
Electronic Journal of Statistics
Vol. 18 (2024) 553–598
ISSN: 1935-7524
https://doi.org/10.1214/23-EJS2207

Analysis of the rate of convergence of
two regression estimates defined by
neural features which are easy to

implement
Alina Braun1, Michael Kohler1, Jeongik Cho2, and Adam Krzyżak∗2

1Fachbereich Mathematik
Technische Universität Darmstadt

Schlossgartenstr. 7, 64289 Darmstadt, Germany
e-mail: braun@mathematik.tu-darmstadt.de; kohler@mathematik.tu-darmstadt.de

2Department of Computer Science and Software Engineering
Concordia University

1455 De Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8
e-mail: jeongik.jo.01@gmail.com; krzyzak@cs.concordia.ca

Abstract: Recent results in nonparametric regression have shown that
neural network regression estimates with many hidden layers are able to
achieve good rates of convergence even in case of high-dimensional predictor
variables, provided suitable assumptions on the structure of the regression
function are imposed. In those recent results, the estimates were defined by
minimizing the empirical L2 risk over a class of neural networks. In prac-
tice, however, it is not clear how this can be done exactly. In this article,
motivated by some recent approximation results for neural networks, we
introduce two new regression estimates defined by neural features where
most of the neural network weights are chosen via random initialization
and no training, thus sparing the costly data-dependent optimization. For
the first estimate, which is defined by these neural features and an extra
layer whose weights are set via least squares, we derive rates of convergence
results in case the regression function is smooth. We then combine this esti-
mate with the projection pursuit, where we choose the directions randomly,
and we show that for sufficiently many repetitions we get a second regres-
sion estimate which achieves the one-dimensional rate of convergence (up
to some logarithmic factor) in case that the regression function satisfies the
assumptions of projection pursuit. Because the neural features are obtained
by random initialization but not training of the weights, the two estimators
thus defined are easy to implement.

MSC2020 subject classifications: Primary 62G08; secondary 62M45.

Keywords and phrases: Curse of dimensionality, neural networks, non-
parametric regression, rate of convergence, projection pursuit.

Received January 2022.

∗Corresponding author. Tel: +1-514-848-2424 ext. 3007, Fax: +1-514-848-2830.

553

https://imstat.org/journals-and-publications/electronic-journal-of-statistics/
https://doi.org/10.1214/23-EJS2207
mailto:braun@mathematik.tu-darmstadt.de
mailto:kohler@mathematik.tu-darmstadt.de
mailto:jeongik.jo.01@gmail.com
mailto:krzyzak@cs.concordia.ca
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

554 A. Braun et al.

1. Introduction

For many years, nonparametric classifiers and regression estimates based on
multilayer perceptron (MLP) networks were considered as leading in multivari-
ate statistical classification and regression estimation (see, e.g., the monographs
Hertz, Krogh and Palmer [24], Devroye, Györfi and Lugosi [13], Anthony and
Bartlett [3], Györfi et al. [19], Haykin [23] and Ripley [40]). In recent years the
focus has shifted from MLPs towards deep learning, where networks with many
hidden layers are fitted to observed data (see, e.g., Schmidhuber [42] and the
literature cited therein).

In this article, we study neural network regression estimates in the context of
nonparametric regression with random design. Here, (X,Y) is an R

d×R-valued
random vector satisfying E{Y 2} < ∞, and given a random sample of (X,Y) of
size n, i.e., given a data set

Dn =
{
(X1, Y1), . . . , (Xn, Yn)

}
, (1)

where (X1, Y1), . . . , (Xn, Yn) are independent identically distributed (i.i.d.) ran-
dom variables with the same distribution as (X,Y), the aim is to construct an
estimate

mn(·) = mn(·,Dn) : Rd → R

of the regression function m : Rd → R, defined as m(x) = E{Y |X = x}, such
that the L2 error ∫

|mn(x) −m(x)|2PX(dx)

is “small” (see, e.g., Györfi et al. [19] for a systematic introduction to nonpara-
metric regression and a motivation for the L2 error).

It is well-known that smoothness assumptions on the regression function are
needed in order to derive non-trivial rate of convergence results for nonpara-
metric regression estimates (cf., e.g., Theorem 7.2 and Problem 7.2 in Devroye,
Györfi and Lugosi [13] and Section 3 in Devroye and Wagner [14]). To do this,
we will use the following definition.

Definition 1. Given any p > 0 and C > 0 let p = q + s for some q ∈ N0
and 0 < s ≤ 1, i.e., q = �p� − 1 and s = 1 + p − �p�, where N0 is the set of
nonnegative integers. A function f : Rd → R is called (q, s, C)-smooth, if for
every α = (α1, . . . , αd) ∈ N

d
0 with

∑d
j=1 αj = q the partial derivative ∂qf

∂x
α1
1 ···∂xαd

d

exists and satisfies∣∣∣∣ ∂qf

∂xα1
1 · · · ∂xαd

d

(x) − ∂qf

∂xα1
1 · · · ∂xαd

d

(z)
∣∣∣∣ ≤ C · ‖x− z‖s

for all x, z ∈ R
d, where ‖ · ‖ denotes the Euclidean norm.

The functions satisfying Definition 1 belong to a class of Hölder functions,
see Adams and Fournier [1]. From now onwards we will call (q, s, C)-smooth
functions (p, C)-smooth functions, which is a standard notation in statistical

Neural network regression estimates 555

literature, with p = q + s as described above. Stone [44] showed that the opti-
mal minimax rate of convergence in nonparametric regression for (p, C)-smooth
functions is n−2p/(2p+d). In case that d is large compared to p this rate of conver-
gence is rather slow (so-called curse of dimensionality). One way to circumvent
this curse of dimensionality is to impose additional constraints on the structure
of the regression function. Stone [45] assumed that the regression function is
additive, i.e., that m : Rd → R satisfies

m
(
x(1), . . . , x(d)) = m1

(
x(1)) + · · · + md

(
x(d)) (

x(1), . . . , x(d) ∈ R
)

for some (p, C)-smooth univariate functions m1, . . . ,md : R → R, and showed
that, in this case, suitably defined spline estimates achieve the corresponding
univariate rate of convergence. Stone [46] extended this results to interaction
models, where the regression function is assumed to be a sum of functions ap-
plied to at most d∗ < d components of x and showed in this case that suitably
defined spline estimates achieve the d∗-dimensional rate of convergence.

Barron [6, 7] proved a dimension-free rate of n−1/2 (up to some logarithmic
factor), provided the Fourier transform of the regression function has a finite first
moment. This condition basically requires that the function becomes smoother
with increasing dimension d of X. Furthermore, the estimates achieving this
dimension-free rate of convergence were defined as the least squares estimates;
however, it is not clear how to compute these nonlinear least squares estimates
in practice because minimization of high dimensional nonlinear cost functions
to find the global minimum typically does not lead to analytical solutions and
computational cost of approximating such minima is typically prohibitively high.

Other classes of functions which enable us to achieve a better rate of con-
vergence results include single index models (also called ridge functions in some
literature), where

m(x) = g
(
aTx

) (
x ∈ R

d
)

for some a ∈ R
d and g : R → R (cf., e.g., Härdle and Stoker [21], Härdle, Hall

and Ichimura [22], Yu and Ruppert [48], Kong and Xia [36] and Lepski and
Serdyukova [37]); and projection pursuit, where

m(x) =
r∑

l=1

gl
(
aTl x

) (
x ∈ R

d
)

for some r ∈ N, al ∈ R
d and gl : R → R (l = 1, . . . , r) (cf., e.g., Friedman and

Stuetzle [18], Huber [26], Jones [29, 30], Hall [20], Zhao and Atkeson [49] and
Ben-Ari and Steinberg [10]). In Section 22.3 in Györfi et al. [19] it is shown that
suitably defined (nonlinear) least squares estimates in a (p, C)-smooth projection
pursuit model achieve the univariate rate of convergence n−2p/(2p+1) up to some
logarithmic factor.

