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Abstract. Software tools for Bayesian inference have undergone rapid evo-
lution in the past three decades, following popularisation of the first genera-
tion MCMC-sampler implementations. More recently, exponential growth in
the number of users has been stimulated both by the active development of
new packages by the machine learning community and popularity of special-
ist software for particular applications. This review aims to summarize the
most popular software and provide a useful map for a reader to navigate the
world of Bayesian computation. We anticipate a vigorous continued develop-
ment of algorithms and corresponding software in multiple research fields,
such as probabilistic programming, likelihood-free inference and Bayesian
neural networks, which will further broaden the possibilities for employing
the Bayesian paradigm in exciting applications.
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1. INTRODUCTION

In the past three decades, Bayesian inference has estab-
lished itself as a viable alternative to more classical ap-
proaches to statistical inference and is now a must-have
tool for every statistician’s toolbox. Many theoretical and
methodological developments have contributed to the suc-
cess of Bayesian statistics. However, no development has
been as important for mass adoption as was the emergence
of accessible and robust software.

Our goal with this paper is to introduce the reader to
the history, the state-of-the-art and the future of software
for Bayesian inference. We aim to provide the reader with
a comprehensive survey of popular software, key devel-
opments in statistics and computing that enabled the soft-
ware and the limitations and challenges faced. The paper
is aimed both at the Bayesian statistics practitioner and
those that are less familiar with the field and would like
to learn more about the Bayesian inference tasks and the
tools used to solve them.

Before we proceed, we briefly discuss the background
and introduce some basic terminology that we use
throughout the paper.

1.1 Bayesian Inference

The essence of the Bayesian approach to inference is
combining the chosen likelihood p(y|θ) and prior distri-
bution p(θ) of the parameters θ (or the joint distribution
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p(θ, y)) with the data y to compute the posterior distribu-
tion of the parameters p(θ |y). We do it with Bayes’ rule:

p(θ |y) = p(y|θ)p(θ)

p(y)

= p(y|θ)p(θ)∫
� p(y|θ)p(θ) dθ

∝ p(y|θ)p(θ).

The most common quantities of interest in Bayesian in-
ference are posterior properties of parameters or functions
thereof, which can be expressed in terms of expectations
over the posterior distribution p(θ |y):

E
(
g(θ)|y) =

∫
�

g(θ)p(θ |y)dθ.

Prior and posterior predictions, model selection and
other quantities of interest follow a similar pattern. Thus,
the main computational problem of Bayesian inference is
computing integrals.

Our choice of likelihood and prior rarely lead to a
closed-form solution for p(θ |y), which in most cases can
only be evaluated up to a multiplicative constant, and even
less often to a closed-form solution for the integral. There-
fore, computing the quantities of interest is a numerical
problem and is a challenge in itself.

1.2 Software for Bayesian Inference

For our discussion of software for Bayesian inference,
we divide the software components into three groups: the
modeling language, the computation methods and the util-
ities.

1.2.1 Modeling language. We use the term modeling
language in the broadest sense of a component that allows
the user to specify the likelihood, prior and data (from
now on, we use model to refer to all of these combined).
Alternatively, Bayesian inference can be done by spec-
ifying a generative model for p(θ, y) instead (see Sec-
tion 4.3) and some languages support specifying both. See
the Appendix for an illustrative example in different mod-
eling languages.

Every modeling language represents some kind of
trade-off between generality and accessibility. On one end
of the spectrum are expressive languages, such probabilis-
tic programming languages (PPLs) and general-purpose
programming languages like Python. On the other end,
we have software that allows for a single model or a lim-
ited number of options. And in between we have Bayesian
inference-specific declarative (e.g., WinBUGS [74]), im-
perative (e.g., Stan [21]), or formula-based languages
(e.g., R-INLA [71] and rstanarm [50]) that use syntax
similar to the formula object used by generalized linear
models (GLMs) in the core R stats package [100]), etc.

The choice of modeling language more so than any
other component determines the target user. Or, when the

software is designed with a target user in mind, no compo-
nent is more influenced by the requirements of the target
user than the modeling language. And, as demonstrated
by the variety of different modeling languages, Bayesian
inference users are a heterogeneous group and there is no
one-size-fits-all approach.

1.2.2 Computation methods. Once the model is spec-
ified, the next step is to perform the computation of the
posterior and other quantities of interest. Therefore, a
complete software for Bayesian inference must imple-
ment one or more Bayesian computation methods.

There is no method that is able to perform practically
feasible Bayesian computation for every model. There-
fore, many different computation methods have been de-
veloped, and each method represents a trade-off between
generality and efficiency. The computation method deter-
mines the class of models that can be computed and usu-
ally limits the software more than the modeling language.
That is, it is not uncommon that the modeling language
allows for the specification of models that the computa-
tion method is not able to compute, not even in theory.
And, as a rule, there always exist models that a computa-
tion method will not be able to deal with in practice, even
though it is able to do so in theory.

In this paper, our treatment of Bayesian computation is
from a Bayesian software perspective: we limit ourselves
to discussing methods that were key for the development
of software for Bayesian inference and listing the methods
implemented in the software. For details about the history
and the state-of-the-art of Bayesian computation, we refer
the reader to [80].

1.2.3 Utilities. With utilities, we refer to all software
components that do not fall in to the previous two groups,
but are still common in Bayesian software and convenient
if not essential to the Bayesian inference workflow (for a
detailed treatment of the Bayesian workflow, we refer the
reader to [41, 45]):

• Diagnosing Bayesian computation: Bayesian computa-
tion methods can and often do fail to find the optimum
solution or, in the case of Markov chain Monte Carlo
(MCMC), properly explore the posterior distribution.
Diagnostics tools are essential to identifying potential
issues before proceeding with the interpretation of the
results. Furthermore, most key methods are MCMC
and, therefore, sampling-based and approximate. Ap-
proximation error must also be quantified and included
in the interpretation of the results. Common diagnostics
are traceplots, Monte Carlo standard errors, effective
sample size (ESS), R̂ and simulation-based calibration
[119].

