient of (15) [19]. The gradient can
be estimated via Monte Carlo using previous samples.
Under technical assumptions on the NF and the target, the
resulting Markov chain is ergodic with the correct limit-
ing distribution [19].

Other viable choices for d include the Hellinger dis-
tance, the (sliced) Wasserstein distance, the total variation
distance, etc. Many of these are as-of-yet unexplored as
a means of adaptively estimating flows, and it is unclear
which will result in the best performance. The main lim-
itation with approaches in this class is that minimizing a
difference only indirectly targets good mixing; in the fol-
lowing, we consider directly targeting good mixing with
MCMC diagnostics.

Mixing summary statistics. A high quality global ap-
proximation of the target may not be required for suffi-
ciently good mixing, especially if NFs are used in con-
junction with local kernels such as HMC. Using distance-
based losses in these situations are unnecessarily ambi-
tious and better practical performance may be attained by
switching to a loss function, which directly targets good
mixing. Ideally, one would maximize the effective sam-
ple size, but this depends on the entire history of the chain
and is in general slow to compute. Instead, [98] propose
minimizing the lag-1 autocorrelation, which is equivalent
to maximizing the expected squared jump distance [151]:

(16) lag(π̂φ,π) = E
[∥∥θ − θ ′∥∥2

2acc
(
x, x′)],

where the expectation is over the target and any auxiliary
variables used to sample θ ′. This can be estimated using
samples θt , t = 1, . . . , T from the first S iterations of the
chain by generating a proposal θ ′

t starting at each θt and
averaging

(17) lag(π̂φ,π) ≈ 1

T

T∑
t=1

∥∥θt − θ ′
t

∥∥2
2acc

(
θt , θ

′
t

)
.

This loss depends on φ implicitly through the θ ′
t . Naively

optimizing this loss does not guarantee good mixing
across the entire space, for example, the chain may
bounce between two distant modes. To solve these prob-
lems, [98] add a reciprocal term and instead optimize

(18) �λ(π̂φ,π) = λ

lag(π̂φ,π)
− lag(π̂φ,π)

λ
,

where λ > 0 is a tuning parameter. The reciprocal term
penalizes states where the expected squared jump distance
is small. Levy, Hoffman and Sohl-Dickstein [98] add a
term of the same form to encourage faster burn-in. The
composite loss is used to train an augmented variant of
HMC and results in a sampler, which efficiently moves
between well-separated modes.

Other summary statistics can be integrated into this
framework, possibly considering lag-k autocorrelations
or multiple chain summaries such as the Gelman–Rubin
statistic [57]. One concern with this class of loss func-
tions is that no single summary statistic can detect when a
chain has mixed, and naively optimizing one statistic may
result in pathological behavior that is hard to detect. In
Section 3.5, we discuss different strategies that may strike
a middle ground between ambitious distance-based meth-
ods and narrow summary statistic-based methods.

3.4 Alternatives to MCMC

Normalizing flows are useful proposal distributions in
MH because they are flexible, allow exact evaluation of
the likelihood and can be automatically tuned to have high
overlap with the posterior. This also makes them useful as
proposal distributions in alternative approaches for evalu-
ating equation (1), such as importance sampling (IS) and
sequential Monte Carlo (SMC) [192]. IS rewrites equa-
tion (1) as

E[f ] =
∫

w(θ)f (θ)π̂φ(θ) dθ,

where w(θ) = π(θ |x)/π̂φ(θ) are importance weights; this
allows estimation of E[f ] by sampling {θt }Tt=1 ∼ π̂φ

and averaging {w(θt )f (θt )}Tt=1. The weights can be self-
normalized, that is, divided by w(θ1) + · · · + w(θT ) – to
eliminate dependence on the normalizing constant of π .
IS may be sensitive to the proposal distribution, with high
variance weights when π̂ proposes values, which are un-
likely under π . SMC improves upon importance sampling
by alternating resampling/selection and mutation steps:
unlikely proposals are thrown away during the selection
step, and then new proposals are generated using the sur-
vivors in the mutation step. SMC is a broad class of algo-
rithms, which also frequently leverages other techniques,
such as tempering [130]. Recently, NFs have been used
to enhance these algorithms, leveraging many of the same
fundamental tools discussed above [127, 54, 10, 36, 117].
In particular, SMC may be more efficient for sequential
problems, such as those involving streaming data.



68 S. WINTER ET AL.

3.5 Open Questions and Future Directions

We have introduced several different kernel structures
and losses, which can be combined to develop new adap-
tive MCMC algorithms. In this section, we discuss short-
comings of these approaches, as well as avenues for ex-
citing long-term research.

Theoretical guarantees. So far, partial ergodic theory
is only available in the simplest case of tuning an inde-
pendent NF proposal by adaptively minimizing the KL di-
vergence [19]. Dependent/conditional proposals and aug-
mented kernels are not well studied, and no guarantees are
available when adaptively minimizing summary statistic
or adversarial-based losses. This is particularly concern-
ing for summary statistic-based losses, as it is not clear
that minimizing (e.g., lag-1 autocorrelation) is enough to
guarantee ergodic averages converge to the correct val-
ues. Precise theoretical results will provide insights into
when/why these methods succeed/fail, and are a neces-
sary precursor to widespread adoption of NF sampling.

Adversarial training. Generative adversarial networks
(GANs) [63, 69] pit two NNs against each other in a
minimax game. The first player is a generator, which
transforms noise into samples that look like real data;
the second player is a discriminator, which tries to de-
termine whether an arbitrary sample is synthetic or real.
GANs may be applied to MCMC by taking the pro-
posal distribution to be the generator and training a dis-
criminator to distinguish between proposals and previous
samples of the target. Song, Zhao and Ermon [184] use
this idea to adaptively train a NF proposal, which dra-
matically outperforms HMC on multimodal distributions.
Many improvements are possible by leveraging modern
ideas from the GAN literature. Conditional GANs [124]
allow the discriminator and generator to condition on ex-
ternal variables. For example, one could construct a tem-
pered adversarial algorithm by conditioning on a temper-
ature variable, possibly accelerating the mixing of an-
nealed MCMC. Complicated GAN structures are prone
to mode collapse, hence these generalizations will likely
require modified loss functions [196, 115, 82, 212] and
regularization [70, 154, 175, 125].

Constrained posteriors. In this vignette, we only con-
sider the case where the target is supported over Euclidean
space; however, in some applications the target is sup-
ported over a Riemannian manifold (e.g., the sphere or
positive semidefinite matrices). Most manifold sampling
algorithms rely on approximating dynamics defined ei-
ther intrinsically on the manifold or induced by project-
ing from ambient space. These dynamics-based methods
may be inferior to NF kernels for multimodal distribu-
tions. Recent work has successfully generalized NFs to

Riemannian manifolds, although these constructions typ-
ically place significant restrictions on geometry (e.g., dif-
feomorphic to a cross-product of spheres [169]) or rely
on high-variance estimates of Jacobian terms [116]. Loss
functions measuring the distance between a proposal and
the target may be harder to define and compute over man-
ifolds. New architectures for manifold valued NFs and
improved estimation techniques could facilitate efficient
sampling in a wide class of models with non-Euclidean
supports.

Our discussion also neglected to mention discrete pa-
rameters. Discrete parameters occur routinely in Bayesian
applications, including clustering/discrete mixture mod-
els, latent class models and variable selection. Specific
NF architectures have been constructed to handle dis-
crete data [194, 233], but current approaches are relatively
inflexible and cannot be made more flexible by naively
adding more NN layers, limiting their utility within MH.
A more promising direction is to leverage the flexibility of
continuous NFs by embedding discrete parameters in Eu-
clidean space and sampling from an augmented posterior.
Several variants of HMC have been proposed to accom-
modate piecewise discontinuous potential functions [148,
126, 44], with recent implementations such as discon-
tinuous HMC [141] achieving excellent practical perfor-
mance sampling ordinal variables. However, embedding-
based methods struggle to sample unordered variables—
here the embedding order is arbitrary, with most embed-
dings introducing multimodality in the augmented poste-
rior. NFs have successfully augmented continuous HMC
[98] to handle multimodal distributions; the same strategy
is promising for improving discontinuous HMC.

Automated proposal selection. A priori it is unclear
which NF architecture, kernel structure and loss will re-
sult in the most efficient mixing for sampling a given
posterior. Running many Markov chains with different
choices can be time consuming, and a large amount of
computational effort may be wasted if some chains mix
poorly. Tools for automatic architecture/kernel/loss selec-
tion would greatly improve the accessibility of the pro-
posed methodology. This goal is difficult in general given
(1) the space of possible samplers is huge, (2) different
architectures and kernels are not always comparable and
(3) good mixing is impossible to quantify with a single
numerical summary.

Ideas from reinforcement learning, sequential deci-
sion making and control theory could provide princi-
pled algorithms for exploring the space of possible sam-
plers. One could define a state space of kernel/loss pairs,
(π̂φ,L), which an agent interacts with by running adap-
tive MCMC. After each action, the agent observes sam-
pler outputs such as trace plots and summary statistics.
The goal is to develop a policy for choosing the next ker-
nel/loss pair to run while maximizing some cumulative
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reward, such as cumulative effective sample sizes across
all chains. As an initial attempt, one could restrict kernels
to all have the same structure, such as HMC/NF mixtures
where only the NF architecture is changing, and the loss
function to be a simple parametric family, such as the lag-
1 loss with different tuning parameters. This facilitates a
parameterization of the state-space and allows application
of existing continuous-armed bandit algorithms [2, 215].
Constructing a sequential decision-making algorithm that
can efficiently explore kernel/loss pairs with fundamen-
tally different kernel structures and loss functions is an
open challenge, which will likely require better under-
standing of the theoretical relationships between the dif-
ferent proposed kernel structures as well as the dynamics,
which result from minimizing different types of losses.