A generalization of projection pursuit was considered in Horowitz and Mam-
men [25], who studied the case of a regression function which satisfies

m(x) = g

(
L1∑

l1=1

gl1

(
L2∑

l2=1

gl1,l2

(
. . .

Lr∑
lr=1

gl1,...,lr
(
xl1,...,lr

))))
,

556 A. Braun et al.

where g, gl1 , gl1,l2 , . . . , gl1,...,lr are (p, C)-smooth univariate functions and xl1,...,lr

are single components of x ∈ R
d (not necessarily different for different indices

(l1, . . . , lr)), was studied. With the use of a penalized least squares estimate, the
rate n−2p/(2p+1) was proven.

The estimates in Horowitz and Mammen [25] and the one for projection pur-
suit in Section 22.3 in Györfi et al. [19] are nonlinear (penalized) least squares
estimates; therefore, it is unclear how they can be computed exactly in prac-
tice. Friedman and Stuetzle [18] described easily implementable estimates for
projection pursuit, but in their definition several heuristic simplifications are
used, and as a consequence it is unclear whether for these estimates any rate of
convergence result can be shown.

Recently it was shown in several papers that neural networks can achieve
dimensionality reduction in case the regression function is a composition of
(sums of) functions, where each of the functions is a function of at most d∗ < d
variables. The first paper in this respect was Kohler and Krzyżak [33], where it
was shown that in this case suitably defined multilayer neural networks achieve
the rate of convergence n−2p/(2p+d∗) (up to some logarithmic factor) in case
p ≤ 1. Bauer and Kohler [9] showed that this result even holds for p > 1
provided the activation function is suitably chosen. Schmidt-Hieber [43] obtained
similar results for neural networks with ReLU activation function, and Kohler
and Langer [35] showed that the results of Bauer and Kohler [9] also hold for
very simply constructed fully connected feedforward neural networks. In Kohler,
Krzyżak and Langer [34] it was demonstrated that neural networks are able to
circumvent the curse of dimensionality in case the regression function has a
low local dimensionality. Results concerning estimation by neural networks of
regression functions which are piecewise polynomials with partitions with rather
general smooth boundaries have been derived in Imaizumi and Fukamizu [27].

In all articles cited above the neural network regression estimate is defined
as a nonlinear least squares estimate. For instance, an estimate is defined as the
function mn ∈ F which minimizes the empirical L2 risk

1
n

n∑
i=1

|Yi −mn(Xi)|2 (2)

over a class F of neural networks. In practice, it is usually not possible to find
the global minimum of the empirical L2 risk over a class of neural networks,
due to their nonlinear nature, and usually one tries to find a local minimum
using gradient-based optimization combined with backpropagation to compute
the gradients of the empirical loss functional.

There exist quite a few papers which try to show that neural network regres-
sion estimates learned by backpropagation have nice theoretical properties. The
most popular approach in this context is the so-called loss landscape approach.
Choromanska et al. [12] used random matrix theory to derive a heuristic ar-
gument showing that the risk of most of the local minima of the empirical L2
risk is not much larger than the risk of the global minimum. For neural net-
works with special activation function it was possible to validate this claim;

Neural network regression estimates 557

for instance, Arora et al. [4], Kawaguchi [31], and Du and Lee [15] have ana-
lyzed gradient descent for neural networks with linear or quadratic activation
function. But for such neural networks there do not exist good approximation
results; consequently, one cannot derive from these results rates of convergence
comparable to the ones discussed above for the least squares neural network
regression estimates.

Du et al. [16] analyzed gradient descent applied to neural networks with one
hidden layer in case of an input X with a Gaussian distribution. They used
the expected gradient instead of the gradient in their gradient descent routine,
and therefore, their result cannot be used to derive a rate of convergence result
similar to the results for the least squares neural network estimates cited above
for an estimate learned by the gradient descent. Liang et al. [38] applied gradient
descent to a modified loss function in classification, where it is assumed that the
data can be interpolated by a neural network. Here, the last assumption is not
satisfied in nonparametric regression and it is unclear whether the main idea
(of simplifying the estimation by a modification of the loss function) can also
be used in a regression setting. Recently it was shown in several papers, see,
e.g., Allen-Zhu, Li and Song [2], Kawaguchi and Huang [32] and the literature
cited therein, that gradient descent leads to a small empirical L2 risk in over-
parametrized neural networks. Here, it is unclear what the L2 risk of the estimate
is; while a bound on this term is necessary in order to derive results like the
ones cited above for the least squares neural network regression estimates. In
particular, due to the fact that the networks are over-parametrized, a bound
on the empirical L2 risk might be not useful for bounding the L2 risk. Notice
that the bound on the L2 risk presented in Kawaguchi and Huang [32] requires
that the weights in the network be small, and it is not clear whether this will be
satisfied in an over-parametrized neural network learned by gradient descent.

Although the results discussed above for the least squares neural network
estimates are interesting from the theoretical point of view, there is a big gap
between the estimates for which there exists a result proving the above men-
tioned nice rate of convergence, and the estimates which can be computed in
practice. Until now, the results derived in the literature for neural networks
trained by backpropagation are unfortunately not strong enough to narrow this
gap.

In this paper we are interested in the question of narrowing the gap between
theory and practice for neural network regression estimates. We propose defin-
ing a neural network regression estimate that is possible to be implemented in
practice, and which is backed by a theoretical rate of convergence result. This
question was already considered in Braun, Kohler and Walk [11] who studied
neural network regression estimates with one hidden layer, where the weights
were chosen by minimizing a regularized empirical L2 risk via backpropaga-
tion with starting values chosen repeatedly randomly from a special structure
adapted to projection pursuit. It was shown in a (p, C)-smooth projection pur-
suit model, i.e., in a projection pursuit model with (p, C)-smooth functions, that
this easily implementable estimate achieves (up to a logarithmic factor) the rate
of convergence n−2p/(2p+1), provided p ≤ 1.

558 A. Braun et al.

In the sequel we use a different (but related) approach in order to derive
the rate of convergence results for easily implementable neural network regres-
sion estimates. We use neural networks with many hidden layers, hence they
can rightly be called deep neural networks; but unlike the typical deep learn-
ing practice, our strategy consists of choosing the weights of the inner layers
of the network by random initialization and no training (which is therefore a
data-independent way of choosing those weights); and learning the weights of
the output layer via regularized least squares estimates. Here, the choice of the
inner weights by random initialization alone is motivated by recent approxima-
tion results derived for deep neural networks (cf. e.g., Eckle and Schmidt-Hieber
[17], Jiao et al. [28], Lu et al. [39] and Yarotsky [47]); and the use of the regular-
ized least squares criterion for learning the weights of the output layer leads to
estimates which are easy to implement because they can be computed by solv-
ing a linear equation system and that is what we mean by “easy to implement”
claim. We would like to stress that “easy to implement” claim for the two neural
network regression estimates defined in Section 2 and Section 3 has nothing to
do with a class of estimated regression functions.

Our first main novel contribution is that we define our neural network re-
gression estimates in Section 2 in such a way that they are easy to implement
and, in addition, they achieve the same rate of convergence as linear regression
estimates (e.g., kernel or spline estimates), i.e., they achieve (up to some loga-
rithmic factor) the optimal minimax rate of convergence n−2p/(2p+d) in case of
a (p, C)-smooth regression function, for any p > 0.