• Model validation and comparison: Prior, posterior
and model visualization, prior and posterior predictive
checks, (approximate) leave-one-out cross-validation
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and model evaluation criteria such as WAIC [134] and
computing Bayes factors. The modeling language de-
termines how easy or difficult it is to compute these
[20]. For example, for prior and posterior predictive
checks we have to draw samples from the prior p(y)

and posterior predictive distribution p(ynew|y). For
Bayes factors, we have to evaluate the marginal p(y)

and for cross-validation we have to evaluate the poste-
rior predictive p(ynew|y).

• Computation libraries: Matrix algebra libraries, sup-
port for probability distributions and other statistical
computation, support for high-performance computing
and automatic differentiation (AD) libraries.

• Interfaces: Often, Bayesian software provides the user
with only low-level command-line interface to the com-
putation, where the data and model are passed as files.
For convenience, interfaces are then developed that al-
low the user to access the computation from a popular
higher-level language such as Python and R.

• Documentation: This includes software documenta-
tion, language definition, examples, case studies and
other material that make it easier to use the software.

1.3 Scope and Organization

In part, this paper is a survey of the most popular and
historically most relevant software for general-purpose
Bayesian inference. We also include popular software that

serve a more specific purpose, for example, software that
provides only Bayesian computation of a utility or soft-
ware that focuses on a more narrow class of models.
When it comes to less commonly used and more specific
software, this paper is biased toward Python and R, the
two most popular languages for data analysis. See Ta-
bles 1 and 2 for an estimate of the relative popularity
of Bayesian software packages for Python and R, respec-
tively.

General-purpose Bayesian computation has had two
distinct periods, each dominated by a certain type of
Bayesian computation and software. From the early 1990s
to the 2010s, it was Gibbs sampling and the quintessen-
tial representative of software is BUGS. From the 2010s
up to now, it is Hamiltonian Monte Carlo (HMC) and the
quintessential representative is Stan. The first part of the
remainder of the paper roughly corresponds to these two
periods. In Section 2, we describe Gibbs sampling, the
typical structure of Gibbs sampling-based software and
the BUGS language. We also include software that might
have been developed later but is related to, was inspired
by or is a continuation of BUGS. Similarly, Section 3 fo-
cuses on HMC and Stan.

We dedicate Section 4 to software that we were not able
to meaningfully assign to either of the two periods. It fea-
tures software that focuses on computation, software that
targets a more specific class of models and the latest de-
velopments in Bayesian software and universal PPLs.

TABLE 1
Total Python Package index (PyPI) downloads for Bayesian inference-related Python packages referenced in this paper for the period between

January 1, 2022 and December 31, 2022. We obtained the information from the PyPI data set (bigquery-public-data.pypi). We include matplotlib
[63], the most popular Python package for statistical graphics, as a baseline for comparison. While these counts should in most cases be a

reasonable proxy for relative popularity, we have to keep in mind that users can also download these packages from other sources. Inclusion in
other packages and automated downloads can also bias the results

Package Download count Description

matplotlib 339,834,089 Python plotting package
pystan 30,416,188 Python interface to Stan, a package for Bayesian inference
cmdstanpy 30,061,999 Python interface to CmdStan
prophet 12,279,924 Automatic Forecasting Procedure
tensorflow-probability 10,666,937 Probabilistic modeling and statistical inference in TensorFlow
arviz 7,388,303 Exploratory analysis of Bayesian models
pymc3 4,278,991 Probabilistic Programming in Python: Bayesian Modeling and Probabilistic ML with Theano
pyro-ppl 3,383,969 A Python library for probabilistic modeling and inference
httpstan 1,854,832 HTTP-based interface to Stan, a package for Bayesian inference
emcee 1,143,412 The Python ensemble sampling toolkit for MCMC
pymc 682,274 Probabilistic Programming in Python: Bayesian Modeling and Probabilistic ML with PyTensor
numpyro 566,378 Pyro PPL on NumPy
dynesty 277,271 A dynamic nested sampling package for computing Bayesian posteriors and evidences.
bambi 125,998 BAyesian Model Building Interface in Python
elfi 75,236 Engine for Likelihood-free Inference
edward 61,403 A library for probabilistic modeling, inference and criticism
blackjax 42,843 Flexible and fast inference in Python
pyjags 20,140 Python interface to JAGS library for Bayesian data analysis
oryx 15,550 Probabilistic programming and deep learning in JAX
edward2 11,457 Edward2
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TABLE 2
Total RStudio [104] CRAN mirror downloads for Bayesian inference-related R packages referenced in this paper for the period between January 1,
2022 and December 31, 2022. We used the cranlogs package [26]. We include ggplot2 [135], the most popular R package for statistical graphics,
as a baseline for comparison. While these counts should in most cases be a good proxy for relative popularity, we have to keep in mind that users
can also download these packages from other CRAN mirrors or directly from code repositories. Also, some popular R packages are not available

on CRAN, for example, R-INLA, cmdstanr, the R interface to Stan or R2MultiBUGS, the R interface to MultiBUGS

Package Download count Description

ggplot2 31,457,872 Create Elegant Data Visualisations Using the Grammar of Graphics
mgcv 1,523,237 Mixed GAM Computation Vehicle with Automatic Smoothness Estimation
coda 1,190,640 Output Analysis and Diagnostics for MCMC
rstan 993,086 R Interface to Stan
loo 738,325 Efficient Leave-One-Out Cross-Validation and WAIC for Bayesian Models
bayestestR 599,283 Understand and Describe Bayesian Models and Posterior Distributions
prophet 338,276 Automatic Forecasting Procedure
posterior 314,669 Tools for Working with Posterior Distributions
bayesplot 308,747 Plotting for Bayesian Models
bnlearn 286,003 Bayesian Network Structure Learning, Parameter Learning and Inference
shinystan 272,855 Interactive Visual and Numerical Diagnostics and Posterior Analysis for Bayesian Models
BayesFactor 239,538 Computation of Bayes Factors for Common Designs
rjags 228,433 Bayesian Graphical Models using MCMC
brms 215,302 Bayesian Regression Models using Stan
MCMCpack 186,124 Markov Chain Monte Carlo (MCMC) Package
rstanarm 164,469 Bayesian Applied Regression Modeling via Stan
bridgesampling 155,278 Bridge Sampling for Marginal Likelihoods and Bayes Factors
R2WinBUGS 61,926 Running WinBUGS and OpenBUGS from R SPLUS
nimble 36,471 MCMC, Particle Filtering and Programmable Hierarchical Modeling
abc 36,251 Tools for Approximate Bayesian Computation (ABC)
R2OpenBUGS 27,284 Running OpenBUGS from R
greta 8453 Simple and Scalable Statistical Modeling in R
abctools 6404 Tools for ABC Analyses
EasyABC 5344 Efficient Approximate Bayesian Computation Sampling Schemes

We discuss the future of software for Bayesian infer-
ence in Section 5.