We expect broad patterns to emerge with increasing use
of NF, with certain architectures/kernels/losses perform-
ing consistently well in specific classes of problems. For
example, the authors have observed that discrete spline
flows work very well for sampling from Gaussian mix-
ture models. These heuristics could be collected in a com-
munity reference manual, allowing statisticians to quickly
find promising candidate algorithms for their model class,
dimension, features of the data, etc. Crowd-sourcing the
construction and maintenance of this manual could enable
statisticians to stay up-to-date with NFs, despite the rapid
pace of ML research.

Accelerated tuning. The recipe presented in this vi-
gnette is to (1) choose a NF kernel structure, (2) choose a
loss and (3) adaptively estimate parameters starting from
a random initialization. Starting from a random initializa-
tion in step (3) is inefficient. Transfer/meta learning may
provide tools for accelerating tuning by avoiding random
initialization. For example, iterative model development
and sensitivity analysis often involve repeating the same
inferences with slightly different prior specifications. NF
parameters estimated for one prior specification could be
used to initialize the sampler for other prior specifications,
potentially eliminating the need for adaptive tuning.

A more difficult task is handling targets with similar
structures, but different dimensions. For example, con-
sider a Bayesian sparse logistic regression model classi-
fying Alzheimer’s disease status using vectorized images
of brains. Interest is in sampling coefficients βI from
the posterior π(βI |A,I) where A = (A1, . . . ,An) is a
set of disease indicators and I = (I1, . . . , In) is a set of
brain images. Perhaps additional covariates for each sub-
ject are collected at a later stage, such as gene expres-
sion vectors G = (G1, . . . ,Gn). Intuitively, there should
be strong similarities between the updated posterior
π(βI ,βG|A,I,G) and the original posterior π(βI |A,I);
however, this is difficult to formalize because the posteri-
ors have different dimensions.

A promising approach is to parameterize the initial
sampler in a dimension-free manner, for example, by
defining a kernel, which proposes an update for the ith
coefficient depending only on the potential U(β), the
gradient in that direction ∂βi

U(β) and auxiliary vari-
ables in that direction. This kernel can be tuned while
sampling π(βI |A,I) with any of the aforementioned
loss functions, and then automatically applied to sam-
ple π(βI ,βG|A,I,G). Gong, Li and Hernández-Lobato
[62] introduce a related idea for stochastic gradient sam-
pling of Bayesian neural networks with different acti-
vation functions. The general methodology remains un-
studied for exact sampling. The proposed coordinate-wise
strategy cannot leverage correlation between pairs of pa-
rameters to propose efficient block updates; solutions to
this problem constitute ongoing research.

4. THEORY OF VARIATIONAL BAYES

In this vignette, we discuss the theory of variational
Bayesian (VB) methods. This section focuses specifically
on (1) characterization of the frequentist properties of the
VB posterior in terms of posterior contraction rates, un-
certainty quantification and others and (2) convergence
guarantees of VI algorithms.

Denote xn = x1:n as the sample of the data. Recall that
the variational posterior distribution is typically defined
as

(19) Q̂ = argmin
Q∈Q

DKL
(
Q‖�(·|xn)

)
.

In solving the optimization problem (19), one first
writes �(dθ |xn) = pθ(xn)�(dθ)/p(xn), where p(xn) :=∫

pθ(xn)�(dθ) is the joint density of xn. The KL-
divergence above can be written as

DKL
(
Q‖�(·|xn)

)
=

∫
log

(
p(xn)Q(dθ)

pθ (xn)�(dθ)

)
Q(dθ)

= −
∫

logpθ(xn)Q(dθ) + DKL(Q‖�)︸ ︷︷ ︸
=:�(Q,�,xn):=−ELBO

+ logp(xn).

(20)

In the above, we let

�(Q,�,xn) = −
∫

logpθ(xn)Q(dθ) + DKL(Q‖�),

which we call the variational objective function. This is
also the negative of the evidence lower bound (ELBO),
where the ELBO is

∫
logpθ(x)Q(dθ) − DKL(Q‖�)

which provides a lower bound of the “evidence” or the
marginal likelihood logp(x) as seen from (20).
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Since p(xn) is a constant with respect to Q, one has

Q̂ = argmin
Q∈Q

�(Q,�,xn)

= argmin
Q∈Q

DKL
(
Q‖�(·|xn)

)
.

(21)

Hence, minimizing the KL divergence between the varia-
tional family and the exact posterior distribution is equiv-
alent to minimizing the variational objective �(Q,�,x)

or maximizing the ELBO.

4.1 Statistical Theory of Variational Bayes

As outlined in Section 2.2, it is important to under-
stand properties of the variational posterior, including
critically the quality of the approximation. One approach
to studying the VB posterior is through investigating fre-
quentist properties, including contraction rates, model se-
lection consistency, and asymptotic normality (known as
Bernstein–von Mises (BvM) theorems) of VB posteriors.

In the asymptotic regime, we assume data xn are gener-
ated from P(n)

θ� and n → ∞. The variational posterior

Q̂n ∈ argmin
Q∈Q

�(Q,�,xn),

is said to have the contraction rate εn if

(22) E(n)
θ�

[
Q̂n

(
d
(
θ, θ�) ≤ Anεn

)] → 1

as n → ∞ for any diverging sequence An → ∞. Here,
E(n)

θ� denotes the expectation with respect to the true
likelihood function, Q̂n(d(θ, θ�) ≤ Anεn) measures the
variational posterior probability over the neighborhood
d(θ, θ�) ≤ Anεn of the true parameter θ∗ with radius
Anεn. If the contraction rate εn matches the minimax opti-
mal rate, we say that the variational posterior distribution
is optimal.

Recent work [6, 227, 224] provided theoretical con-
ditions under which the variational posterior is optimal.
These conditions imply that when the model is appropri-
ately complex and the prior is sufficiently diffuse, which
are standard conditions for establishing posterior contrac-
tion rates for the original posterior [58], then together with
an assumption on the variational gap, the variational pos-
terior distribution also has optimal contraction rates. The
variational gap condition assumes there is Q ∈ Q such
that ∫

DKL
(
P(n)

θ ‖P(n)
θ�

)
Q(dθ) + DKL(Q‖�)� nε2

n.(23)

The left-hand side of (23) is an upper bound on the varia-
tional gap DKL(Q̂‖�(θ |xn). This upper bound is verified
by ensuring that each term on the left is of order O(nε2

n).
Alquier and Ridgway [6] formulate this variational gap
condition as an extension of prior mass conditions. If one
restricts the VB family to be in the same class as the prior

and the parameters to lie in a neighborhood of the true pa-
rameter, this condition reduces to the standard prior mass
condition.

In addition, [152] and [224] developed variational
Bayes’ theoretic frameworks that can deal with latent
variable models. Alquier and Ridgway [6] investigated
the contraction properties of variational fractional posteri-
ors with the likelihood raised to a fractional power. There
are several studies that derived contraction rates of varia-
tional posteriors for specific statistical models, for exam-
ple, mixture models [37], sparse (Gaussian) linear regres-
sion [165, 223], sparse logistic linear regression [166] and
sparse factor models [139].

4.2 Adaptive Variational Bayes

A novel and general variational framework for adaptive
statistical inference on a collection of model spaces has
been proposed [142]. The framework yields an adaptive
variational posterior that has optimal theoretical proper-
ties in terms of posterior contraction and model selection
while enjoying tractable computation.

In general, when performing statistical inference the
“regularity” of the true parameter is unknown and adap-
tive inference aims to construct estimation procedures that
are optimal with respect to the unknown true regularity.
To do this, one typically prepares multiple models with
different complexities, for example, sparse linear regres-
sion models with different sparsity, neural networks with
different numbers of neurons or mixture models with dif-
ferent numbers of components and then selects among
them. To achieve adaptivity, frequentists usually conduct
(fully data-dependent) model selection before parameter
estimation, for example, via cross-validation or penaliza-
tion. There is some work on Bayesian adaptation by im-
posing hierarchical priors on a collection of model spaces
[59].

Let M denote a set of model indices and {�m}m∈M
multiple disjoint (sub)models with different complexities.
Let �M := ⋃

m∈M �m be an encompassing model. A (hi-
erarchical) prior is given as

� = ∑
m∈M

αm�m,

where αm is the prior probability of model �m,∑
m∈M αm = 1, and �m is the prior distribution of θ

within model �m.
Ohn and Lin [142] considers variational Bayes adap-

tation by approximating the posterior �(·|xn) under the
above hierarchical prior, using a variational Bayes family
over the encompassing model parameter space, using dis-
joint variational families {Qm}m∈M over individual mod-
els with Qm ⊂ P(�m):

QM :=
{ ∑

m∈M
γmQm

∣∣∣Qm ∈ Qm

}
.
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Algorithm 1 Adaptive variational Bayes
Input: data xn, prior � = ∑

m∈M αm�m, variational fam-
ilies {Qm}m∈M.

• For every m ∈ M, compute the variational posterior of
the submodel �m:

(25) Q̂n,m ∈ argmin
Q∈Qm

�(Q,�m,xn).

• Compute the “optimal model weight” as

(26) γ̂n,m ∝ αm︸︷︷︸
prior

× exp
(−�(Q̂n,m,�m,xn)

)︸ ︷︷ ︸
goodness-of-fit of Q̂n,m

for m ∈ M

Return: The adaptive variational posterior

(27) Q̂n = ∑
m∈M

γ̂n,mQ̂n,m.

They show that the variational posterior

Q̂n ∈ argmin
Q∈QM

�(Q,�,xn)

is of the form

(24) Q̂n = ∑
m∈M

γ̂n,mQ̂n,m ∈ QM

for some “mixing weight” (γ̂n,m)m∈M and “mixture com-
ponents” Q̂n,m ∈ Qm for m ∈ M. The adaptive varia-
tional Bayes framework is summarized in Algorithm 1.

Computation of the adaptive variational posterior re-
duces to computing variational approximations for each
individual model. The framework is general and can be
applied for adaptive inference in many statistical models
where multiple submodels of different complexities are
available. The adaptive variational posterior has optimal
contraction rates and strong model selection consistency
when the true model is in M. This theory has been ap-
plied to show optimal contraction for a rich variety of
models, including finite mixtures, sparse factor models,
deep neural networks and stochastic block models.