Our second main novel contribution is introduction in Section 3 of a projec-
tion pursuit model neural network regression estimate, in which we repeatedly
choose the directions of projection pursuit randomly and define the inner weights
independent of the data using these random directions, and where the weights
of the output layer are computed by using the regularized least squares crite-
rion. For this estimate we show that for sufficiently many repetitions (of the
choices of the random directions) we get an estimate which achieves the one-
dimensional rate of convergence (up to some logarithmic factor) in case that
the regression function satisfies the assumptions of the projection pursuit. To
the best of our knowledge this result is the first result in the literature which
shows that there exist estimates which can be easily implemented and which
achieve (up to a logarithmic factor) the rate of convergence n−2p/(2p+1) in a
(p, C)-smooth projection pursuit model for arbitrary p > 0.

Throughout the paper, the following notation is used: The sets of positive
integers ({1, 2, . . .}), nonnegative integers ({0, 1, 2, . . .}), and real numbers are
denoted by N, N0 and R, respectively. For z ∈ R, we denote by �z� the ‘ceiling’
of z, which is defined to be the smallest integer greater than or equal to z.
Furthermore we set z+ = max{z, 0}. The Euclidean norm of x ∈ R

d is denoted
by ‖x‖ and ‖x‖∞ denotes its supremum norm. For f : Rd → R

‖f‖∞ = sup
x∈Rd

|f(x)|

is its supremum norm. Let F be a set of functions f : Rd → R, let x1, . . . , xn ∈

Neural network regression estimates 559

R
d and set xn

1 = (x1, . . . , xn). Let ε ≥ 0. A finite collection f1, . . . , fN : Rd → R

is called an ε-cover of F on xn
1 if for any f ∈ F there exists i ∈ {1, . . . , N} such

that
1
n

n∑
k=1

|f(xk) − fi(xk)| < ε.

The ε-covering number of F on xn
1 is the size N of the smallest ε-cover of F on

xn
1 and is denoted by N1(ε,F , xn

1).
The outline of this paper is as follows: In Section 2 the newly proposed neural

network regression estimates for (p, C)-smooth regression functions are defined
and a result for the rate of convergence of these estimates is presented. In Sec-
tion 3 we describe how these estimates can be combined with projection pursuit,
and present a rate of convergence result where the easily computable estimate
achieves (up to some logarithmic factor) the optimal one-dimensional rate of
convergence if the regression function satisfies the assumptions of projection
pursuit. The finite sample size performance of our newly proposed estimates on
simulated data is illustrated in Section 4. The proofs are given in Section 5.

2. A first estimate: random neural features

In this section, we assume that the regression function is (p, C)-smooth. Defining
a neural network requires the choice of an activation function σ : R → R. Here,
we use in the sequel squashing functions, which are nondecreasing and satisfy
limx→−∞ σ(x) = 0 and limx→∞ σ(x) = 1. An example of a squashing function
is the sigmoidal or logistic squasher

σ(x) = 1
1 + exp(−x) (x ∈ R). (3)

Notice, however, that other squashing functions are considered in the literature
(cf. Györfi et al. [19]). The neural network architecture (L,k) depends on a
positive integer L indicating the number of hidden layers, and a widths profile
k = (k1, . . . , kL) ∈ N

L that describes the number of neurons in the first, second,
. . ., L-th hidden layer. Recall that inputs are d-dimensional. For a given choice
of architecture (L,k) and sigmoid function σ, we consider a real-valued function
f : Rd → R defined by

f(x) =
kL∑
i=1

c
(L)
i · f (L)

i (x) + c
(L)
0 (4)

for some coefficients c(L)
0 , c

(L)
1 , . . . , c

(L)
kL

∈ R; where the functions f (L)
i : RkL−1 →

R are defined recursively by

f
(r)
i = σ

(
kr−1∑
j=1

c
(r−1)
i,j · f (r−1)

j (x) + c
(r−1)
i,0

)
(r = 2, . . . , L; i = 1, . . . , kr) (5)

560 A. Braun et al.

f
(1)
i = σ

(
d∑

j=1
c
(0)
i,j · x(j) + c

(0)
i,0

)
(r = 1; i = 1, . . . , k1) (6)

for some coefficients c(0)i,0 , c
(0)
i,1 , . . . , c

(0)
i,d ∈ R for the first hidden layer (r = 1) which

acts on the input features (x(1), . . . , x(d)), and coefficients c
(r−1)
i,0 , c

(r−1)
i,1 , . . . ,

c
(r−1)
i,kr−1

∈ R for the other hidden layers (r = 2, . . . , L). Notice that if we set
k0 = d then we can unify the notation for widths to encompass the input layer
(i.e. the layer of input features). The coefficients for terms 1, . . . , kr in the above
sums are called ‘weights’ and the coefficients for the shift term (subscript 0)
are called ‘biases’ in the deep learning literature. In the sequel we will write
‘weights’ to refer to all of these coefficients, for simplicity.

Formally, what we have described above defines what is called a multilayer
feedforward neural network (see, e.g., Haykin [23]). In our definition, as de-
scribed above, all the layers with indices 1, . . . , L are ‘hidden layers’ and there
is an extra layer on top of them which would corresponding to index L+ 1, but
the latter has been omitted in our notation, for simplicity. Notice that the said
extra layer consists of a linear (plus shift) combination of functions from the
L-th layer, as is evident from Eq. (4), and it completes the recursion to define
the function f : Rd → R that maps d-dimensional input features to real-valued
outputs. Notice also that all the hidden layers use the nonlinearity σ, while the
output layer is linear (plus shift).

In this work we want to use the data (1) in order to choose the weights of
the neural network such that the resulting function defined by (4)–(6) is a good
estimate of the regression function. In particular, we aim for regression estimates
defined in terms of neural networks which are easy to implement in practice, and
theoretical results for these estimates that establish good rate of convergence to
the regression function. To achieve both goals, we propose fixing an architecture
(L,k) and setting all the hidden layer weights in a data-free manner, and then
learning the weights in the output layer using the data (1) together with the
principle of (regularized) least squares.

Remark on constants Please note that there are many constants used in
this work. These constants might be different in different parts of the paper;
and may depend on input dimension and smoothness of estimated functions,
but they do not depend on the sample size n.

2.1. Definition of the network architecture

Let a > 0 be fixed. The choice of the network architecture and of the values
of most of the weights of our neural network is motivated by the following
approximation result of a (p, C)-smooth function for x ∈ [−a, a]d by a local
convex combination of Taylor polynomials: For M ∈ N and i = (i(1), . . . , i(d)) ∈
{0, . . . ,M}d set

xi =
(
−a + i(1) · 2a

M
, . . . ,−a + i(d) · 2a

M

)

Neural network regression estimates 561

and let
{i1, . . . , i(M+1)d} = {0, . . . ,M}d.

For k ∈ {1, . . . , (M + 1)d} let

pik(x) =
∑

j1,...,jd∈{0,...,q}
j1+···+jd≤q

1
j1! · · · jd!

· ∂j1+···+jdf

∂j1x(1) · · · ∂jdx(d) (xik) ·
(
x(1) − x

(1)
ik

)j1

· · ·
(
x(d) − x

(d)
ik

)jd
be the Taylor polynomial of f with order q around xik and set

P (x) =
(M+1)d∑

k=1
pik(x)

d∏
j=1

(
1 − M

2a · |x(j) − x
(j)
ik |

)
+
, (7)

where z+ = max{z, 0} (z ∈ R). Since P (x) is a local convex combination of
Taylor polynomials of f , it is possible to show that for a (p, C)-smooth function
m we have

sup
x∈[−a,a]d

|m(x) − P (x)| ≤ c1 · ap ·
1

Mp
(8)

(cf. Lemma B1 and its proof in Appendix B of the Supplemental Content of
Schmidt-Hieber [43]).