2. FIRST GENERATION—GIBBS SAMPLING-BASED

In the period between the early 1990s and early 2010s,
the most popular software for general-purpose Bayesian
inference was based on graphical models and Gibbs sam-
pling as the method of Bayesian computation.

The main assumption of this approach is that the con-
ditional independence between variables in our joint dis-
tribution p(V) = p(θ, y) can be represented by a directed
acyclic graph (DAG), where each variable is represented
by a node and every node is conditionally independent of
all other nodes, given its Markov blanket.

A model that admits such a representation is called a
Bayesian network and is a class of probabilistic graphi-
cal models (see the Appendix for an example). The joint
distribution can then be factored as

p(V) = ∏
v∈V

p
(
v|P(v)

)

and the full conditional of a node is

(1)

p(v|V/v) ∝ p(V)

∝ p
(
v|P(v)

) ∏
u∈V:v∈P(u)

p
(
u|P(u)

)
,

where P(v) are parent nodes of v.
A Markov chain that updates one node at a time using

its full conditional will converge to the posterior distribu-
tion under weak conditions. From a practical perspective,
this means that we only have to be able to iteratively sam-
ple from the full conditionals. Algorithm 1 is a summary
of the Gibbs sampling algorithm. A major appeal of the
algorithm is that there are no algorithm parameters that
need to be tuned, which is a useful property for automated
inference. For the purpose of sampling from a full condi-
tional, a hierarchy of samplers is typically used. Because
the model is stated in a symbolic way, it is straightfor-
ward to check the properties of the full conditional. In
most cases, the more specific the distribution, the more
efficient the sampling algorithm that we can use.

2.1 BUGS

The quintessential representative of this approach is
BUGS (Bayesian inference Using Gibbs Sampling) [112].
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The BUGS project started at the Medical Research Coun-
cil Biostatistics Unit in Cambridge in 1989. The BUGS
software evolved into WinBUGS [74, 76, 113], which up-
dated the BUGS language and the sampling algorithms,
and OpenBUGS, a GNU General Public License release
of WinBUGS that also runs on Linux (with some limi-
tations) [114]. BUGS, WinBUGS and OpenBUGS are no
longer developed, but the BUGS project has inspired other
software, which we discuss at the end of this section. A
detailed history of BUGS is provided by Lunn et al. [75].

The factorization from equation (1) is the basis for both
the BUGS language and the Gibbs sampling-based com-
putation. The BUGS language is a declarative language
in which the user states all the parent–child relationships
P(v) between the variables in the model. See the Ap-
pendix for an example of a Bayesian network model in
JAGS, a language which is very similar to WinBUGS.

For sampling from the full conditionals, WinBUGS im-
plements a different approach for each of the following
contingencies [74], Chapter 12.1:

• Discrete distribution: The inverse CDF method.
• Standard distribution: Standard algorithm for that dis-

tribution.
• Log-concave: Derivative-free adaptive rejection sam-

pling [46]. Many standard distributions are log-
concave, including the exponential family. The prod-
uct of log-concave is also log-concave, so it is common
for the full-conditional to be log-concave.

• Restricted range: Slice sampling [90].
• Unrestricted range: Current point Metropolis.

OpenBUGS includes block sampling methods that
jointly sample from groups of nodes that are likely to
be correlated based on the structure of the model. Block
updating solves one of the disadvantages of Gibbs sam-
pling: it is strongly dependent on the parameterization of
the model. If two variables have a high posterior correla-
tion but are updated independently using Gibbs sampling,
then the Markov chain will exhibit high autocorrelation
for both variables. Block updating of correlated nodes
solves this problem, which otherwise falls to the user to
solve by reparameterizing the model.

Algorithm 1 k—number of nodes, p(xj |x−j )—k full
conditionals, x0—starting value, m—number of samples

1: procedure GIBBS SAMPLING( )
2: for i ← 1 : m do
3: for j ← 1 : k do
4: x

(i)
j ∼ p(xj |x(i)

1 , . . . , x
(i)
j−1, x

(i−1)
j−1 , . . . , x

(i−1)
k )

5: end for
6: ith sample ← x(i)

7: end for
8: end procedure

A strong point of the BUGS PPL is that the distinction
between data and parameters is made at run time, based
on provided observations. Vectors can also be partially
observed, by leaving the unobserved elements unknown
(NA). This simplifies the simulation of draws for pos-
terior checks. Although WinBUGS focuses on Bayesian
networks, there is some limited support for undirected
graphs (factor models) as long as the entire subset of vari-
ables is represented as a single multivariate node so that
their values are sampled jointly. WinBUGS also supports
graphical model specification in plate notation with the
DoodleBUGS editor.

MultiBUGS [54] is a continuation of the BUGS project.
The major contribution of MultiBUGS is that it provides a
more efficient implementation and several parallelization
techniques. In a multicore environment, MultiBUGS can
be several orders of magnitude more efficient than Open-
BUGS.

R interfaces are available for WinBUGS, OpenBUGS
and MultiBUGS: R2WinBUGS [117], R2OpenBUGS
[126] and R2MultiBUGS.1

2.2 JAGS

JAGS (Just Another Gibbs Sampler) [96] is similar to
WinBUGS in its language and computation (see [74],
Chapter 12.6, for differences). Unlike WinBUGS and
OpenBUGS, which are written in Component Pascal,
JAGS is written in C++ and portable. This has con-
tributed to its popularity and the fact that is still being
actively developed. See the Appendix for an example of a
model written in JAGS.