The above adaptive variational framework is not the
first approach for adaptation under the variational Bayes
paradigm. For example, [227] propose to use the vari-
ational posterior corresponding to the submodel having
the highest variational model probability. Their meth-
ods have been applied to the Gaussian sequence model
and finite-mixture models for adaptive density estimation,
among others. Zhang and Gao [227] show that an em-
pirical Bayes posterior with hyperparameters chosen in a
data-driven way, such as maximizing the marginal likeli-
hood, can be regarded as an variational approximation to a
posterior in a hierarchical model. This connection allows

the derivation of posterior contraction rates for the gen-
eral empirical Bayes posterior considered in [227]. Their
framework has been applied to adaptive density estima-
tion, adaptive sparse high-dimensional linear regression
and so on.

4.3 Convergence of Variational Bayes Algorithms

The above subsections focus on obtaining theoretical
guarantees for variational Bayes from the lens of frequen-
tist statistical theory. An alternative theoretical direction
focuses on showing convergence of VB algorithms to the
optimum (or a local optimum) as measured by the KL di-
vergence. This subsection surveys recent developments.

Computational algorithms for solving (21) depend on
the original posterior distribution as well as the varia-
tional family. When the variational family has certain sim-
ple structure, in particular, the so-called mean field class,
there are efficient computational algorithms for finding Q̂,
based on the well-known CAVI (coordinate ascent varia-
tional inference) algorithm [83, 219], which guarantees
convergence to a local minimizer [16]. As mentioned ear-
lier, the mean-field class imposes posterior independence
as

(28) Q(θ1, . . . , θd) =
d∏

j=1

Qj(θj ),

where Qj is a distribution for θj . By taking the derivative
of the ELBO with respect to each of the Qj(θj ), one can
arrive at the following coordinate ascent update:

Q̂j (θj ) ∝ exp
(
EQ−j

[
logp(θj |θ−j , xn)

])
∝ exp

(
EQ−j

[
logp(θj |θ−j , xn)

])
,

(29)

where θ−j = (θ1, . . . , θj−1, θj+1, . . . , θn), and the expec-
tation EQ−j

is taken with respect to all variational distri-
butions excluding the j th component.

When a statistical model has latent structures, such as
finite mixture models, topic models and stochastic block
models, there are typically latent variables for every sam-
ple. The CAVI algorithm is inefficient in such cases,
as it requires sweeping through the whole data set be-
fore updating the variational parameters at each iteration.
Stochastic variational inference [75] is a popular alterna-
tive in this setting. Stochastic variational inference em-
ploys stochastic gradient descent by computing the gradi-
ent of the ELBO based on mini batches, leading to effi-
ciency gains.

The BBVI (black box variational inference) algorithm
proposed in [162] is a general method, which requires
very little model specific derivation or analysis. The key
idea is to optimize the variational objective stochastically
using noisy estimates of the gradient of the ELBO. These
estimates are obtained by rewriting the gradient of the
ELBO as an expectation with respect to the variational
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posterior, which can then be approximated via Monte
Carlo. As with other stochastic methods, reducing vari-
ance is key for improving efficiency. Several strategies
have been proposed in [162] for controlling the variance.
One technique is based on Rao–Blackwellization [28],
which computes the gradient of ELBO with respect to one
variable using iterative conditional expectations. The sec-
ond strategy for variance reduction utilizes control vari-
ates [173, 147]. A control variate of a function is a family
of functions with equivalent expectation. The idea is to
choose a control variate that has smaller variance. In tai-
loring the method for BBVI, one can use control variates
to estimate each entry of the Rao–Blackwellized gradient,
further reducing the variance.

There has been recent effort in establishing conver-
gence guarantees for BBVI as well as general stochas-
tic variational inference algorithms [87, 45]. Kim et al.
[87] provides convergence guarantees for BBVI, which
hold for log-smooth posterior densities with and without
strong log concavity and location-scale variational fami-
lies. They also provide convergence guarantees for prox-
imal BBVI for strongly log concave posteriors. Domke,
Garrigos and Gower [45] obtain convergence guarantees
for BBVI with log concave and log Lipschitz smooth tar-
get densities providing analyses of complexity of a proxi-
mal stochastic gradient method and a projected stochastic
gradient algorithm. They additionally show that gradient
estimators based on reparameterization satisfy a quadratic
noise bound for Gaussian families. Convergence analysis
of BBVI is made challenging by gradient estimators with
unusual noise bounds and a composite nonsmooth objec-
tive.

There are interesting recent developments in VI that
attempt to provide convergence guarantees in the finite-
sample regime while bypassing nonconvex optimization.
Two results along these lines are variational annealed im-
portance sampling [228, 191, 56] and MixFlows [221];
both derive their guarantees from the use of (nearly) in-
variant Markov kernels.

4.4 Variational Auto Encoders (VAEs)

Variational inference, as considered above, has been
most widely used as a framework for approximating the
posterior distribution in a standard Bayesian model, that
is, with a fixed prior distribution and a specified likeli-
hood. There are, however, some other important and in-
teresting settings beyond the standard Bayesian paradigm
where VI is used, with the variational auto encoder (VAE)
[91, 168] emerging as one of the most important modern
examples.

VAEs are one of the primary likelihood-based training
methods for deep generative models, and have achieved
tremendous success in modeling high-dimensional data
such as images and videos [65, 205]. A statistical theory

of deep generative models is now emerging [29, 189]. One
typically assumes that a D-dimensional observation X is
generated as X = G(Z) + ε, where Z is a d-dimensional
latent variable drawn from known distribution PZ and ε

is a noise vector independent of Z. Here, G : Rd → R
D

is an unknown function parameterized by a deep neural
network called the deep generator. In a VAE, the distribu-
tion P(X|Z), parameterized by a deep neural network, is
called the decoder and P(Z|X) is approximated by a vari-
ational family qλ(Z) where λ is parameterized or amor-
tized by another deep neural network, called the encoder.
[92] provide an introduction to VAEs. Theoretical analy-
sis of VAEs from the lens of M-estimation [188], robust-
ness analysis [26] and connection to harmonic analysis
[25] have been conducted.

4.5 Open Questions and Future Directions

Uncertainty quantification of the VB posterior. It is
well known that variational posteriors tend to underesti-
mate uncertainty of the true posterior, so a central open
question is how one can construct computationally ef-
ficient VB posteriors producing (a) credible balls with
valid frequentist coverage and/or (b) posterior covariance
matching that of the true posterior.

There is limited work on theory justifying statistical
inference using the variational posterior, including cred-
ible intervals and hypothesis testing. A natural direction
in this regard is theorems on limiting forms of variational
posteriors as the sample size → ∞, along the lines of
Bernstein–von Mises (BvM) theorems guaranteeing that
the exact posterior distribution converges to a Gaussian
distribution under certain regularity conditions. An initial
promising result along these lines is [216], but there is
need for new research for broad classes of models and
corresponding variational families.

Some successful attempts in achieving improved uncer-
tainty quantification have been recorded for specific mod-
els, such as Gaussian models or Gaussian process regres-
sion, either through proper turning of the mean-field VB
method [61] or adopting nonmean-field VB families [197,
85, 137].

Theoretical guarantees of gradient-based algorithms.
Existing theoretical guarantees for VB only apply to the
global solution of the variational optimization problem.
In practice, this optimization problem tends to be highly
nonconvex and algorithms are only guaranteed to con-
verge to local optima. For certain variational families and
model classes, these local optima can be dramatically dif-
ferent, so that there is a large sensitivity to the starting
point of the algorithm. It is of critical importance to obtain
guarantees on the algorithms being used and not just on
inaccessible global optima. For example, can one obtain
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general theoretical guarantees for gradient-based black-
box variational inference with or without warm-start con-
ditions? Kim et al. [87] and [45] are notable recent ad-
vancements in this direction.

There is a parallel and growing literature on nonconvex
optimization in other contexts, including providing reas-
surance that local optima can be sufficiently close in some
cases [118, 52, 105, 100, 138]. However, to the best of our
knowledge, there is no such work on theoretical aspects of
local optima produced by variational Bayes.

VB based on generative models. Richer variational
families can be constructed using deep generative models
such as normalizing flows [168, 103]. Due to their im-
pressive flexibility, the resulting variational posterior can
approximate a very wide class of target posteriors accu-
rately. Despite its practical usefulness and strong empiri-
cal performance, there is no theoretical support for such
approaches, for example, providing upper bounds on the
variational approximation gap or concentration proper-
ties. Choosing the neural network architecture and algo-
rithmic tuning parameters involved in training to maxi-
mize computational efficiency and accuracy of posterior
approximation is an additional important related area that
may benefit from better theoretical understanding.

Online variational inference. Given a prior distribution
on an unknown parameter, the posterior distribution can
be understood as an updated belief after observing the
data. The updated posterior distribution can be used as
a prior distribution when new data arrive. The process
can be repeated many times for analyzing streaming data
[121, 60, 88, 80]. At each step, the VB posterior can be
used as a new prior for computational convenience [104,
106, 135]. Sequential VB posteriors have shown strong
computational promise, but have yet to receive significant
theoretical attention.

5. BAYESIAN CORESETS

At its core, the problem of working with large-scale
data efficiently is how to exploit redundancy. To draw
principled conclusions about a data set based on a small
fraction of examples, one must rule out the presence of
unique additional information in the (vast) remainder of
unexamined data. One approach incorporates redundancy
directly into its formulation: Bayesian coresets [78]. The
key idea is to represent the large-scale data by a small,
weighted subset that can be passed to any standard infer-
ence algorithm, providing posterior inference at a reduced
cost. Coresets have a long history in computational geom-
etry and optimization; see, for example, [1, 11, 49].