We use the fact that P (x) can be written

(M+1)d∑
k=1

∑
j1,...,jd∈{0,...,q}

j1+···+jd≤q

aik,j1,...,jd ·
(
x(1) − x

(1)
ik

)j1 · · · (x(d) − x
(d)
ik

)jd

×
d∏

j=1

(
1 − M

2a · |x(j) − x
(j)
ik |

)
+

with appropriately chosen aik,j1,...,jd ∈ R. Our main insight in the sequel is to
define appropriate neural networks fnet,j1,...,jd,ik which approximate the func-
tions

x
→
(
x(1) − x

(1)
ik

)j1 · · · (x(d) − x
(d)
ik

)jd d∏
j=1

(
1 − M

2a · |x(j) − x
(j)
ik |

)
+
,

and to choose the network architecture such that neural networks of the form

(M+1)d∑
k=1

∑
j1,...,jd∈{0,...,q}

j1+···+jd≤q

aik,j1,...,jd · fnet,j1,...,jd,ik(x) (aik,j1,...,jd ∈ R)

562 A. Braun et al.

are contained in it. To do this, we let σ(x) = 1/(1 + exp(−x)) (x ∈ R) be the
logistic squasher, choose R ≥ 1 and define the following functions:

fid(x) = 4R · σ
(
x

R

)
− 2R (9)

which approximates the identity function f(x) = x for x ∈ R (cf. Lemma 1
below),

fmult(x, y) = R2

4 · (1 + e−1)3

e−2 − e−1 ·
(
σ

(
2(x + y)

R
+ 1

)
− 2 · σ

(
x + y

R
+ 1

)

− σ

(
2(x− y)

R
+ 1

)
+ 2 · σ

(
x− y

R
+ 1

))
(10)

which approximates the function f(x, y) = x · y for x, y ∈ R (cf. Lemma 2
below),

fReLU (x) = fmult

(
fid(x), σ(R · x)

)
(11)

which approximates f(x) = x+ for x ∈ R (cf. Lemma 3 below), and

fhat,y(x) = fReLU

(
M

2a · (x− y) + 1
)
− 2 · fReLU

(
M

2a · (x− y)
)

+ fReLU

(
M

2a · (x− y) − 1
)

which for fixed y ∈ R approximates the function f(x) = (1−(M/(2a)) · |x−y|)+
with x ∈ R (cf. Lemma 4 below).

With these functions of real variables defined above, we can now define
fnet,j1,...,jd,ik recursively as follows: We choose N ≥ q, set s = �log2(N + d)�
and define for j1, . . . , jd ∈ {0, 1, . . . , N} and k ∈ {1, . . . , (M + 1)d}

fnet,j1,...,jd,ik(x) = f
(0)
1 (x),

where
f

(l)
k (x) = fmult

(
f

(l+1)
2k−1 (x), f (l+1)

2k (x)
)

for k ∈ {1, 2, . . . , 2l} and l ∈ {0, . . . , s− 1}, and

f
(s)
k (x) = fid

(
fid

(
x(l) − x

(l)
ik

))
for j1 + j2 + · · · + jl−1 + 1 ≤ k ≤ j1 + j2 + · · · + jl and l = 1, . . . , d,

f
(s)
j1+j2+···+jd+k(x) = f

hat,x
(k)
ik

(
x(k))

for k = 1, . . . , d, and
f

(s)
k (x) = 1

Neural network regression estimates 563

for k = j1 + j2 + · · · + jd + d + 1, j1 + j2 + · · · + jd + d + 2, . . . , 2s. It is easy to
see that fnet,j1,...,jd,ik is a neural network with s + 2 hidden layers and at most

6 · 2s, 12 · 2s, 2 · 2s, 2s, . . . , 8, 4
neurons in the layers 1, 2, . . . , s+2, resp. Consequently, this network is contained
in the class of all fully connected neural networks with s + 2 hidden layers and
24 · (N + d) neurons in each hidden layer. Furthermore it is easy to see that all
weights are bounded in absolute value by c2 · max{1,M/a,R2}.

2.2. Learning the output weights

We define our neural network regression estimate m̃n(x) by

m̃n(x) =
(M+1)d∑

k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

aik,j1,...,jd · fnet,j1,...,jd,ik(x),

where the coefficients aik,j1,...,jd are chosen by minimizing

1
n

n∑
i=1

|Yi − m̃n(Xi)|2 + c′3
n

·
(M+1)d∑

k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a2
ik,j1,...,jd (12)

for some constant c′3 > 0. This regularized linear least squares estimate can be
computed by solving a linear equation system. To see this, set

J = (M + 1)d ·
(
N + d

d

)
,

let

{Bj : j = 1, . . . , J}
=

{
fnet,j1,...,jd,ik(x) : 1 ≤ k ≤ (1 + M)d and 0 ≤ j1 + · · · + jd ≤ N

}
and set

B =
(
Bj(Xi)

)
1≤i≤n,1≤j≤J

and Y = (Yi)i=1,...,n.

It is easy to see (cf., Appendix A for a corresponding proof) that the vector of
coefficients of our estimate is the unique solution of the linear equation system(

1
n
BTB + c′3

n
· I
)
a = 1

n
BTY. (13)

The value of (12) will be also less than or equal to the value which we get for
coefficients equal to zero, hence we have

1
n

(Y − Ba)T (Y − Ba) + c′3
n

· aTa ≤ 1
n

n∑
i=1

Y 2
i ,

which will allow us to derive a bound on the maximal absolute value of our
coefficients.

564 A. Braun et al.

2.3. Rate of convergence

Theorem 1. Assume that the distribution of (X,Y) satisfies

E
(
ec4·|Y |2) < ∞ (14)

for some constant c4 > 0 and that the distribution of X has bounded support
supp(X), and let m(x) = E{Y |X = x} be the corresponding regression function.
Assume that m is (p, C)-smooth, where p = q+s for some q ∈ N0 and s ∈ (0, 1].
Define the estimate m̃n as in Subsection 2.2, where σ is the logistic squasher
and where N ≥ q, M = Mn = �c5 · n1/(2p+d)�, R = Rn = nd+4 and a = an =
(logn)1/(6(N+d). Set βn = c6 · log(n) for some suitably large constant c6 > 0 and
define mn by

mn(x) = Tβnm̃n(x)

where Tβz = max{min{z, β},−β} for z ∈ R and β > 0. Then mn satisfies for
n sufficiently large

E
∫

|mn(x) −m(x)|2PX(dx) ≤ c7 · (logn)3 · n− 2p
2p+d ,

where c7 > 0 does not depend on n.

Remark 1. It follows from the proof of Theorem 1 that the result also holds for
more general squashing functions than the logistic squasher. More precisely, in
case that the definitions of fid, fmult and fReLU are modified as in Lemma 1,
Lemma 2 and Lemma 3 below, it suffices to assume that σ is Lipschitz continuous
and 2-admissible according to Definition 2 below.
Remark 2. We achieved the standard rate of convergence for (p, C)-smooth
regression functions (cf. Stone [44]) for neural network estimates which are easy
to compute. For the least squares neural network estimates which cannot be
computed in practice better rates exist under additional structural assumptions
on the regression function (cf. Schmidt-Hieber [43]).

3. A second estimate: random neural features and projection pursuit

In this section we assume that the regression function satisfies

m(x) =
r∑

l=1

gl(al · x)
(
x(1), . . . , x(d) ∈ R

)

for some r ∈ N, some (p, C)-smooth functions gl : R → R (l = 1, . . . , r) and some
al = (a(l−1)·d+1, . . . , al·d)T ∈ R

d with ‖al‖ = 1 (l = 1, . . . , r) and with indices
of al assuming values (l− 1) · d+ 1, (l− 1) · d+ 2, . . . , (l− 1) · d+ d = l · d. Our
goal is to construct a neural network regression estimate of m which achieves the
univariate rate of convergence. This novel architecture and its novel convergence
analysis is presented below (see Theorem 2).