JAGS (Just Another Gibbs Sampler) is a clone of BUGS
that has a completely independent code base but aims for
similar functionality, although it notably lacks a graphical
user interface (see [74], Chapter 12.6, for a summary of
differences). JAGS is written in C++ and runs on Win-
dows, MacOS and Linux. It is published under the GNU
General Public License, version 2. JAGS incorporates a
copy of the R math library, which provides high-quality
algorithms for random number generation and calcula-
tion of quantities associated with probability distributions.
The workhorse sampling method for JAGS is slice sam-
pling [90], which can be applied to both continuous- and
discrete-valued nodes. The “glm” module of JAGS in-
corporates efficient samplers for generalized linear mixed
models (GLMMs). These samplers are based on the prin-
ciple of data augmentation, a commonly used technique
to simplify sampling from a graphical model by adding
new nodes [58]. In this case, data augmentation reduces
GLMMs with binary outcomes [2, 62, 98] or binary and
Poisson outcomes [38] to a linear model with normal out-
comes. This reduction to a normal linear model allows

1https://github.com/MultiBUGS/R2MultiBUGS.

https://github.com/MultiBUGS/R2MultiBUGS
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block updating of all the parameters in the linear predic-
tor, which is much more efficient than Gibbs sampling.
The underlying engine for the linear model uses sparse
matrix algebra [29], which handles fixed and random ef-
fects simultaneously.

2.3 Nimble

Nimble [30], similar to BUGS, focuses on graphical
models. It is an extension of the BUGS language but also
implements a modeling language embedded in R, both of
which are compiled to C++. Several Bayesian compu-
tation methods are implemented, including Metropolis–
Hastings (MH), Gibbs sampling and sequential Monte
Carlo (SMC), and the user has the flexibility of assigning
different sampling methods to different nodes. Recently,
they have also added support for AD and HMC. See the
Appendix for an example of a model written in Nimble’s
R-embedded language.

3. SECOND GENERATION—HMC-BASED

The two main drawbacks of the BUGS-like approach
are the limited expressiveness of the language (imperative
language, no local variables, conditional statements, etc.)
and the inefficiency of computation. The single-node ex-
ploration of Gibbs sampling is inefficient when the nodes
are highly correlated in the posterior, in particular, when
the dimensionality in terms of parameters is high, it re-
verts to random walk behavior [59, 89].

The only MCMC algorithm that theoretically scales to
high dimensions on a broad class of models is HMC. In-
troductions to HMC have been provided, for example, by
Neal [91] and Betancourt [10], and a more detailed math-
ematical treatment by Betancourt [11].

HMC is a physics-inspired approach to proposing the
next state that uses the gradient of the target density for
a better understanding of its geometry. Hamiltonian dy-
namics consist of a d-dimensional position vector q and
a d-dimensional momentum vector p. The evolution of
the system as a function of “algorithmic time,” t , is deter-
mined by the function H(q,p) (the Hamiltonian) and the
ordinary differential equations

dqi

dt
= ∂H

∂pi

,
dpi

dt
= −∂H

∂qi

.

To simulate Hamiltonian dynamics, we need to dis-
cretize time with some step size ε. The most commonly
used method is the leapfrog symplectic integrator. Hamil-
tonian dynamics have several properties, which are im-
portant for HMC to work: they preserve the Hamiltonian,
they are reversible and they are symplectic, and thus vol-
ume preserving.

For HMC, the Hamiltonian H is typically chosen so
that it is separable: H(q,p) = U(q)+K(p), where U(q)

is the potential energy and K(p) the kinetic energy of the

system. The main idea of HMC is to use the Hamiltonian
to define a joint density of position and momentum:

p(q,p) ∝ e−H(q,p) = e−U(q)e−K(p).

Substituting U(q) = − logf (q), where f is propor-
tional to the density we want to sample from, and use
standard kinetic energy, we get

p(q,p) ∝ f (q)e− 1
2 pT M−1p.

The joint density p(q,p) can be seen as the target den-
sity over the position vector q augmented by an indepen-
dent multivariate Gaussian for the momentum vector p,
with mean 0 and covariance M .

Hamiltonian dynamics conserves the Hamiltonian, so
all states on a trajectory will have the same density p(·, ·).
That makes Hamiltonian dynamics suitable for proposing
the next state in an MCMC algorithm, because a trajectory
can propose a state far away in position q from the current
state, but still with acceptance probability 1. To reach ev-
ery possible state, we have to sample a new momentum.
Because the kinetic and potential energy parts of the joint
density are independent and we are sampling from the ac-
tual distribution of momentum p, this sampling leaves the
target distribution invariant. That is, p(q,p) remains the
stationary distribution of the Markov chain. In practice,
however, the leapfrog method, while being a stable sim-
ulation of Hamiltonian dynamics, will not conserve the
Hamiltonian exactly, and there will be relatively small
fluctuations. That is why we still have to apply a Metropo-
lis correction. Putting it all together, Algorithm 2 summa-
rizes the basic HMC algorithm.

The main ideas behind HMC had been known for more
than 20 years before HMC featured in popular Bayesian
software [33]. The key enabler of more automatic use of

Algorithm 2 f —a function proportional to our target
density, q0—starting value, ε—step size, L—number of
steps, M mass matrix, m—number of samples

1: procedure HMC
2: for i ← 1 : m do
3: p ∼ N(0,M) � resample momentum
4: get (q∗,p∗) with L leapfrog steps of size ε

from (qi−1,p)

5: α ← min{1, e−H(q∗,p∗)+H(qi−1,p)}
6: sample u ∼ U(0,1)

7: if u ≤ α then � Metropolis correction
8: qi ← q∗ � accept transition
9: else

10: qi ← qi−1
11: end if
12: end for
13: ith sample ← qi

14: end procedure
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HMC was the development of automatic differentiation
(AD; see [6] for an introduction and survey). Simulating
the Hamiltonian dynamics of HMC requires the gradient
of the density and in order for the software to be gen-
eral purpose, we must be able to compute the gradient for
any program the user can code. Of the four general ap-
proaches to computing derivatives, three will not work:
manually deriving them is not practical, numerical dif-
ferentiation via finite differences is too unstable due to
rounding and truncation errors and also is slow in high
dimensions and symbolic differentiation suffers from ex-
pression swell and leads to inefficient code. AD instead
exploits the fact that every program is a composition of
elementary operations and, as long as each elementary
operation also implements a derivative, we can apply the
chain rule to derive the gradient of the composition. This
leads to machine level precision of gradients. Most mod-
ern inference software implements or imports an AD li-
brary. An important limitation of HMC is that it can only
be used on smooth spaces.