Coresets have a number of compelling advantages.
First, and perhaps most importantly, coresets preserve im-
portant model structure. If the original posterior exhibits
symmetry, weak identifiability, discrete variables, heavy

tails, low-dimensional subspace structure, etc., the core-
set posterior typically will exhibit that same structure, be-
cause it is constructed using the same prior and likelihood
terms. This makes coresets appealing for use in complex
models where a Gaussian asymptotic assumption is inap-
propriate. Second, coresets are composable: coresets for
two data sets can often be combined trivially to form a
coreset for the union of data sets [51]. This makes coresets
naturally applicable to streaming and distributed contexts
[24], Section 4.3. Third, coresets are inference algorithm-
agnostic: once built, a coreset can be passed to most infer-
ence methods—in particular, exact MCMC methods with
guarantees—with enhanced scalability. Finally, coresets
tend to come with guarantees relating the size of the core-
set to the quality of posterior approximation.

In this vignette, we will cover the basics of Bayesian
coresets as well as recent advances in Sections 5.1 and
5.2, and discuss open problems and exciting directions for
future work in Section 5.3.

5.1 Introduction to Bayesian Coresets

5.1.1 Setup. We are given a target probability den-
sity π(θ) for θ ∈ � that is comprised of N potentials
(fn(θ))Nn=1 and a base density π0(θ),

(30) π(θ) = 1

C
exp

(
N∑

n=1

fn(θ)

)
π0(θ),

where the normalization constant C is not known. This
setup corresponds to a Bayesian statistical model with
prior π0 and i.i.d. data xn conditioned on θ , where
fn(θ) = logp(xn|θ). The goal is to compute or approxi-
mate expectations under π ; in the Bayesian scenario, π is
the posterior distribution.

A key challenge arises in the large N setting. Bayesian
posterior computation algorithms tend to become in-
tractable. For example, MCMC typically has compu-
tational complexity �(NT ) to obtain T draws, since∑

n fn(θ) (and often its gradient) needs to be evaluated at
each step. In order to reduce this �(NT ) cost, Bayesian
coresets [78] replace the target with a surrogate density

(31) πw(θ) = 1

C(w)
exp

(
N∑

n=1

wnfn(θ)

)
π0(θ),

where w ∈ R
N , w ≥ 0 are a set of weights, and C(w) is

the new normalizing constant. If w has at most M � N

nonzeros, the �(M) cost of evaluating
∑

n wnfn(θ) (and
its gradient) is a significant improvement upon the origi-
nal �(N) cost. The goal is then to develop an algorithm
for coreset construction, that is, selecting the weights w

that:

1. produces a small coreset with M � N , so that compu-
tation with πw is efficient;
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2. produces a high-quality coreset with πw ≈ π , so that
draws from πw are similar to those from π and

3. runs quickly, so that building the coreset is actually
worth the effort for subsequent fast draws from πw .

These three desiderata are in tension with one another.
The smaller a coreset is, the more “compressed” the
data set becomes, and hence the worse the approximation
πw ≈ π tends to be. Similarly, the more efficient the con-
struction algorithm is, the less likely we are to find an op-
timal balance of coreset size and quality with guarantees.

5.1.2 Approaches to coreset construction. There are
three high-level strategies that have been used in the liter-
ature to construct Bayesian coresets.

Subsampling. The baseline method is to uniformly ran-
domly pick a subset I ⊆ {1, . . . ,N} of |I| = M data
points and give each a weight of N/M , that is,

(32) wn = N

M
if n ∈ I, wn = 0 otherwise,

resulting in the unbiased potential function approximation

(33)
N∑

n=1

fn(θ) ≈ N

(
1

M

∑
m∈I

fm(θ)

)
.

This method is simple and fast, but typically generates
poor posterior approximations. Constructing the subset by
selecting data with nonuniform probabilities does not im-
prove results significantly [78]. Empirical and theoretical
results hint that in order to maintain a bounded approx-
imation error, the subsampled coreset must grow in size
proportional to N , making it a poor candidate for efficient
large-scale inference. Coresets therefore generally require
more careful optimization.

Sparse regression. One can formulate coreset construc-
tion as a sparse regression problem [24, 23, 229],

w� = argmin
w∈RN+

∥∥∥∥∥
N∑

n=1

fn −
N∑

n=1

wnfn

∥∥∥∥∥
2

s.t. ‖w‖0 ≤ M,

where ‖ · ‖ is some functional (semi)norm, and ‖w‖0 is
the number of nonzero entries in w. This optimization
problem can be solved using iterative greedy optimiza-
tion strategies that provably, and empirically, provide a
significant improvement in coreset quality over subsam-
pling methods [24, 23, 229]. However, this approach re-
quires the user to design—and tends to be quite sensitive
to—the (semi)norm ‖ · ‖ and so is not easy to use for the
general practitioner. The (semi)norm also typically can-
not be evaluated exactly, resulting in the need for Monte
Carlo approximations with error that can dominate any
improvement from more careful optimization.

Variational inference. Current state-of-the-art research
formulates the coreset construction problem as variational
inference in the family of coresets [22],

(34) w� = argmin
w∈RN+

DKL(πw‖π)s.t.‖w‖0 ≤ M.

Unlike the sparse regression formulation, this optimiza-
tion problem does not require expert user input. However,
it is not straightforward to evaluate the KL objective,

logC − logC(w)

+
N∑

n=1

(wn − 1)

∫
πw(θ)fn(θ)dθ,

(35)

even up to a constant in w. The difficulty arises because
equation (35) involves both the unknown normalization
constant C(w) and an expectation under πw , from which
we cannot in general obtain exact draws. This is unlike a
typical variational inference problem, where the normal-
ization of the variational density is known and obtaining
draws is straightforward. Current research on coreset con-
struction is generally focused on addressing these issues;
this is an active area of work, and a number of good solu-
tions have been found [22, 114, 79, 129, 34, 113].

5.2 Notable Recent Advances

The literature on Bayesian coresets is still in its early
stages, and the field is developing quickly. We highlight
some key recent developments here.

Coreset data point selection. Optimization-based core-
set construction methods have tended to take a “one-at-a-
time” greedy selection strategy to building a coreset, thus
requiring a slow, difficult to tune inner-outer loop [24,
22]. Recent work [34, 129, 79] demonstrates coresets can
be built without sacrificing quality by first uniformly sub-
sampling the data set to select coreset points, followed
by batch optimization of the weights. This is both signif-
icantly simpler and faster than past one-at-a-time selec-
tion approaches, while providing theoretical guarantees:
for models with a strongly log-concave or exponential
family likelihood, after subsampling, the KL divergence
of the optimally-weighted coreset posterior converges to
0 as N → ∞ as long as the coreset size M � logN [129].
This guarantee does not say anything about whether one
can find the optimal weights, but just that selecting core-
set data points by subsampling does not limit achievable
quality.

Optimizing the KL divergence. Given a selection of
coreset points, there remains the problem of optimizing
the KL objective over the coreset weights w; this is chal-
lenging because one cannot obtain exact draws from πw ,
or compute its normalization constant. It is possible to use
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MCMC to draw from πw , and to circumvent the normal-
ization constant issue by noting that derivatives are avail-
able via moments of the potential functions under πw , for
example,

∂

∂wn

DKL(πw‖π)

= −Covw

[
fn(θ),

N∑
i=1

(1 − wi)fi(θ)

]
,

(36)

where Covw denotes covariance under πw [22, 129, 33].
First-order methods interleave a single step of MCMC
with each weight optimization step [33], while second or-
der methods use many steps of MCMC per weight opti-
mization step [129].

Another promising approach is to use a surrogate varia-
tional family that is parametrized by the coreset weights w

but enables tractable draws and exact normalization con-
stant evaluation [34, 79, 113]. For example, Chen, Xu and
Campbell [34] propose using a variational surrogate fam-
ily qw such that for all w, qw ≈ πw , and then optimizing
the surrogate objective function

(37) w� = argmin
w

DKL(qw‖π).

Chen, Xu and Campbell [34] set qw to be a normalizing
flow based on sparse Hamiltonian dynamics targeting πw .
Concurrent work by Jankowiak and Phan [79] proposes a
similar idea, but based on variational annealed importance
sampling [176]. In either case, the optimization problem
is then just a standard KL minimization over parameters
w. Manousakas, Ritter and Karaletsos [113], in contrast,
propose using a generic variational family qλ with an aux-
iliary parameter λ to take draws, and adds an additional
penalty to the optimization objective to tune qλ to approx-
imate πw:

(38) w�,λ� = argmin
w,λ

DKL(πw‖π) + DKL(qλ‖πw).

The unknown normalization constant on πw cancels in
the two KL divergence terms, and the DKL(πw‖π) term
is estimated using self-normalized importance sampling
based on draws from qλ. Manousakas, Ritter and Kar-
aletsos [113] use a diagonal-covariance Gaussian family
for qλ, and use an inner-outer loop optimization in which
the inner loop optimizes λ to help ensure that qλ remains
close to πw .

These two approaches are strongly connected. Consider
the optimal auxiliary parameter

(39) λ�(w) = argmin
λ

DKL(qλ‖πw),

and assume that the family qλ is flexible enough such that
qλ�(w) = πw for all w. Then the two approaches are equiv-
alent if we define qw = qλ�(w):

(40) DKL(πw‖π) + DKL(qλ�(w)‖πw) = DKL(qw‖π).

The advantage of using a generic family qλ is that it is
much easier (and more flexible) than being forced to de-
sign a family qw satisfying qw ≈ πw . But self-normalized
importance sampling is well known to struggle [31] even
when the reverse KL divergence is small, and we still need
to take draws from πw once the coreset is built. The ap-
proach of directly designing qw requires more up front
effort, but the optimization is well behaved, and one can
obtain i.i.d. draws directly from qw afterward.

A comparison of current state-of-the-art algorithms—
first- and second-order methods with draws from πw us-
ing MCMC [33, 129], direct surrogate variational meth-
ods with qw ≈ πw [34] and parametrized surrogate vari-
ational methods using qλ ≈ πw [113]—has not yet been
fully explored and is a direction for future research.