Neural network regression estimates 565

3.1. Definition of the network architecture

Let A > 0 be fixed. The choice of the network architecture and of the values
of most of the weights of our neural network is motivated by the following
approximation result for x ∈ [−A,A]d: For M ∈ N and i ∈ {0, . . . ,M} set

ui = −d ·A + i · 2 · d ·A
M

and let
{i1, . . . , iM+1} = {0, . . . ,M}.

We will see in Section 5 below that we can approximate a (p, C)-smooth pro-
jection pursuit model

m(x) =
r∑

l=1
gl
(
aT
l x

)
by choosing bl close to al and by choosing an appropriate sum of local convex
combinations of polynomials of the form

r∑
l=1

M+1∑
k=1

∑
j1,...,jd∈{0,...,q},

j1+···+jd≤q

aik,j1,...,jd,bl
·
(
x(1))j1 · · · (x(d))jd ·(1− M

2 · d ·A ·|bT
l x−uik |

)
+
.

Our main insight in the sequel is to define appropriate neural networks
fnet,j1,...,jd,ik,bl

which approximate the functions

x
→
(
x(1))j1 · · · (x(d))jd ·

(
1 − M

2 · d ·A · |bT
l x− uik |

)
+

and to choose the network architecture such that neural networks of the form
r∑

l=1

M+1∑
k=1

∑
j1,...,jd∈{0,...,q}

j1+···+jd≤q

aik,j1,...,jd,bl
· fnet,j1,...,jd,ik,bl

(x) (aik,j1,...,jd,bl
∈ R)

are contained in it. To do this, we let σ(x) = 1/(1 + exp(−x)) (x ∈ R) be the
logistic squasher, choose R ≥ 1 and define the following neural networks: The
neural network fid(x) as in (9) which approximates the function f(x) = x (cf.,
Lemma 1 below), the neural network fmult(x, y) as in (10) which approximates
the function f(x, y) = x · y (cf., Lemma 2 below), the neural network fReLu(x)
as in (11) which approximates f(x) = x+ (cf., Lemma 3 below), and the neural
network

f̄hat,y(x) = fReLU

(
M

2 · d ·A · (x− y) + 1
)
− 2 · fReLU

(
M

2 · d ·A · (x− y)
)

+ fReLU

(
M

2 · d ·A · (x− y) − 1
)

566 A. Braun et al.

which approximates for fixed y ∈ R the function f(x) = (1 − M
2·d·A · |x − y|)+

(cf., Lemma 4 below).
With these functions of real variables defined above we can now define the

neural networks fnet,j1,...,jd,ik,bl
recursively as follows: We choose N ≥ q, set

s = �log2(N + 1)� and define for l ∈ {1, . . . , r}, j1, . . . , jd ∈ {0, 1, . . . , N} and
k ∈ {1, . . . ,M + 1}

fnet,j1,...,jd,ik,bl
(x) = f

(0)
1 (x),

where
fk ∗(t) (x) = fmult

(
f

(t+1)
2k∗−1(x), f (t+1)

2k∗ (x)
)

for k∗ ∈ {1, 2, . . . , 2t} and t ∈ {0, . . . , s− 1}, and

fk ∗(s) (x) = fid
(
fid

(
x(t)))

for j1 + j2 + · · · + jt−1 + 1 ≤ k∗ ≤ j1 + j2 + · · · + jt and t = 1, . . . , d,

f
(s)
j1+j2+···+jd+1(x) = f̄hat,uik∗

(
bT
l x

)
,

and
f

(s)
k ∗ (x) = 1

for k∗ = j1 + j2 + · · ·+ jd + 2, j1 + j2 + · · ·+ jd + 3, . . . , 2s. As before, it is easy
to see that fnet,k,j1,...,jd,bl

is a neural network with s + 2 hidden layers and at
most

6 · 2s, 12 · 2s, 2 · 2s, 2s, . . . , 8, 4

neurons in the layers 1, 2, . . . , s+2, resp. Consequently, this network is contained
in the class of all fully connected neural networks with s + 2 hidden layers and
24 · (N + 1) neurons in each hidden layer. Furthermore it is easy to see that all
weights are bounded in absolute value by c8 · max{1,M/A,R2}.

3.2. Learning the output weights

For given directions bl (l = 1, . . . , r) we define our neural network estimate
m̃n(x) by

m̃n(x) =
∑

l=1,...,r

M+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

aik,j1,...,jd,bl
· fnet,j1,...,jd,ik,bl

(x),

where the coefficients aik,j1,...,jd,bl
are chosen by minimizing

1
n

n∑
i=1

|Yi − m̃n(Xi)|2 + c′′3
n

·
r∑

l=1

M+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a2
ik,j1,...,jd,bl

(15)

Neural network regression estimates 567

for some constant c′′3 > 0. This regularized linear least squares estimate can be
computed by solving a linear equation system. To see this, set

J = r · (M + 1) ·
(
N + d

d

)
,

let

{Bj : j = 1, . . . , J}
=

{
fnet,j1,...,jd,ik,bl

(x) : 1 ≤ l ≤ r, 1 ≤ k ≤ M+1 and 0 ≤ j1 + · · · + jd≤N
}

and set
B =

(
Bj(Xi)

)
1≤i≤n,1≤j≤J

and Y = (Yi)i=1,...,n.

As in Subsection 2.3 it is easy to see that the vector of coefficients of our estimate
is the unique solution of the linear equation system(

1
n
BTB + c′′3

n
· I
)
a = 1

n
BTY. (16)

The value of (15) will be also less than or equal to the value which we get for
coefficients equal to zero, hence we have

1
n

(Y − Ba)T (Y − Ba) + c′′3
n

· aTa ≤ 1
n

n∑
i=1

Y 2
i , (17)

which will allow us to derive a bound on the maximal absolute value of our
coefficients.

3.2.1. Choice of the directions

In order to choose bl (l = 1, . . . , r), we choose them In times independent
randomly according to a uniform distribution on [−1, 1]d, compute each time
the corresponding outer weights as in Subsection 3.2, and choose the directions
and the corresponding outer weights for our estimate m̃n, where the empirical
L2 risk of the estimate is minimal.

3.3. Rate of convergence

Theorem 2. Assume that the distribution of (X,Y) satisfies (14) for some
constant c4 > 0 and that the distribution of X has bounded support supp(X),
and let m(x) = E{Y |X = x} be the corresponding regression function. Let
r ∈ N, p > 0 and C > 0, and assume that the regression function satisfies

m(x) =
r∑

l=1
gl
(
aT
l x

) (
x ∈ R

d
)

568 A. Braun et al.

for some (p, C)-smooth functions gl : R → R and some al ∈ R
d with ‖al‖ = 1

(l = 1, . . . , r).
Define the estimate m̃n as in Subsections 3.1–3.2.1, where σ is the logistic

squasher and where In = �c9 · (logn)2 · n r·d
2p+1 �, N ≥ p, M = Mn = �c10 ·

n1/(2p+1)�, R = Rn = n3 and A = An = (logn)1/(6(N+d). Set βn = c6 · log(n)
for some suitably large constant c6 > 0 and define mn by

mn(x) = Tβnm̃n(x).

Then mn satisfies for n sufficiently large

E
∫

|mn(x) −m(x)|2PX(dx) ≤ c11 · (logn)3 · n− 2p
2p+1 ,

where c11 > 0 does not depend on n.

Remark 3. In order to compute our estimate, we have to solve In times a linear
equation system with a square matrix of size Mn, for which computing time is
proportional to

In ·M2
n ≈ (logn)2 · n

r·d+2
2p+1 .