A challenge in making HMC useful in general-purpose
Bayesian inference is automatically tuning its parame-
ters (mass matrix, step size, number of steps). HMC-
based software typically implements one or more warmup
phases for parameter tuning. Software then proceeds with
sampling and the warmup samples are discarded. The key
development was the no-U-turn sampler (NUTS) [59],
which is, with some modifications, still the core Bayesian
computation method in Stan. The basic idea of NUTS is to
have a dynamic number of steps by simulating the Hamil-
tonian trajectory until we detect a turn back toward the
starting state (or reach the maximum number of steps).
While promising alternatives for tuning the number of
steps, including more GPU computation friendly variants
[61, 60], NUTS is still the most common implementation
of HMC and is also available in most modern software for
general-purpose Bayesian inference.

HMC/NUTS admits several specific MCMC diagnos-
tics [10]: when the step size is too large to capture a fea-
ture of the target density (which can lead to nonnegligi-
ble bias), this is likely to manifest as a diverging simu-
lation, which can be detected and we can use a smaller
step size; reaching the maximum number of steps before
terminating the trajectory is an indication of inefficient
exploration; the Bayesian fraction of missing information
(BMFI) [9] quantifies how well momentum resampling
matches the marginal energy distribution and can be used
to detect poor adaptation during warmup or inefficient ex-
ploration.

3.1 Stan

Stan [21] is by far the most popular software for
general-purpose Bayesian inference. Stan is implemented
in C++, has a standalone command line interface, but

also has mature interfaces for Python and R (RStan [115],
PyStan [102]) and lightweigt wrappers for Python and R
(CmdStanPy [116], CmdStanR [39], BridgeStan2). There
are also interfaces for most languages that are tradition-
ally used for data analysis: Matlab (Matlabstan), Julia
(Stan.jl), Stata (StataStan), Mathematica (MathematicaS-
tan), Scala (ScalaStan) and http request-based interface
(httpstan).

While Stan implements black-box variational infer-
ence [69], Laplace approximation and standard optimiza-
tion methods, the core Bayesian computation method is
NUTS, a variant of HMC. Stan has a rich mathematics
library with AD [22], and OpenCL-based GPU support
with kernel fusion [23, 24].

The Stan PPL is an imperative language with which
the user specifies the computation of the (log-)posterior.
A program is divided into blocks, the most important of
which are data, parameters and model. See the Appendix
for an example of a model written in Stan. The distinc-
tion between data and parameters is made at compile time,
so changing a variable from data to a parameter (or vice
versa) requires moving it from the data to the parameter
block (or vice versa) and recompiling. Notable work on
the Stan language includes SlicStan [53, 51, 52], which
contains several improvements, and translating Stan to
Pyro [5].

Because of HMC-based computation, the class of mod-
els that can be fit by Stan are models with a smooth den-
sity. An important omission are models with discrete pa-
rameters, which currently have to be manually marginal-
ized out. This means that Stan does not subsume what
can be fit with BUGS and that HMC does not make
Gibbs sampling-based software obsolete. However, em-
pirical evidence suggests that, when applicable, Stan is
currently the go-to software for general-purpose Bayesian
inference [7].

The majority of Stan users are not writing the models
directly in the Stan language. There are several popular
packages that provide a simplified formula or options-
based modeling language for a mode specific class of
models and use a Stan backend for modeling and com-
putation: the R package brms [16] for modeling with hi-
erarchical models; Prophet [121] implemented in Python
[123] and R [122] for nonlinear time series forecasting
with trend, seasonality and holiday effects; and the R
package rstanarm [50] for a Bayesian analogue to R lm,
glm, aov, etc. Overall, there are more than 140 R packages
built on top Stan, providing easy-to-use interfaces for var-
ious types of models common in different applications.
The success of these packages is not only due to Stan,
but also due to increasing number of useful utilities in R,
Python and Julia.

2github.com/roualdes/bridgestan.

http://github.com/roualdes/bridgestan
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3.2 ADMB

AD Model Builder (ADMB) [37] was the first PPL
based on AD. It is similar to Stan in that data, parame-
ters and the likelihood and priors are described separately
and that a distinction is made between data and parame-
ters. ADMB is tailored more to the optimization-based in-
ference, but also implements MH, Laplace approximation
and HMC with manual tuning. A third-party implementa-
tion of NUTS for ADMB is available [84].

3.3 PyMC

PyMC [107] is a Python library for Bayesian inference.
It includes HMC, SMC and black-box variational infer-
ence. It is based on PyTensor,3 a Python mathematics li-
brary that is a fork of Aesara, and continuation of the
no longer developed Theano [8], which was the PyMC3
backend up to the current major release 4.0 and the re-
naming to PyMC. The computational graphs in PyMC
are transpiled to C-code, Numba or JAX [15] (a high-
performance AD library for running Pyton/NumPy code
on CPU, GPU and TPU), which allows for highly opti-
mized code. PyMC syntax is similar to other Bayesian
software PPLs. See the Appendix for an example of a
model written in PyMC. The Bambi (BAyesian Model-
Building Interface) package [19] is built on PyMC and
designed to simplify the use of hierachical GLMs.