Optimization guarantees. Although variational infer-
ence in general is nonconvex, the coreset variational in-
ference problem equation (34) facilitates guarantees. In
particular, Naik, Rousseau and Campbell [129] obtain ge-
ometric convergence to a point near the optimal coreset
via a quasi-Newton optimization scheme:∥∥wk − w�

k

∥∥ ≤ ηk
∥∥w0 − w�

0
∥∥ + δ,(41)

where wk is the kth iterate, and w�
k is its projection onto a

subset of optimal coreset weights (the optimum may not
be unique). The constants η and δ are related to how good
of an approximation the optimal coreset is. If the opti-
mal coreset is exact, then 0 < η < 1 and δ = 0. Note that
this guarantee assumes exact quasi-Newton steps, which
must be estimated via MCMC and data subsampling in
practice; Chen and Campbell [33] recently improved this
result to account for the use of both MCMC and subsam-
pling.

5.3 Open Questions and Future Directions

Recent advances in coreset construction methods and
theory have paved the way for a variety of new develop-
ments. In this section, we highlight important open prob-
lems and areas for investigation.

Complex model structure, data and symmetry. The
coresets methodology and theory is now starting to co-
alesce for the basic model setup in equation (30) with a
finite-dimensional parameter and conditionally i.i.d. data.
Many popular models do not fit into this framework, such
as certain network models [77], continuous time Markov
chains [7], etc. Even some models that technically do fit
in the framework of equation (30), such as certain hier-
archical models [15], may be better summarized if more
of their latent structure is exposed to the coreset construc-
tion algorithm. Some of these models involve O(N2) or
larger computational cost, and would greatly benefit from
a summarization approach.

Moving beyond the conditionally i.i.d. data setup, we
advocate thinking about this problem as model and data
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summarization, broadly construed, as opposed to just the
specific case of coresets. At an abstract level, Bayesian
coresets are just one particular example of how one can
construct a computationally inexpensive parametrized
variational family πw that provably contains (a distribu-
tion near) the true posterior π . In general, there is no rea-
son this has to be associated with a sparse, weighted sub-
set of data; we could, for example, summarize networks
with subgraphs [144], summarize high-dimensional data
with low-dimensional sketches [111], summarize expen-
sive, complicated neural network structures with simpler
ones [143], summarize expensive matrices with low-rank
randomized approximations [218], etc. The key question
is how to extend coresets, or summarization more broadly,
to more sophisticated models beyond equation (30).

We believe that the key to answering this question is
to understand the connections between Bayesian coresets,
subsampling, probabilistic symmetries and sufficiency in
statistical models; see, for example, [41, 96, 145]. Indeed,
the fact that Bayesian coresets work at all is a reflection of
the fact that one can use a small subset of data potentials
as “approximately sufficient statistics,” combined with the
symmetry of their generating process. Assuming a fruit-
ful connection is made, we expect that current Bayesian
coreset construction methods—which are based on sub-
sampling to select a “dictionary” of potentials, followed
by optimization to tune the approximation—will serve as
a good template in more general models.

Improved surrogates and optimization. Early Bayesian
coresets literature [78, 23, 22, 24] suffered from the re-
quirement of taking draws from πw both during and af-
ter construction. Sampling during construction poses a
particular challenge: if one intends to use MCMC to
take draws from πw , one needs to continually adapt the
MCMC kernel to a changing target πw as the weights w

are refined. Recent developments discussed in Section 5.2
suggest that an easier way to approach the problem is
to construct a tractable variational family qw such that
qw ≈ πw for all weights w—whether that is a normal-
izing flow [34], a variational annealed importance distri-
bution [79], or an optimized parametric surrogate [113]—
and then to tune the weights w so that qw ≈ π . The bene-
fit of this approach is the ability to take exact i.i.d. draws
and evaluate the density, which circumvents challenges
of adaptive in-the-loop MCMC tuning. A major question
is how to construct tractable, summarization-based varia-
tional families such that qw ≈ πw for all w.

For methods based on parametric surrogates [113] that
set qw = qλ�(w), where λ�(w) = argminλ DKL(qλ‖πw),
there are two major avenues for improvement. The first—
and more likely achievable—goal is in the optimization
of the parametric surrogate. In particular, the methodol-
ogy currently involves slow inner-loop optimization of
the surrogate, as well as potentially high-variance gradient

estimates based on self-normalized importance sampling.
Handling these two issues would be a major step forward
for this approach. The second important area for future
work—which may be far more challenging—is to provide
theoretical guarantees on the quality of the coreset that is
constructed using this method. The primary difficulty is
that the surrogate optimization is as hard to analyze as
other generic variational inference problems.

For methods based on direct surrogates [79, 34] where
qw ≈ πw for all w, there are again two major areas for
improvement. First, current methods involve Hamiltonian
dynamics, and so are limited in scope to models with mul-
tidimensional real-valued variables; future work should
extend these methods to models with a wider class of la-
tent variables. The second area is once again to obtain
rigorous theoretical guarantees on the quality of the sur-
rogate. This is likely to be much easier than in the general
parametric surrogate case above, as qw is designed to ap-
proximate πw directly, as opposed to just being a station-
ary point of a nonconvex optimization problem.

Privacy, pseudo-data and distributed learning. Dis-
tributed (or federated) learning, discussed in the next vi-
gnette, is a task in which data are stored in separate data
centers and the goal is to perform global inference given
all the data under the constraint that the data are not trans-
mitted between centers. Both exact [38, 30] and approxi-
mate [178, 18] methods exist to perform Bayesian infer-
ence in this setting. A common additional constraint is
that the data within each center are kept private, in some
sense, from the other centers.

Coresets provide a potentially very simple solution
to the distributed learning problem (both standard and
privacy-preserving). In particular, coresets are often com-
posable: if one builds subcoresets (independently and
without communication) for subsets of a data set, one can
combine these trivially to obtain a coreset for the full data
set [49]. Coresets have also been extended to the privacy-
aware setting, where one either trains pseudopoints with a
differentially private scheme [114] or appropriately noises
the coreset before sharing [50]. Subsequently, the data
centers can share their privatized summaries freely with
one another, or with a centralized repository that per-
forms inference. There is some initial work on distributed
Bayesian coresets constructed via sparse regression tech-
niques [24], Section 4.3, but this work was done prior
to the advent of modern construction methods. A natu-
ral next step would be to develop theory and methods for
distributed (privacy-preserving) Bayesian coresets, lever-
aging recent advances in coreset construction.

Amortized and minimax coreset construction. Bayesian
coresets are currently constructed in a model-specific
manner by minimizing the KL objective in equation (34).
In situations where multiple models are under consider-
ation in exploratory analysis or sensitivity analysis, for
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example, one would need to retune the coreset weights
for each model under consideration. Given that these re-
tuning problems all involve the same data, they should be
closely related but it is currently an open question how to
construct multiple related coresets efficiently.

One potential direction of future work is to formulate
a minimax optimization problem that is similar to equa-
tion (34), but where there is an outer maximization over
a set of candidate models. A major question along these
lines is whether it is actually possible to summarize a data
set with a single coreset of M � N data points such that
the coreset provides a reasonable approximation for the
worst-case model under consideration. Another possible
way to tackle the problem is to amortize the cost of multi-
ple coreset construction, in the spirit of inference compi-
lation [97]. Rather than constructing individual coresets,
we train a “coreset construction artifact:” a function that
takes as input a candidate model and data subsample, and
outputs a set of coreset weights. In other words, we learn
how to construct coresets. The most likely candidate for
such an artifact is a recurrent deep neural network, as is
commonly-used in methods like inference compilation.
A major question about this direction to consider is in
which data analysis scenarios the cost of building such an
artifact is worth the subsequent fast generation of coreset
weights.

High-dimensional data and models. The coresets ap-
proach is designed with a focus on large-scale problems in
the sense of the number of data points, N . But in practice,
modern large-scale problems tend to also involve high-
dimensional data and latent model parameters; the dimen-
sion may even grow with N . Empirical results have shown
that coresets can be effective in problems with 10–100-
dimensional data and parameters, while pseudocoresets
[114, 113]—summaries via optimized synthetic pseu-
dodata points, similar to inducing points for Gaussian
processes [183]—have been used successfully on larger
problems with 60,000-dimensional parameters and 800-
dimensional data. But theoretical results on when we ex-
pect (pseudo)coresets to work well in high-dimensional
settings are limited.

We begin with a negative (albeit pathological) example.
When a large fraction of the potential functions (fn)

N
n=1

encode unique information in the posterior, the coresets
approach breaks down; it is not possible to maintain a
good posterior approximation upon removing potentials.
Manousakas et al. [114], Proposition 1, makes this intu-
ition precise with a simple example. In a d-dimensional
Gaussian location model with prior θ ∼ N (0, I ), likeli-

hood N (θ, I ), and data generated via xn
i.i.d.∼ N (0, I ), the

optimal coreset of any size M < d satisfies

(42) DKL(πw�‖π) � d as d → ∞,

with high probability.1 In some sense, this is unsurpris-
ing; the Gaussian location model with large d , despite its
mathematical simplicity, is a worst-case scenario for data
summarization, as one needs at least d potential functions
fn to span a d-dimensional space.

But in practice, high-dimensional data do not typically
exhibit this worst-case behavior; they often instead ex-
hibit some simpler, lower-dimensional structure. Devel-
oping (pseudo)coreset methods that take advantage of that
structure is a key step needed to make summarization
a worthwhile approach in large-scale modern problems.
Furthermore, assuming that the coreset size should gen-
erally increase with dimension, additional work is needed
to understand how the difficulty of the stochastic weight
optimization scales. It is worth investigating whether the
recently developed literature on data distillation in deep
learning [211] contains any insights applicable to the
Bayesian setting.

Improved automation and accessibility. Recent ad-
vances in research have, for the first time, made coresets
a practical approach to efficient Bayesian computation.
However, there is still much work to do to make their use
possible by nonexperts. First and foremost, there is a need
to develop a general, well-engineered code base that inter-
faces with common probabilistic programming libraries
like Stan and Turing [27, 55]. In addition, there is a need
for automated methods to (a) select coreset weight opti-
mization tuning parameters, (b) select coreset size and (c)
assess and summarize the quality of the coreset.