Hence in case
r · d < 4 · p

computing time is O(n2), so in case that the number r of terms in the projection
pursuit model and the dimension d of X are not too large in comparison with
the smoothness p of the regression function, our estimate can be computed in
O(n2) time. Because d and r might be in fact arbitrarily large in our paper in
case that p is large, we do not have an upper bound on p in our theory.

4. Application to simulated data

In this section we illustrate the finite sample size performance of our newly
proposed estimate by applying it to simulated data.

The simulated data which we use is defined as follows: We choose X uniformly
distributed on [−1, 1]d, where d is the dimension of the input, ε standard normal
and independent of X, and we define Y by

Y = mj(X) + σ · λj · ε, (18)

where mj : [−1, 1]d → R is described below, λj > 0 is a scaling value defined
below and σ is chosen from {0.05, 0.10} (j ∈ {1, 2, 3, 4}). As regression functions
we use

m1(x1, x2)

= log
(
(0.2 · x1 + 0.9 · x2)2

)
+ cos

(
π

log(0.5 · x1 + 0.3 · x2)2

)

Neural network regression estimates 569

+ exp
(

1
50 · (0.7 · x1 + 0.7 · x2)

)
+ tan(π · (0.1 · x1 + 0.3 · x2)4)

(0.1 · x1 + 0.3 · x2)2
,

m2(x1, x2, x3, x4)
= tan

(
sin

(
π · (0.2 · x1 + 0.5 · x2 − 0.6 · x3 + 0.2 · x4)

))
+
(
0.5 · (x1 + x2 + x3 + x4)

)3
+ 1

(0.5 · x1 + 0.3 · x2 − 0.3 · x3 + 0.25 · x4)2 + 4 ,

m3(x1, x2, x3, x4, x5)
= log

(
0.5 · (x1 + 0.3 · x2 + 0.6 · x3 + x4 − x5)2

)
+ sin

(
π · (0.7 · x1 + x2 − 0.3 · x3 − 0.4 · x4 − 0.8 · x5)

)
+ cos

(
π

1 + sin(0.5 · (x2 + 0.9 · x3 − x5))

)

and

m4(x1, x2, x3, x4, x5, x6)
= exp

(
0.2 · (x1 + x2 + x3 + x4 + x5 + x6)

)
+ sin

(
π

2 · (x1 − x2 − x3 + x4 − x5 − x6)
)

+ 1
(0.3 · x1 − 0.2 · x2 + 0.8 · x3 − 0.5 · x4 + 0.6 · x5 − 0.2 · x6)2 + 6

+ 0.5 · (x1 + x3 − x5)3

λj is chosen approximately as IQR of a sample of size 100 of m(X), and we use
the values λ1 = 2.20, λ2 = 1.96, λ3 = 2.85, and λ4 = 1.59. From distribution
defined by (18) we generate a sample of size n = 100, 200, 400 and apply our
newly proposed neural network regression estimate and compare our results to
that of six alternative regression estimates on the same data. Then we compute
the L2 errors of these estimates approximately by using the empirical L2 error
εL2,N̄

(·) on an independent sample of X of size N̄ = 10,000. Since this error
strongly depends on the behavior of the correct function mj , we consider it
in relation to the error of the simplest estimate for mj we can think of, a
completely constant function (whose value is the average of the observed data
according to the least squares approach). Thus, the scaled error measure we use
for evaluation of the estimates is εL2,N̄

(mn,i)/ε̄L2,N̄
(avg), where ε̄L2,N̄

(avg) is
the median of 50 independent realizations of the value one obtains if one plugs
the average of n observations into εL2,N̄

(·). To a certain extent, this quotient can
be interpreted as the relative part of the error of the constant estimate that is
still contained in the more sophisticated approaches. The resulting scaled errors
of course depend on the random sample of (X,Y), and to be able to compare
these values nevertheless we repeat the whole computation 50 times and report
the median and the interquartile range of the 50 scaled errors for each of our
estimates.

570 A. Braun et al.

We choose the parameters for each of the estimates by splitting of the sample.
Here we split our sample in a learning sample of size nl = 0.8 · n and a testing
sample of size nt = 0.2·n. We compute the estimate for all parameter values from
the sets described below using the learning sample, compute the corresponding
empirical L2 risk on the testing sample and choose the parameter value which
leads to the minimal empirical L2 risk on the testing sample.

Our first three estimates are fully connected neural network estimates where
the number of layers is fixed (with the same number of neurons in each layer) and
the number of neurons per layer is chosen adaptively. We implemented FcNeural
ourselves with Tensorflow API. We used SGD optimizer with learningrate =
0.02, sigmoidal activation function and number of epochs parameter epoch =
105. The estimate fc-neural-1 has one hidden layer, estimate fc-neural-3 has
three hidden layers and estimate fc-neural-6 has six hidden layers. The number
of neurons per layer is chosen from the set {5, 10, 25, 50, 75}, {3, 6, 9, 12, 15},
{2, 4, 6, 8, 10}, respectively.

Our fourth estimate kernel is the Nadaraya-Watson kernel regression estimate
with the so-called naive kernel where the bandwidth is chosen from the set
{2k : k = −5,−4, . . . , 5}. We used kernel regression estimate from Statsmodel
Library.

Our fifth estimate KNN is the nearest neighbor estimate with the number
of nearest neighbors set to 1, 2, 3, 4, 8, 12, 16, 20. We used KNN implementation
from Sklearn Scikit Library with the following parameters weights=uniform,
algorithm=auto, leaf_size=30, p=2, metric=minkowski. These parameters are
the default values of the library.

Our sixth estimate RBF is an interpoland with the radial basis function
Φ(r) selected from the following list: linear Φ(r) = −r, cubic Φ(r) = r3, quintic
Φ(r) = −r5 and a thin_plate_spline Φ(r) = r2 · log(r), where r = ‖x − c‖,
c is the center of the RBF and ‖ · ‖ is the Euclidean norm. We used RBF
implementation from Scipy Library. The RBF functions used in our experiments
are pre-implemented functions in the library.

Our seventh estimate MARS is a method which makes use of multivariate
adaptive regression splines. We used MARS implementation from Py-earth Li-
brary.

Our last estimate proj-neural is our newly proposed neural network estimate
presented in this paper. The parameters of the estimate were chosen as follows:
N is set to 2, A is set to 1, and R is set to 106, and r is set to 4. Parameter M
of the estimate is chosen from the set {2, 4, 8, 16}. In was set to 400. c′′3 was set
to 1.

The results are summarized in Table 1, Table 2 and Table 3. In our experi-
ments, the kernel estimator sometimes returns NaN. The model of our method
uses “J + r · d” parameters. Table 4 shows a minimum and a maximum number
of parameters of the ProjNeural model used in the experiment.