4. OTHER SOFTWARE

4.1 R-INLA

R-INLA [71, 130] is a popular R package for Bayesian
inference with latent Gaussian models. This class of mod-
els does not require a PPL; instead, the models are speci-
fied with a standard R formula, similar to lm/glm in the
core R stats package [100] and extended formula syn-
tax for smooths and hierarchical (“random effect”) terms
similar as, for example, in the R package mgcv [137].
Latent Gaussian models, when the number of hyperpa-
rameters is moderate and some additional assumptions,
allow for efficient computation using integrated nested
Laplace approximation (INLA) [82, 105, 106], an ap-
proximate Bayesian computation method. For models that
meet these criteria, R-INLA is a very efficient alterna-
tive to MCMC methods and would be difficult to re-
place. A key feature of R-INLA is the support for con-
tinuous spatial models using the stochastic partial differ-
ential equation (SPDE) approach [4, 68, 72]. Recently,
the model representation has been improved and the inner
Laplace approximation have been replaced with a varia-
tional Bayes correction layer, to facilitate better scaling
properties with respect to data size, model size and num-
ber of computing cores [43, 131, 132]. This can be ex-
panded to variance, skewness and to correcting marginals
for hyperparameters.

3www.github.com/pymc-devs/pytensor.

4.2 Universal probabilistic programming languages

In related work there is currently no consensus on what
makes a PPL universal. But it is generally accepted that a
universal PPL program can have probabilistic operations
anywhere, for example, that not even the number of ran-
dom variables can be determined statically. We will use
the notion of inverting simulators used in [101], that is,
that the user codes a stochastic simulation and the PPL
framework is able to infer the properties of the simulation
given the observed data.

In this sense, BUGS, Stan and other languages men-
tioned so far are not universal PPLs; they can be viewed
as Bayesian inference-driven systems that streamline the
Bayesian inference workflow within classes of models for
which inference can easily be automated. Designing a uni-
versal PPL primarily focuses on having a general-purpose
language and then an inference framework that is able to
handle all the algorithms that can be specified. In theory,
a universal PPL subsumes Bayesian inference and it is ar-
guably easier to code a stochastic simulator than it is to
design an appropriate statistical inference. However, it is
not clear if inference can be automated and be efficient
enough for such a broad class of algorithms.

From a Bayesian statistics practitioner’s perspective,
universal PPLs are still more an object of research than
of general practical use. However, there have been many
promising developments. In the remainder of this section,
we highlight some of the more popular or recent universal
PPLs. Other relevant related works include early univer-
sal PPL languages: Church [48], Venture [79] and Angli-
can [128], Julia-based Gen [28], Turing.jl [44] (and its
more recent frontend DynamicPPL [120]) and Python-
embedded Edward/Edward2 [129].

4.2.1 Bean machine. [124] is Bayesian software and
a declarative universal PPL embedded in Python with a
PyTorch backend. In essence, Bean Machine allows for
a specification of a distribution over Bayesian networks
with possibly different numbers of variables. While im-
perative languages are becoming more common, includ-
ing the currently most popular Stan, the authors argue for
declarative PPLs over imperative ones. In particular, the
(possibly dynamic) dependency structure between vari-
ables is more easily recovered from a declarative model
description and that inference can more easily be adapted
to individual blocks of variables, including second-order
methods that are usually infeasible in higher dimensions.
Bean Machine implements several single-site samplers,
NUTS, Newtonian Monte Carlo and black box VI. It al-
lows for blocking of variables and custom proposers. See
the Appendix for an example of a model written in Bean
Machine.

http://www.github.com/pymc-devs/pytensor
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4.2.2 Birch. [88] is a universal PPL that transpiles to
C++, with GPU support. Users implement the joint dis-
tribution of their model in a generative manner, with
a preference for generic and object-oriented program-
ming paradigms. Inference methods are based on SMC
with gradient-based kernels. A defining feature of Birch
is support for automatic marginalization and automatic
conditioning. Much like AD, these recognize known
forms, such as conjugacies and discrete enumerations,
to marginalize out random variables where possible, and
condition them on later simulations where necessary. The
implementation of these is based on a heuristic known
as delayed sampling [87], which reveals these opportuni-
ties during program execution by deferring the simulation
of random variables for as long as possible. The result
is the automatic enhancement of inference methods with
features such as Rao–Blackwellization [87] and variable
elimination [136]. Birch has been demonstrated on prob-
lems where the number of random variables is unknown,
such as multiobject tracking [88] (where the number of
objects is unknown), and statistical phylogenetics [103]
(where the number of extinct side branches of a phy-
logeny is unknown). See the Appendix for an example
of a model written in Birch.

4.2.3 Pyro. [12] is a Python PPL built on the PyTorch
[93] backend. The main computation method in Pyro is
stochastic variational inference, so the software is aimed
at scalable probabilistic machine learning. NumPyro [94]
is a NumPy-based backend for the Pyro PPL that uses
JAX for AD and compilation to CPU/GPU.

4.2.4 Blang. [14] is an open source package for ap-
proximating posterior distributions over arbitrary spaces,
that is, Bayesian models containing not only integer and
real variables but also user-defined datatypes such as phy-
logenetic trees, random graphs and sequence alignments.
The Blang project includes a standard library of common
datatypes and distributions, written in the Blang language,
and extension points to create new datatypes and asso-
ciated distributions. Users can publish versioned Blang
packages containing new datatypes and distributions and
import contributed packages and their transitive depen-
dencies. The Blang language’s scoping rules are used to
automatically detect sparsity patterns and construct a type
of graphical model known as a factor graph. Based on
this factor graph, the posterior distribution is approxi-
mated via an adaptive nonreversible parallel tempering
algorithm [118], which by default is parallelized over the
user’s CPU cores, but can also be distributed over MPI
(Message Passing Interface) thanks to Blang’s integration
with the Pigeons distributed Parallel Tempering package.4

See the Appendix for an example of a model written in
Blang.

4https://github.com/Julia-Tempering/Pigeons.jl.