Other divergences. Currently, all variational coreset
construction approaches optimize the reverse Kullback–
Leibler divergence. A straightforward direction for future
work would be to investigate the effect of using alterna-
tive divergences, for example, the Rényi divergence [102]
or χ2 divergence [42], in equation (34). These will all
likely pose similar issues with the unknown normalization
constant Z(w), but divergences other than the reverse KL
may provide coresets with distinct statistical properties.

Other construction algorithms. Coresets are an area of
active development outside of Bayesian statistics [11,
49], and recent techniques from that literature (e.g., halv-
ing [155]) may be helpful in the Bayesian context. How-
ever, a point of caution: a good coreset for optimization
may be a disastrously bad coreset for Bayesian inference,

1The result by Manousakas et al. [114] is stated in terms of the in-

verse CDF of a χ2 distribution with d − M degrees-of-freedom. The
�(d) lower bound follows directly by noting that X ∼ χ2(d − M)

implies

(43)
X − (d − M)√

2(d − M)

d→ N (0,1) d → ∞.
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and vice versa, as the appropriate coreset objective func-
tion in each case differs substantially. For example, while
subsampling and importance weighting remains a popu-
lar and useful method in the optimization context, they
are known to provide poor Bayesian posterior approxi-
mations.

6. DISTRIBUTED BAYESIAN INFERENCE

Distributed methods for Bayesian inference address the
challenges posed by massive data using a divide-and-
conquer technique. We reiterate the three main groups of
distributed methods introduced in the motivation. The first
class of methods is the simplest and has three steps: divide
the data into disjoint subsets and store them across multi-
ple machines, run a Monte Carlo algorithm in parallel on
all the machines, and combine parameter draws from all
the subsets on a central machine. The last step requires
one round of communication, so these approaches belong
to the class of one-shot learning methods [213, 123, 132,
185, 214, 178, 123, 134, 177, 66, 38, 222, 84, 220, 122,
67, 68, 119, 40]. They differ mainly in their combination
schemes and are based on a key insight that the parame-
ters drawn on the subsets provide a noisy approximation
of the true posterior distribution.

The second class of methods relies on distributed ex-
tensions of stochastic gradient MCMC [4, 94, 32, 48],
which are typically based on stochastic gradient Langevin
dynamics (SGLD) [217, 108]. They also split the data
into subsets but have several rounds of communication
among the machines. In every iteration, they select a sub-
set with a certain probability, draw the parameter using a
SGLD-type update, and communicate the parameter draw
to the central machine. The high variance of the stochas-
tic gradients and high communication costs in distributed
SGLD extensions have motivated the development of the
third set of methods [20, 157]. They are stochastic exten-
sions of global consensus methods for distributed opti-
mization, such as Alternating Direction Method of Multi-
pliers (ADMM) [17, 150]. They divide the data into sub-
sets, store them on machines, and augment the posterior
density with auxiliary variables, which are conditionally
independent given the parameter and observed data. Un-
der certain limiting assumptions, the distribution of the
parameter given the observed data converges to the tar-
get. The conditional independence assumption is crucial
for drawing the auxiliary variables in parallel, whereas
the limiting condition ensures asymptotic accuracy. Every
iteration consists of synchronous updates where the ma-
chines storing the data draw the auxiliary variables and
send them to the central machine that uses them to draw
the parameter [200, 167, 201, 157, 202].

Distributed Bayesian methods have three main advan-
tages. First, most are algorithm-agnostic and are easily
used with any Monte Carlo algorithm. Second, distributed

methods come with asymptotic guarantees about their ac-
curacy. Such results show that approximated and target
posterior distributions are asymptotically equivalent un-
der mild regularity assumptions. Finally, they are easily
extended to handle application-specific constraints, such
as clustering of samples in nonparametric models [136]
and privacy-preserving federated learning [86].

We cover the basics of distributed Bayesian inference
and recent advances in Section 6.1–Section 6.3, and dis-
cuss future research directions in Section 6.4.

6.1 One-Shot Learning2

We provide a brief overview of one-shot learning, for
which a wide variety of methods are available in the
literature. We start with the most common setup that
assumes the observations are conditionally independent
given the parameter, leading to a product form for the like-
lihood. Let xn = (x1, . . . , xn) denote the observed data.
The model is specified using the distribution Pθ with den-
sity p(x|θ) and p-dimensional parameter θ ∈ � ⊆ R

p .
Assume that xn is randomly partitioned into K disjoint
subsets. Let x(j) = {x(j)1, . . . , x(j)M} be the j th subset
(j = 1, . . . ,K), where we have assumed that all the sub-
set sample sizes equal M and n = KM for simplicity. The
true and subset j likelihoods are �n(θ) = ∏n

i=1 p(xi |θ)

and �jM(θ) = ∏M
i=1 p(x(j)i |θ). Let � be a prior distri-

bution on � with density π(θ). Then the posterior den-
sity of θ given xn is πn(θ |xn) = �n(θ)π(θ)/Cn, where
Cn = ∫

� �n(θ)π(θ) dθ and Cn is finite.

6.1.1 Consensus Monte Carlo. Consensus Monte Car-
lo (CMC) and its generalizations leave the likelihood on
the subsets unchanged and down-weight the prior. They
exploit the observation that the full data posterior can be
factored as a product of subset posteriors with tempered
priors [178]:

πn

(
θ |xn) = C−1

n

K∏
j=1

{
π(θ)

}1/K
�jM(θ)

∝
K∏

j=1

πM(θ |x(j)) ≡
K∏

j=1

πj (θ).

(44)

Here, πM(θ |x(j)) (or πj (θ)) is the j th subset posterior
density of θ computed using likelihood and prior �jM(θ)

and {π(θ)}1/K . Let θ(j)t be the parameter draws obtained
from πj (θ) using a Monte Carlo algorithm (j = 1, . . . ,K ;
t = 1, . . . , T ) and π̂j (θ) be an estimate of πj (θ) obtained
using θ(j)t s. Then

∏K
j=1 π̂j (θ) is proportional to an es-

timate of πn(θ |xn). If πj (θ)s are Gaussian, then so is
πn(θ |xn), implying that the weighted averages of θ(j)t s
correspond to draws from πn(θ |xn) [178]. More accurate

2The literature refers to one-shot learning methods as divide-and-
conquer, embarrassingly parallel or single communication methods
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combination algorithms estimate πj (θ) using kernel den-
sity estimation [132], Weierstrass transform [213], ran-
dom partition trees [214], Gaussian process regression
[134] and normalizing flows [119], where the last two ap-
proaches also use importance sampling to select promis-
ing θ(j)t s for better approximation accuracy.

6.1.2 Subset posterior distributions. The methods ba-
sed on subset posterior distributions up-weight the sub-
set likelihoods but leave the prior unchanged. They draw
parameters from the subset posteriors using any Monte
Carlo algorithm and obtain their empirical approxima-
tions. The distributed posterior distribution, which ap-
proximates the true posterior, combines the empirical ap-
proximations of subset posteriors via a geometric center
or mixture.

Median and mean posterior distributions. These meth-
ods combine the subset posterior distributions using their
geometric center, such as the median and mean poste-
rior distributions. The main difference between them and
CMC-type approaches is the definition of subset posterior
densities. Specifically, the j th subset posterior density is

πM(θ |x(j)) = C−1
M

{
�jM(θ)

}K
π(θ) ≡ π̃j (θ),(45)

where CM = ∫
�{�jM(θ)}Kπ(θ) dθ is assumed to be finite

for posterior propriety. The pseudo-likelihood {�jM(θ)}K
in equation (45) is the likelihood of a pseudo sample re-
sulting from replicating every sample in the j th subset
K times [123]. This pseudo-likelihood ensures the pos-
terior variance of the subset and true posterior densities
are calibrated up to oP (n−1) terms [99, 123, 185]. Simi-
lar to the CMC-type methods, θ(j)t s are drawn in parallel
from π̃j (θ)s using any Monte Carlo algorithm. Let �̃j be
the j th subset posterior distribution with density π̃j (θ).
Then its empirical approximation supported on the θ(j)t s
is �̂j = T −1 ∑T

t=1 δθ(j)t
(·), where δθ (·) is the delta mea-

sure supported on θ . The median and mean posterior dis-
tributions are approximated using empirical measures �̂∗

and �̂ that are supported on θ(j)t s. The weights of θ(j)t s
are estimated via optimization such that

∑K
j=1 d(�̂∗, �̂j )

and
∑K

j=1 d2(�̂, �̂j ) are minimized, respectively, where
d is a metric on probability measures [123, 185]. In cer-
tain cases, the form of the mean posterior is tractable [99,
182]; for example, if θ is one-dimensional and d is the
2-Wasserstein distance, then the αth quantile of the mean
posterior equals the average of αth quantiles of the K sub-
set posteriors.

Mixture of recentered subset posteriors. The final com-
bination algorithm uses a K-component mixture of recen-
tered subset posterior densities in equation (45). Let θ(j)

be the mean of πM(θ |x(j)) and θ = ∑K
j=1 θ(j)/K . Then

the distributed posterior distribution with density

π̃
(
θ |xn) =

K∑
j=1

1

K
π̃j (θ − θ + θj ),(46)

approximates πn(θ |xn), where π̃j is defined in equation
(45) [222, 220]. To generate draws from π̃(θ |xn) in equa-
tion (46), we obtain the empirical approximation of the
distributed posterior �̃ with density π̃(θ |xn) as

ˆ̃
� =

K∑
j=1

T∑
l=1

1

KT
δ
θ̂+θ(j)l−θ̂j

(·),(47)

where θ̂j = ∑T
l=1 θ(j)l/T and θ̂ = ∑K

j=1 θ̂j /K . The K-

mixture ˆ̃
� and geometric centers �̂∗, �̂ are similar in

that the atoms of the empirical measures are transfor-
mations of the subset posterior draws. The main differ-
ence between them lies in their approach to estimating

the weights of the atoms. All the atoms of ˆ̃
� have equal

weights (i.e., (KT )−1), whereas the atom weights of �̂∗

and �̂ are nonuniform and estimated via optimization al-
gorithms.