As we can see from the reported scaled errors, our newly proposed neural net-
work estimate performs pretty well. Although it is systematically outperformed
by a fully connected network the scaled errors of our estimate lie within a small
range of the best error value. Despite the fact that our estimate is slightly out-

Neural network regression estimates 571

Table 1

Median and IQR of the scaled empirical L2 error of estimates for sample size n = 100.
100 Samples M1 M2
Noise scale 2.2 1.96

Noise 5% Noise 10% Noise 5% Noise 10%
Loss scale 4.0842 4.1229 1.5530 1.5849
After loss scale Median IQR Median IQR Median IQR Median IQR
FcNeural-1 0.0880 0.0423 0.0977 0.0385 0.0305 0.0141 0.0525 0.0225
FcNeural-3 0.0992 0.0681 0.1124 0.0850 0.0356 0.0140 0.0612 0.0322
FcNeural-6 0.9696 0.6124 0.9610 0.8106 0.0787 0.1015 0.0977 0.0575
Kernel 0.2796 0.0844 0.2748 0.0989 0.2263 0.0388 NaN NaN
KNN 0.3095 0.1073 0.3246 0.0879 0.2852 0.0812 0.2986 0.0947
MARS 0.3727 0.0608 0.3717 0.0436 0.4928 0.1177 0.4610 0.0852
ProjNeural (ours) 0.1474 0.0825 0.1687 0.0631 0.0791 0.0347 0.0943 0.0400
RBF 0.2146 0.0677 0.2230 0.0631 0.0739 0.0294 0.1015 0.0390

100 Samples M3 M4
Noise scale 2.85 1.59

Noise 5% Noise 10% Noise 5% Noise 10%
Loss scale 5.9496 6.0032 3.3927 3.3975
After loss scale Median IQR Median IQR Median IQR Median IQR
FcNeural-1 0.4680 0.2636 0.4907 0.2572 0.2090 0.1121 0.2482 0.1885
FcNeural-3 0.4646 0.4514 0.6035 0.3580 0.1208 0.0939 0.1507 0.0947
FcNeural-6 0.6741 0.4977 0.6575 0.5332 0.2007 0.1536 0.2032 0.1788
Kernel 0.7619 0.1454 NaN NaN NaN NaN 0.4858 0.1249
KNN 0.7986 0.1586 0.7950 0.1268 0.5187 0.1146 0.5268 0.0888
MARS 1.0268 0.1082 1.0083 0.0863 0.4765 0.1129 0.4688 0.1058
ProjNeural (ours) 0.5687 0.1054 0.5716 0.1365 0.2664 0.1141 0.2773 0.1079
RBF 0.6500 0.0749 0.6390 0.0970 0.2988 0.0967 0.2897 0.0680

Table 2

Median and IQR of the scaled empirical L2 error of estimates for sample size n = 200.
200 Samples M1 M2
Noise scale 2.2 1.96

Noise 5% Noise 10% Noise 5% Noise 10%
Loss scale 4.0809 4.1308 1.5494 1.5654
After loss scale Median IQR Median IQR Median IQR Median IQR
FcNeural-1 0.0698 0.0182 0.0769 0.0191 0.0179 0.0105 0.0241 0.0092
FcNeural-3 0.0549 0.0246 0.0629 0.0331 0.0181 0.0065 0.0250 0.0079
FcNeural-6 0.9959 0.0465 0.9824 0.0465 0.0468 0.0380 0.0500 0.0684
Kernel 0.1901 0.0365 0.1949 0.0389 0.1460 0.0397 0.1467 0.0343
KNN 0.2141 0.0308 0.2273 0.0491 0.1859 0.0328 0.1926 0.0262
MARS 0.3348 0.0287 0.3402 0.0329 0.4506 0.0405 0.4715 0.0606
ProjNeural (ours) 0.1036 0.0239 0.1126 0.0240 0.0345 0.0160 0.0426 0.0124
RBF 0.1425 0.0303 0.1578 0.0313 0.0328 0.0103 0.0522 0.0138

200 Samples M3 M4
Noise scale 2.85 1.59

Noise 5% Noise 10% Noise 5% Noise 10%
Loss scale 5.9577 5.9793 3.3676 3.3969
After loss scale Median IQR Median IQR Median IQR Median IQR
FcNeural-1 0.1717 0.0712 0.1932 0.0426 0.0547 0.0374 0.0562 0.0465
FcNeural-3 0.2353 0.1280 0.2802 0.0980 0.0394 0.0208 0.0421 0.0201
FcNeural-6 0.3156 0.2953 0.3267 0.6323 0.0560 0.0376 0.0631 0.0388
Kernel NaN NaN 0.6447 0.0736 0.3834 0.0751 0.3762 0.0693
KNN 0.6621 0.0712 0.6580 0.0858 0.4089 0.0851 0.4042 0.0756
MARS 1.0276 0.0823 1.0056 0.0565 0.4426 0.0464 0.4435 0.0683
ProjNeural (ours) 0.4630 0.0976 0.4605 0.0783 0.1156 0.0467 0.1237 0.0397
RBF 0.5169 0.0555 0.5194 0.0490 0.1471 0.0329 0.1483 0.0445

572 A. Braun et al.

Table 3

Median and IQR of the scaled empirical L2 error of estimates for sample size n = 400.
400 Samples M1 M2
Noise scale 2.2 1.96

Noise 5% Noise 10% Noise 5% Noise 10%
Loss scale 4.0246 4.0578 1.5454 1.5745
After loss scale Median IQR Median IQR Median IQR Median IQR
FcNeural-1 0.0625 0.0121 0.0648 0.0123 0.0121 0.0085 0.0160 0.0080
FcNeural-3 0.0402 0.0153 0.0436 0.0190 0.0131 0.0044 0.0153 0.0038
FcNeural-6 0.9963 0.0321 0.9891 0.0493 0.0442 0.0266 0.0410 0.0203
Kernel 0.1273 0.0371 0.1313 0.0304 0.1048 0.0213 0.1032 0.0180
KNN 0.1434 0.0266 0.1486 0.0231 0.1238 0.0162 0.1314 0.0156
MARS 0.3170 0.0322 0.3141 0.0298 0.4494 0.0335 0.4408 0.0304
ProjNeural (ours) 0.0834 0.0123 0.0849 0.0146 0.0185 0.0088 0.0238 0.0061
RBF 0.1023 0.0316 0.1030 0.0244 0.0179 0.0028 0.0294 0.0057

400 Samples M3 M4
Noise scale 2.85 1.59

Noise 5% Noise 10% Noise 5% Noise 10%
Loss scale 5.8926 5.9618 3.3786 3.3756
After loss scale Median IQR Median IQR Median IQR Median IQR
FcNeural-1 0.0986 0.0182 0.1010 0.0250 0.0257 0.0187 0.0305 0.0242
FcNeural-3 0.1092 0.0396 0.1198 0.0572 0.0161 0.0062 0.0201 0.0062
FcNeural-6 0.7727 0.7861 0.2874 0.7646 0.0272 0.0089 0.0286 0.0130
Kernel 0.5078 0.0495 0.4992 0.0406 0.2823 0.0347 0.2781 0.0458
KNN 0.5556 0.0460 0.5540 0.0441 0.3179 0.0430 0.3120 0.0488
MARS 1.0091 0.0469 0.9973 0.0444 0.4177 0.0333 0.4122 0.0298
ProjNeural (ours) 0.3585 0.0469 0.3576 0.0705 0.0554 0.0181 0.0502 0.0215
RBF 0.4371 0.0363 0.4285 0.0263 0.0659 0.0151 0.0725 0.0128

Table 4

Number of parameters in ProjNeural. One can see that the number of parameters is affected
by hyperparameter M and input dimension d.

ProjNeural N Params Min (M = 2) Max (M = 16)
M1 (d = 2) 80 416
M2 (d = 4) 196 1036
M3 (d = 5) 272 1448
M4 (d = 6) 360 1928

performed by some other estimates its main advantage remains that it can be
theoretically analyzed in the way it is implemented (which is not true for the
implementations of the other neural network estimates).

5. Proofs

5.1. Approximation results for neural networks

We will use the following assumption on the activation function of our neural
network.

Definition 2. Let N ∈ N0. A function σ : R → [0, 1] is called N-admissible,
if it is nondecreasing and Lipschitz continuous and if, in addition, the following
three conditions are satisfied:

Neural network regression estimates 573

(i) The function σ is N + 1 times continuously differentiable with bounded
derivatives.

(ii) A point tσ ∈ R exists, where all derivatives up to order N of σ are nonzero.
(iii) If y > 0, the relation |σ(y)−1| ≤ 1

y holds. If y < 0, the relation |σ(y)| ≤ 1
|y|

holds.

It is easy to see that the logistic squasher (3) is N -admissible for any N ∈ N

(cf., e.g., Bauer and Kohler [9]).