4.3 Likelihood-Free Bayesian Inference

Likelihood-free inference (LFI) methods such as ap-
proximate Bayesian computation (ABC) [110], Bayesian
synthetic likelihood (BSL) [99], machine learning-based
posterior approximations and surrogate likelihood meth-
ods [56, 25] refer to (mostly) Bayesian computation meth-
ods that can be used when it is impossible or infeasible to
evaluate the likelihood function, but a generative simula-
tor model exists. Such methods are popular, for example,
in astrostatistics, genetics, ecology, systems biology and
human cognition modeling. Engine for Likelihood-Free
Inference (ELFI) [73] is a Python package for LFI that
covers all the main approaches (ABC, BSL and ML-based
methods). ELFI has a modular design that consists of a
DAG-based modeling API and a separate API for infer-
ence, allowing a user to choose flexibly from a selection
of algorithms that generate a sample from the approxi-
mate posterior distribution. Sampling can be done using
adaptive Importance Sampling or MCMC/HMC, and with
or without the use of a surrogate model for the likeli-
hood function approximation. The surrogate model em-
ulates a target function using Gaussian processes (GPs)
and active learning (Bayesian optimization). The active
learning approach has been demonstrated to accelerate
likelihood-free inference up to several orders of magni-
tude. Other general-purpose ABC packages are Python
packages pyABC [108] and ABCpy [34], and R packages
abc [27], EasyABC [64], and abctools [92] and ABCreg
[127]. Neural network based surrogate models are acces-
sible via Python package sbi [125] and R package [3] pro-
vides a toolbox for BSL. More detailed surveys of ABC
software are provided by Nunes and Prangle [92] and
Kousathanas et al. [67].

4.4 Software That Focuses on Computation

Blackjax5 is a Python library of MCMC methods for
JAX. It works on CPU and GPU, is robust, efficient and
easily integrates with PPLs that provide densities com-
patible with JAX (TFP, Oryx, NumPyro, Aesara, PyTen-
sor/PyMC).

Emcee [35, 36] is a Python implementation of the
Affine Invariant MCMC ensemble Bayesian computation
method [49]. This derivative-free approach is suitable for
low-dimensional problems with black-box likelihoods,
which are common in astrophysics. Another Python pack-
age that is popular in astrophysics is dynesty [111], which
implements dynamic nested sampling [57].

Mamba.jl6 is a Julia package aimed at users who want
to use and develop MCMC methods. It implements sev-
eral MCMC methods (HMC, NUTS, Metropolis-within-
Gibbs, etc.) and MCMC diagnostics. Another popular

5https://github.com/blackjax-devs/blackjax.
6https://github.com/brian-j-smith/Mamba.jl.

https://github.com/Julia-Tempering/Pigeons.jl
https://github.com/blackjax-devs/blackjax
https://github.com/brian-j-smith/Mamba.jl
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Julia package that implements state-of-the-art Bayesian
computation methods is DynamicHMC.jl.7

4.5 Other General-Purpose Software

Other general purpose software includes Infer.NET
[83] is a machine learning library written in C# for the
.NET framework. It facilitates automatic approximate in-
ference for Bayesian networks and Markov random fields.
Bayesian computation is mostly limited to message pass-
ing. TensorFlow Probability (TFP) [31] is a Python li-
brary built on TensorFlow [1]. An example of a PPL with
a very compact syntax is greta [47], a PPL embedded in
R but based on TensorFlow and TFP. While limited in the
Bayesian computation methods provided, it is extensible.
See the Appendix for an example of a model written in
greta. Oryx8 is a PPL built on top of JAX. Journal of Sta-
tistical software also recently published a special issue
on Bayesian software [18], which includes some software
covered by this paper and other specialized software.

4.6 Popular Utilities and Specialized Software

CODA [97] is a still popular R package for post-
hoc diagnostics and analysis of MCMC output. ArviZ
[70] is a Python package, which provides MCMC di-
agnostics, model evaluation and model validation tools.
ArviZ is backend-agnostic and currently the most popu-
lar such tool in Python. The R package bridgesampling
[55] estimates marginal likelihoods, Bayes factors, poste-
rior model probabilities and normalizing constants. The
R package posterior [17] subsets, binds, mutates and con-
verts between formats of MCMC samples and includes
lightweight implementations of state-of-the-art posterior
inference diagnostics. BayesFactor [85] is an R pack-
age for computing Bayes factors for contingency tables,
one- and two-sample designs, one-way designs, general
ANOVA designs and linear regression. The R package
shinystan [42] provides a graphical user interface for in-
teractive Markov chain Monte Carlo (MCMC) diagnos-
tics and other tools for analyzing a posterior sample. The
procedures in shinystan are agnostic to what generated the
MCMC samples but with some added functionality for
models fit with RStan. The R package loo [133] performs
efficient approximate leave-one-out cross-validation for
Bayesian models fit using MCMC methods. The R pack-
age bayestestR [78] has tools for dealing with uncertainty
and effects in a Bayesian statistics framework. It is ag-
nostic of the software that generated the posterior sam-
ples and includes MAP estimates, measures of disper-
sion, ROPE and Bayes factors. The R package bayesplot
[40] has graphing functions for Bayesian models, in-
cluding posterior draws, visual MCMC diagnostics and

7https://github.com/tpapp/DynamicHMC.jl.
8https://github.com/jax-ml/oryx/.

graphical predictive checking. The R package projpred
[95] performs projection predictive variable selection for
Bayesian generalized linear and additive multilevel mod-
els fit using MCMC methods. The R package priors-
ense [66] performs efficient prior and likelihood sensitiv-
ity analysis for Bayesian models fit using MCMC meth-
ods. MCMCpack [81] is an R package that implements
MCMC-based computation for several statistical meth-
ods. Tools for structural learning and parameter estima-
tion of Bayesian networks include bnlearn [109], Bayes
Net for Matlab [86], HUGIN [77], VIBES [13], MSBNx
[65], along with commercial tools GEnIe/SMILE [32] and
Netica.9

5. CHALLENGES AND FUTURE PERSPECTIVES

The field of software for Bayesian inference has never
been more active or varied. There are developments in all
directions, providing better tools that allow for more ac-
cessible, robust or efficient treatment of typical modeling
as well as pushing the boundaries of what can be done.

Similar to programming languages, where one might
prefer Python for general-purpose programming, R for
data wrangling and visualization or the emerging Julia for
high-performance data analytics, there is no one-size-fits-
all approach to software for Bayesian inference. Stan is
the typical choice for Bayesian model building and infer-
ence, Pyro or TFP for Bayesian machine learning, and nu-
merous other tools for more specialized tasks. Such diver-
sity is understandable, because limiting the tool simplifies
it and allows for more efficient computation. While there
has been some encouraging progress in universal PPLs
and underlying Bayesian computation, it is not yet clear
if a novel trade-off between expressivity and efficiency
can be struck, leading to a third generation of tools.