Asymptotics. The large sample properties of the poste-
rior estimated in one-shot learning, denoted as �D,n, are
justified via a BvM theorem; however, these results are
only known for the methods based on subset posterior
distributions [99, 123]. A BvM for �D,n shows that it is
asymptotically normal under mild assumptions as K and
n tend to infinity. The center of the limiting distribution is
specific to the combination algorithm, but the asymptotic
covariance matrix equals I−1

0 /n for all of them, where I0
is the Fisher information matrix computed using Y ∼ Pθ0 .
This shows that the asymptotic covariance of the true and
distributed posteriors are calibrated up to oP (n−1) terms.
Under these assumptions and for a bounded �,∥∥�D,n

(·|xn) − �n

(·|xn)∥∥
TV � ‖θ̃ − θ̂‖2,(48)

where ‖ · ‖TV is the total variation distance, θ̂ is the maxi-
mum likelihood estimate (MLE) of θ computed using xn,
and θ̃ is a center of the K subset MLEs of θ : θ̂1, . . . , θ̂K .
They satisfy ‖θ̂j − θ0‖2 = OP (M−1/2), so ‖θ̃ − θ0‖2 =
OP (M−1/2) because θ̃ is a center of the subset MLEs.
Furthermore, ‖θ̂ − θ0‖2 = OP (n−1/2) and combining it
with the previous result and cancellation of leading order
terms imply that ‖θ̃ − θ̂‖2 = oP (M−1/2), which does not
scale in K [99]. This shows that the bias of �D,n in ap-
proximating �n does not decrease as K increases and K

does not generally impact the approximation accuracy of
�D,n, unless θ̃ is a root-n consistent estimator of θ0.

Notable recent advances. Methods based on subset
posteriors have been generalized to dependent data. In
time series data, smaller blocks of consecutive observa-
tions form the subsets to preserve the ordering of samples.
A measure of dependence, such as the mixing coefficient,
dictates the choice of K . The subset pseudo-likelihood
in equation (45) is modified to condition on the immedi-
ately preceding time block to model the dependence and
is raised to a power of K . For one-shot learning in hidden
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Markov models with mixing coefficient ρ, the distributed
posterior estimated using equation (47) with the modi-
fied pseudo-likelihood and K = o(ρ−M) satisfies equa-
tion (48) [207]. These results have been generalized to a
broader class of models, but guidance on the choice of K

remains underexplored [146].
Posterior computations in Gaussian process (GP) re-

gression fail to scale even for moderately large n [164,
12]. To address this challenge, various methods based on
variational inference and mixtures-of-experts have been
proposed in the past, but none exploit distributed com-
putations [195, 163, 64, 39]. One-shot learning has ad-
dressed this challenge without strong theoretical guaran-
tees [123, 185, 230]. The choice of K here depends on
the smoothness of the regression function. Assuming a
higher order of smoothness of regression functions guar-
antees accurate estimation on the subsets for larger values
of K . Specifically, if the regression function is infinitely
smooth, the predictor lies in [0,1], and K = O(n/ log2 n),
then the decay rates of estimation risks for the distributed
and true posterior distributions depend only on n and
are asymptotically equivalent. In more general problems
where the regression function belongs to the Hölder class
of functions on [0,1]D with smoothness index α, the up-
per bound for K depends on n, D and α for guaranteeing
optimal decay rate of the estimation risk [180, 67]. These
results have been generalized to varying coefficients mod-
els [68].

Adapting to the unknown smoothness of the regres-
sion function (i.e., α) is a related and more difficult chal-
lenge in distributed GP regression. The smoothness in-
dex of the regression function is unknown in practice, so
the goal is to construct distributed procedures that esti-
mate the smoothness using automatic data-driven tuning.
In a signal-in-white noise model and the previously men-
tioned models, the optimal guarantees of one-shot learn-
ing methods based on a GP prior depend on the unknown
smoothness index, which is a major limitation in practice
[186]. If the subsets communicate with a central machine
under constraints, then adaptation in this model is pos-
sible under the frequentist setting [232, 187]. The main
idea of these methods is to estimate different parts of the
regression function using groups of data subsets, followed
by a merging phase at the central machine that adjusts for
the true regression function’s unknown smoothness. Simi-
lar results are unavailable in distributed high-dimensional
Bayesian estimation.

Limitations. The main limitation of one-shot learning
methods is their reliance on the normality of the subset
posterior distributions. Scaling of the parameter draws on
the subsets helps in some cases but fails to generalize be-
yond the family of elliptical posterior distributions [182,
203]. De Souza et al. [40] identify three additional prob-
lems for one-shot learning. First, subset posteriors fail to

capture the support of a multimodal posterior with high
probability. Second, a subset posterior can be substan-
tially biased and fail to be a reasonable approximation of
the true posterior. Finally, subset posterior draws may fail
to provide information about the tails of the true posterior,
resulting in poor estimates of tail event probabilities and
overconfident inference. A key observation of [40] is that
communication among machines may be necessary for
improving the approximation accuracy of subset posteri-
ors; see [232, 187] for similar observations in distributed
nonparametric regression.

6.2 Stochastic Gradient MCMC

Stochastic gradient MCMC (SGMCMC) methods are
widely used for scalable Bayesian inference. The most
popular variant is based on the Langevin diffusion pro-
cess

dθ(t) = 1

2
∇ logπn

(
θ(t)|xn)

dt + dBt,(49)

where Bt is a p-dimensional Brownian motion. Under
mild regularity assumptions, �n(·|xn) is the stationary
distribution of θ(t) [172, 156]. In practice, one typically
uses a discrete-time Euler approximation of equation (49),

θt+1 = θt + h

2
gn(θt ) + εt , εt ∼ N (0, hI ),

gn(θ) = ∂

∂θ
logπ(θ) +

n∑
i=1

∂

∂θ
logp(xi |θ),

(50)

where θt+1 is the proposed θ value at the (t + 1)th iter-
ation and the approximation accuracy increases as h de-
creases. To correct for the approximation error in equation
(50), θt+1 is accepted with the probability in equation (3)
to guarantee that �n(·|xn) is the stationary distribution of
the {θt } chain.

SGMCMC algorithms based on equation (50) use
gn(θ), the gradient of logπn(θ |xn), for generating θ pro-
posals in an MH-type algorithm [170, 131]; however,
computation of gn(θ) requires cycling through all the
samples, which is prohibitively slow for a large n. SGLD,
based on stochastic gradient descent, bypasses this prob-
lem by sub-sampling a size m subset Sm of {1, . . . , n}
and proposing θ in the (t + 1)th iteration using a noisy
approximation of gn(θ) as

θt+1 = θt + ht

2
ĝn(θt ) + εt , εt ∼ N (0, ht I ),

ĝn(θ) = ∂

∂θ
logπ(θ) + n

m

∑
i∈Sm

∂

∂θ
logp(xi |θ),

(51)

where ĝn(θ) is a noisy estimate of gn(θ) and the step size
ht decreases to 0 such that

∑∞
t=1 ht = ∞ and

∑∞
t=1 h2

t <

∞ [217]. The factor (n/m) in equation (51) is similar to
the up-weighting of the subset likelihood by a power a
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K in equation (45). In practice, however, ht ∝ 1/n for
efficiency [20]. This produces a chain {θt } that does not
have the target as the stationary distribution, but it mimics
the true continuous-time Langevin dynamics closely, and
hence has “approximately” the right target. SGMCMC
has been generalized by replacing the Langevin dynam-
ics with other processes, resulting in stochastic gradient
Hamiltonian Monte Carlo (SGHMC) [108]; see [133] for
a detailed overview of different types of SGMCMC algo-
rithms and their theoretical properties.

Notable recent advances. The simplest SGMCMC ex-
tension replaces the uniform weights n/m in ĝn(θ) with
nonuniform weights wi for every i such that

∑
i∈Sm

wi =
n for any choice of Sm. The nonuniformly weighted gra-
dient estimator can have a lower variance than ĝn(θ)

in some applications [179]. Similar to this idea, sub-
sampling-based MCMC algorithms leverage survey sam-
pling techniques to construct unbiased estimates of the
log-likelihood. The unbiased estimate replaces the log-
likelihood in a sampling algorithm or yields an efficient
approximation of the acceptance probability in equation
(3); however, the application of these algorithms is cur-
rently limited to simple models such as logistic regression
[13, 161].

Distributed extensions of SGLD are useful in applica-
tions where the data are stored on K machines, and mov-
ing the data to a central location for subsampling is in-
feasible. The Distributed SGLD (DSGLD) algorithm has
been developed for such applications [4, 101]; however,
DSGLD has two major limitations [48]. First, the vari-
ance of the gradient estimate is significantly larger than in
SGLD. Second, the subsets require extensive communi-
cation to ensure convergence, resulting in computational
bottlenecks. This problem has been addressed using better
gradient surrogates with smaller variances [32, 48].

Limitations. The performance of SGMCMC algo-
rithms is sensitive to the choice of step size, yet there is
no standardized method for its selection. A common prac-
tical heuristic is to initially choose the largest step size
that avoids divergence. By incrementally decreasing the
step size from this starting point to successively smaller
values, one can approach the step size that optimizes the
algorithm’s performance.

Relatively few SGMCMC algorithms exist for infer-
ence in constrained spaces and dependent data models.
For constrained spaces, the popular choice is to project
the Langevin dynamics into the constrained space, but
this can result in slow convergence [20, 21]. The other
alternative is to model the manifold structure of parame-
ters, but this suffers from asymptotic bias on the boundary
of the parameter space [153]. Similar to one-shot learn-
ing methods, the primary challenge in developing SGM-
CMC extensions for dependent data models lies in ob-
taining reliable gradient estimates using subsets of data.

This has been achieved in hidden Markov and nonlinear
state-space models via nonoverlapping sequential parti-
tions of the data and under the assumption that the subsets
are nearly independent [109, 5]; however, the accuracy is
guaranteed only when subset sizes are sufficiently large,
which offsets the computational gains from subsampling.