As a result, users have to either accept the limitations
of their tool of choice to learn how to work with multiple
tools and languages. A natural solution would be to auto-
matically translate between languages or from statistical
notation into code, as illustrated in the Appendix. This is
a difficult problem, because languages differ in expressiv-
ity and even when they exist, automatic translations could
result in inefficient code. Regardless, there appears to be
a relative lack of incentive in this area.

A new PPL is most often learned from model examples
with code and data, or from translations from a language
we are already familiar with. So, it is not a surprise that
popular PPLs such as BUGS and Stan have extensive doc-
umentation, including user’s manuals, case studies and in
the case of Stan, examples of translations from BUGS to
Stan. Popular PPLs are also accessible on all popular plat-
forms and through major programming languages (typi-
cally standalone with interfaces), have open governance

9https://www.norsys.com/netica.html.

https://github.com/tpapp/DynamicHMC.jl
https://github.com/jax-ml/oryx/
https://www.norsys.com/netica.html
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and an active community that facilitates communication
between users and developers, typically from their gene-
sis.

As the standards for statistical analysis rise, support for
the statistical workflow is also becoming more important.
To an extent, this is already addressed by some excellent
standalone utilities. However, certain parts of the work-
flow are more difficult to encapsulate because they rely
on the underlying language or computation. Another is-
sue is that sometimes it may be difficult to pinpoint from
a software point of view if the analysis is not working
as expected, especially when black-box components are
used.

The practical importance of scalability is already ac-
knowledged in modern software for Bayesian inference,
and all popular languages have at least some support for
it, either through third-party or native libraries. Scalability
with respect to data size is today primarily handled with
optimized matrix algebra computation on massively par-
allel devices such as GPUs. We anticipate that this will
further improve with developments in hardware and com-
putation libraries. Scalability with respect to model size
depends more on the Bayesian computation used. HMC
is currently the state-of-the-art for general-purpose fully-
Bayesian computation. Some limitations of HMC, as is
the case with most other types of general Bayesian com-
putation, can be overcome with careful reparametrization
or by assigning different computation to different blocks
of parameters. However, there is currently no automated
approach to this. It remains to be seen if and how general-
purpose software (Stan, JAGS, MultiBUGS) will be su-
perseded and what role will universal PPLs, approximate
Bayesian computation and SMC play.

APPENDIX: MODELING LANGUAGE EXAMPLES

In this Appendix, we illustrate several modeling lan-
guages with this example of Bayesian linear regression:

yi |β,α,σ, xi ∼ N
(
βxi + α,σ 2)

, i = 1 . . . n,

α ∼ N
(
0,52)

,

β ∼ N
(
0,52)

,

σ ∼ U(0,10),

where yi is the dependent variable and xi is the predictor.
This model is in the class of Bayesian networks. Its rep-

resentation as a graphical model in plate notation is:

JAGS

model {
for (i in 1:n) {
y[i] dnorm(beta * x[i] + alpha, 1 / (sigma * sigma))

}

alpha dnorm(0, 1 / 25)
beta dnorm(0, 1 / 25)
sigma dunif(0, 10)

}

Nimble

nimbleCode({
for(i in 1:n) {
y[i] dnorm(beta * x[i] + alpha, sd = sigma)

}

alpha dnorm(0, sd = 5)
beta dnorm(0, sd = 5)
sigma dunif(0, 10)

})

PyMC

with Model() as model:
sigma = Uniform("sigma", lower = 0, upper = 10)
alpha = Normal("alpha", 0, sigma = 5)
beta = Normal("beta", 0, sigma = 5)

likelihood = Normal("y", mu = beta * x + alpha,
sigma = sigma, observed = y)

Stan

data {
int<lower=0> n;
vector[n] x;
vector[n] y;

}
parameters {

real alpha;
real beta;
real<lower=0, upper=10> sigma;

}
model {

y normal(beta * x + alpha, sigma);
alpha normal(0, 5);
beta normal(0, 5);

}

Bean Machine

@bm.random_variable
def alpha():

return Normal(0, 5)
@bm.random_variable
def beta():

return Normal(0, 5)
@bm.random_variable
def sigma():

return Uniform(0, 1)
@bm.random_variable
def x(i):

return Normal(0, sigma())
@bm.random_variable
def y():

return Normal(logit = beta() * x + alpha(), sigma())

Birch

alpha Normal(0.0, 25.0);
beta Normal(0.0, 25.0);
sigma Uniform(0.0, 10.0);
y Normal(beta*x + alpha, sigma*sigma);
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Greta

alpha <- normal(0, 5)
beta <- normal(0, 5)
sigma <- uniform(0, 10)

distribution(y) <- normal(beta * x + alpha, sigma)

ELFI

def linear_regression(alpha,
beta,
sigma,
x,
batch_size=1,
random_state=None):

x = x.reshape(1,-1)
n = x.shape[1]
random_state = random_state or numpy.random
alpha = numpy.repeat(alpha.reshape(-1,1), n, axis=1)
beta_x = numpy.matmul(beta.reshape(-1, 1), x)
noise = numpy.matmul(

random_state.randn(n, batch_size),
numpy.diag(sigma)).T

y = alpha + beta_x + noise

return y

m = elfi.ElfiModel()
elfi.Prior(’normal’, 0, 5, model=m, name=’alpha’)
elfi.Prior(’normal’, 0, 5, model=m, name=’beta’)
elfi.Prior(’uniform’, 0, 10, model=m, name=’sigma’)
elfi.Simulator(linear_regression,

m[’alpha’],
m[’beta’],
m[’sigma’],
x,
name=’linreg’)

Blang

model LinRegression {
param GlobalDataSource data
param Plate<Integer> observationPlate
param Plated<RealVar> x

random RealVar alpha, beta, sigma
random Plated<RealVar> y

laws {
alpha Normal(0, 25)
beta Normal(0, 25)
sigma ContinuousUniform(0, 10)
for (Index<Integer> i : observationPlate.indices) {
y.get(i) | beta, alpha, sigma, RealVar x_i = x.get(i)

Normal(beta * x_i + alpha, sigma * sigma)
}

}
}
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