6.3 Asymptotically Exact Data Augmentation

Asymptotically exact data augmentation (AXDA) gen-
eralizes data augmentation (DA) using stochastic exten-
sions of global consensus optimization algorithms such as
ADMM [167, 200, 201]. AXDA has subset-specific aux-
iliary variables z = (z1, . . . , zK) ∈ ∏K

k=1 R
M and a toler-

ance parameter ρ ∈ R+, which are analogous to “miss-
ing data” in DA and the tolerance parameter in ADMM,
respectively. An ADMM algorithm exploits the decom-
posability of the objective to efficiently find the optimum
value through a sequence of conditional minimizations.
The advantages of ADMM are that it is readily paral-
lelized and has superior convergence properties; see [17]
for details. AXDA exploits conditional independence of
missing data given observed data and parameters. Using
the notation in equation (44), z is chosen such that the
augmented density satisfies

πρ

(
θ, z1, . . . , zK |xn) ∝ π(θ)

K∏
k=1

�k,ρ(θ, zk),(52)

where �k,ρ(θ, zk) = pk(zk, x(k))κρ(zk, θ), κρ is a kernel
such that κρ(·, θ) converges weakly to δθ (·) as ρ → 0
and pk(zk, x(k)) is such that limρ→0

∫
�k,ρ(θ, zk) dzk =

�kM(θ) = ∏M
i=1 p(x(k)i |θ); that is, zk and (zk, x(k)) are

missing and complete data on subset k, and z preserves
the observed data model as ρ → 0, justifying that AXDA
is asymptotically exact.

The advantage of the density in equation (52) is that the
zks are conditionally independent given θ . In every iter-
ation, zks are drawn in parallel on the machines storing
x(k)s. These draws are communicated to the central ma-
chine that uses them to draw θ and generates a Markov
chain for θ , whose stationary density equals πn(θ |xn) un-
der mild assumptions. AXDA has been used for Bayesian
inference in generalized linear models and nonparametric
regression [167, 201], but proper choices of pk(zk, x(k)),
ρ and κρ limit the broader application of AXDA. Vono,
Paulin and Doucet [202] and [157] develop AXDA us-
ing ADMM-type variable splitting and Monte Carlo al-
gorithms based on Langevin dynamics. Like DSGLD, re-
peated communications among the machines diminish the
computation gains from distributed sampling on the sub-
sets.

6.4 Open Questions and Future Directions

This section highlights the additional limitations of
distributed inference methodology, important open prob-
lems, and areas for future investigation.
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High-dimensional and dependent data models. A va-
riety of options exist for distributed Bayesian inference
in independent data models, but they fail to general-
ize to high-dimensional models. The literature on dis-
tributed methods for inference in high-dimensional mod-
els is sparsely populated [84]. The development of dis-
tributed methods that exploit the low-dimensional struc-
ture in high-dimensional problems is desired.

Most distributed methods assume that the likelihood
has a product form; see equation (44). This assumption
fails for many time series and spatial models. There are
one-shot learning methods for hidden Markov models
[207], but they are inapplicable beyond the family of ellip-
tical posterior distributions. No dependent data extensions
are available for DSGLD and AXDA algorithms.

Bias and variance reduction. The bias between the true
and distributed posterior in one-shot learning fails to de-
cay as K increases. For parametric models, equation (48)
shows that the distributed posterior distribution has a bias
of the order oP (M−1/2), which is suboptimal compared to
oP (n−1/2) order bias of the true posterior. This means that
increasing K has no impact on the accuracy of the dis-
tributed posterior. One way to bypass this problem is by
centering the distributed posterior at a root-n consistent
estimator; see [207]. Addressing this problem is useful
for Bayesian federated learning, where one-shot learning
is increasingly used due to its simplicity [86]. Similarly,
developing gradient surrogates with smaller variances is
crucial for Bayesian federated learning using SGMCMC
algorithms.

Asynchronous updates. Synchronous updates are cru-
cial for convergence guarantees of DSGLD and Monte
Carlo algorithms based on AXDA; however, they become
expensive with increasing number of subsets, resulting in
diminishing benefits of distributed computations. Asyn-
chronous updates bypass such problems when the subset
sizes are similar, but they imply that the {θt } chain is not
Markov, which rules out conventional tools for proving
convergence guarantees. Recently, asynchronous DA has
been developed for high-dimensional variable selection
and mixed effects models, demonstrating the benefits of
multiple rounds of communication among the subsets un-
der a fixed communication budget [231]. The extensions
of this scheme to a broader class of models, including
asynchronous DSGLD and AXDA, remain unknown.

Generalized likelihoods. Bayesian inference using gen-
eralized likelihoods has several advantages, including ro-
bustness and targeted inference; however, the current liter-
ature on distributed inference relies heavily on exploiting
the structure of a traditional Bayesian hierarchical model.
Preliminary results are available on the commonalities be-
tween AXDA and approximate Bayesian inference [201].

For broader applications, it is interesting to explore dis-
tributed extensions of the cut posterior in misspecified
models [158] and distributed inference in Bayesian mod-
els based on generalized likelihoods.

Applications. Distributed Bayesian inference has found
applications in federated learning [86]. These methods
are ideal for Bayesian analysis of multicenter longitudi-
nal clinical studies because the data cannot be moved to a
central location due to privacy concerns. Similar privacy
concerns arise in industry applications in which moving
user data around incurs a security risk. It is of interest
to develop privacy-preserving extensions of distributed
methods targeted to these applications.

Comparing to competitors. Different approaches to
distributed Bayesian inference have developed more or
less independently. While there are comprehensive over-
views of specific methods, such as SGMCMC [133] and
expectation propagation [198], thorough comparisons be-
tween these methods are lacking. Similarly, incorporating
active learning into CMC applications has been shown
to enhance CMC’s accuracy [40], yet the advantages of
CMC over other one-shot learning alternatives remain
unclear. Furthermore, empirical and theoretical analyses
comparing SGMCMC with one-shot learning techniques
are absent from the literature. For instance, determining
the conditions under which DSGLD outperforms one-shot
learning in high-dimensional settings is particularly valu-
able.

Bayesian coresets employ subsampling to efficiently
approximate posterior densities with a surrogate. The
asymptotic results discussed in Section 6.1 suggest that
the surrogate posterior may be biased owing to the re-
duced sample size, yet a comprehensive analysis of this
issue has not been conducted. In contrast, the rate of con-
vergence results for analogous frequentist methods that
utilize subsampling are well established in a variety of
settings [210, 209, 208, 226]; therefore, a promising av-
enue for research is to derive similar optimality results for
the surrogate posterior obtained using Bayesian coresets.

Automated diagnostics and accessibility. Automated
application and model diagnostics for distributed methods
have received little attention. One-shot learning methods
are often easily implemented using the parallel R pack-
age [190]; however, a similar general-purpose software
for deploying distributed algorithms in practice remains
to be developed. Addressing these challenges is crucial in
facilitating the wide applicability of distributed methods.

7. DISCUSSION

Tools for Bayesian computation are evolving at a rapid
pace, thanks largely to recent developments in machine
learning. We highlighted this phenomenon with four vi-
gnettes. The first vignette discussed sampling with the
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aid of generative models, particularly normalizing flows.
Normalizing flows define a new flexible family of pro-
posal distributions with efficient, automatic proposal tun-
ing as a key advantage over traditional methods that re-
quire manual parameter selection (e.g., selecting temper-
ature schedules in parallel tempering). If sampling suc-
ceeds, then evaluating posterior expectations is trivial.
Unfortunately, there are many posteriors for which stan-
dard sampling algorithms either fail to mix or are too
computationally expensive. We discussed two approaches
to reduce computational burden for large data: coresets
and federated learning. Coresets take a variational ap-
proach to data compression, with recent methods leverag-
ing deep neural networks to build flexible surrogate fam-
ilies; federated Bayesian learning methods instead dis-
tribute posterior computation over many computers. Fed-
erated learning methods may be faster if large-scale dis-
tributed resources are available. The remaining vignette
covered variational inference, which replaces the pos-
terior with a tractable approximation and is especially
useful when sampling is infeasible or computational re-
sources are limited.

Many more vignettes could be written on similar top-
ics, such as accelerating sampling with diffusion-based
generative models or accelerating approximate Bayesian
computation using deep neural networks for data com-
pression. We close with three themes, applicable to all
vignettes, that we believe should receive future atten-
tion: accelerating inference using previous calculations,
improving accessibility with new software and providing
theoretical support for empirically promising algorithms.

The status-quo in Bayesian computation is to start from
scratch in each posterior inference problem, such as re-
computing coresets after changing the prior, or estimat-
ing a new variational approximation when applying an
old model to new data. This is inefficient, as posterior in-
ference in similar models must be somewhat informative
about posterior inference in the current model. If the two
models under consideration are directly comparable, such
as posteriors under slightly different priors, then it may
be easy to leverage previous calculations, for example, by
using warm starts in optimization routines. Problems arise
when the two models have different dimensions, such a
hierarchical models with an extra layer of parameters. We
are hopeful that methods for similar problems in machine
learning—particularly transfer learning—will play a role
in developing general solutions for Bayesians.

Another common theme was the need for improved
automation and accessibility. Implementing methods in-
volving neural networks or other machine learning tech-
niques in a robust and reliable fashion is a nontrivial task,
often requiring significant time and expert knowledge.
Given the breakneck speed at which machine learning

progresses, careful implementations can be outdated be-
fore they have a chance for widespread adoption. The fo-
cus should be on developing software, which is modular
enough to withstand the next machine learning revolution,
as well as user-friendly enough to be applied en-masse.

Finally, statisticians should be cautious with wholesale
adoption of methods that achieve excellent practical per-
formance at the expense of theoretical guarantees. Fast
“approximations” to posterior distributions that can be ar-
bitrarily far from the exact posterior may be useful for
black box prediction but fall far short of what is needed
for reliable and reproducible Bayesian inferences. This
is particularly key in scientific and policy applications
in which one needs to appropriately characterize uncer-
tainty in learning from data, acknowledging complexities
that arise in practice such as model uncertainty, data con-
tamination etc. Guarantees are necessary to avoid highly
misleading inferences and potentially catastrophic con-
clusions from the types of large and complex data sets
that are being generated routinely in the sciences.
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