Lemma 1. Let σ : R → R be a function, let R, a > 0.

a) Assume that σ is two times continuously differentiable and let tσ,id ∈ R be
such that σ′(tσ,id)
= 0. Then

fid(x) = R

σ′(tσ,id)
·
(
σ

(
x

R
+ tσ,id

)
− σ(tσ,id)

)

satisfies for any x ∈ [−a, a]:

|fid(x) − x| ≤ ‖σ′′‖∞ · a2

2 · |σ′(tσ,id)|
· 1
R
.

b) Assume that σ is three times continuously differentiable and let tσ,sq ∈ R

be such that σ′′(tσ,sq)
= 0. Then

fsq(x) = R2

σ′′(tσ,sq)
·
(
σ

(
2x
R

+ tσ,sq

)
− 2 · σ

(
x

R
+ tσ,sq

)
+ σ(tσ,sq)

)

satisfies for any x ∈ [−a, a]:

|fsq(x) − x2| ≤ 5 · ‖σ′′′‖∞ · a3

3 · |σ′′(tσ,sq)|
· 1
R
.

Proof. The result follows in a straightforward way from the proof of Theorem 2
in Scarselli and Tsoi [41], cf. Lemma 1 in Kohler, Krzyżak and Langer [34].

Remark 4. In case of the logistic squasher it is easy to see that with the choice
tσ,id = 0 the network fid in Lemma 1 is given by (9).

Lemma 2. Let σ : R → [0, 1] be 2-admissible according to Definition 2. Then
for any R > 0 and any a > 0 the neural network

fmult(x, y) = R2

4 · σ′′(tσ) ·
(
σ

(
2 · (x + y)

R
+ tσ

)
− 2 · σ

(
x + y

R
+ tσ

)

− σ

(
2 · (x− y)

R
+ tσ

)
+ 2 · σ

(
x− y

R
+ tσ

))

satisfies for any x ∈ [−a, a]:

|fmult(x, y) − x · y| ≤ 20 · ‖σ′′′‖∞ · a3

3 · |σ′′(tσ)| · 1
R
.

574 A. Braun et al.

Proof. See Lemma 2 in Kohler, Krzyżak and Langer [34].

Remark 5. In case of the logistic squasher it is easy to see that with the choice
tσ = 1 the network fmult in Lemma 2 is given by (10).

Lemma 3. Let σ : R → [0, 1] be 2-admissible according to Definition 2. Let
fmult be the neural network from Lemma 2 and let fid be the network from
Lemma 1. Assume

a ≥ 1 and R ≥ ‖σ′′‖∞ · a
2 · |σ′(tσ.id)|

. (19)

Then the neural network

fReLU (x) = fmult

(
fid(x), σ(R · x)

)
=

4∑
k=1

dk · σ
(2∑

i=1
bk,i · σ(ai · x + tσ) + bk,3 · σ(a3 · x) + tσ

)

satisfies

|fReLU (x) − max{x, 0}| ≤ 56 · max{‖σ′′‖∞, ‖σ′′′‖∞, 1}
min{2 · |σ′(tσ.id)|, |σ′′(tσ)|, 1} · a3 · 1

R

for all x ∈ [−a, a].

Proof. See Lemma 3 in Kohler, Krzyżak and Langer [34].

Lemma 4. Let M ∈ N and let σ : R → [0, 1] be 2-admissible according to
Definition 2. Let a > 0 and

R ≥ ‖σ′′‖∞ · (M + 1)
2 · |σ′(tσ.id)|

,

let y ∈ [−a, a] and let fReLU be the neural network of Lemma 3. Then the
network

fhat,y(x) = fReLU

(
M

2a · (x− y) + 1
)
− 2 · fReLU

(
M

2a · (x− y)
)

+ fReLU

(
M

2a · (x− y) − 1
)

satisfies∣∣∣∣fhat,y(x)−
(

1− M

2a · |x− y|
)

+

∣∣∣∣ ≤ 1792 · max{‖σ′′‖∞, ‖σ′′′‖∞, 1}
min{2 · |σ′(tσ.id)|, |σ′′(tσ)|, 1} ·M3 · 1

R

for all x ∈ [−a, a].

Proof. Since(
1 − M

2a · |x|
)

+

Neural network regression estimates 575

= max
{
M

2a · x + 1, 0
}
− 2 · max

{
M

2a · x, 0
}

+ max
{
M

2a · x− 1, 0
}

(x ∈ R)

the result is an easy consequence of Lemma 3 (applied with M + 1 instead
of a).

Lemma 5. Let M ∈ N and let σ : R → [0, 1] be 2-admissible according to
Definition 2. Let a ≥ 1 and

R ≥ max
{
‖σ′′‖∞ · (M + 1)

2 · |σ′(tσ,id)|
,
9 · ‖σ′′‖∞ · a
|σ′(tσ,id)|

,

20 · ‖σ′′′‖∞
3 · |σ′′(tσ)| · 33·3s · a3·2s

, 1792 · max{‖σ′′‖∞, ‖σ′′′‖∞, 1}
min{2 · |σ′(tσ,id)|, |σ′′(tσ)|, 1} ·M3

}
(20)

and let y ∈ [−a, a]d. Let N ∈ N and let j1, . . . , jd ∈ N0 such that j1+· · ·+jd ≤ N ,
and set s = �log2(N + d)�. Let fid, fmult and fhat,z (for z ∈ R) be the neural
networks defined in Lemma 1, Lemma 2 and Lemma 4, resp. Define the network
fnet,j1,...,jd,y by

fnet,j1,...,jd,y(x) = f
(0)
1 (x),

where f
(0)
1 is defined by backward recursion as follows:

f
(l)
k (x) = fmult

(
f

(l+1)
2k−1 (x), f (l+1)

2k (x)
)

for k ∈ {1, 2, . . . , 2l} and l ∈ {0, . . . , s− 1}, and

f
(s)
k (x) = fid

(
fid

(
x(l) − y(l)))

for j1 + j2 + · · · + jl−1 + 1 ≤ k ≤ j1 + j2 + · · · + jl and l = 1, . . . , d,

f
(s)
j1+j2+···+jd+k(x) = fhat,y(k)

(
x(k))

for k = 1, . . . , d, and
f

(s)
k (x) = 1

for k = j1 + j2 + · · ·+ jd + d+ 1, j1 + j2 + · · ·+ jd + d+ 2, . . . , 2s. Then we have
for any x ∈ [−a, a]d:∣∣∣∣∣fnet,y(x) −

(
x(1) − y(1))j1 · · · (x(d) − y(d))jd d∏

j=1

(
1 − M

2a · |x(j) − y(j)|
)

+

∣∣∣∣∣
≤ c12 · 33·3s · a3·2s ·M3 · 1

R
.

Proof. The result follows from Lemma 1, Lemma 2 and Lemma 4 in a straight-
forward but technical way using an induction. A complete proof can be found
in the Appendix A.

Remark 6. The result can be analogously stated for our estimate in the context
of the projection pursuit model. The corresponding statement and a complete
proof can be found in the Appendix A.

576 A. Braun et al.

5.2. Approximation of a projection pursuit model by piecewise
polynomials

Lemma 6. Let p = q + s for some q ∈ N0 and s ∈ (0, 1]. Let C > 0, r ∈ N,
gl : R → R (p, C)-smooth functions (l = 1, . . . , r) and al ∈ R

d (l = 1, . . . , r). Set

m(x) =
r∑

l=1

gl
(
aT
l x

) (
x ∈ R

d
)
.

For bl ∈ R
d (l = 1, . . . , r) set

g(x) =
r∑

l=1

q∑
j=0

g
(j)
l (bT

l x)
j! ·

(
(al − bl)Tx

)j
,

where g
(j)
l denotes the j-th derivative of gl. Then we have for any x ∈ R

d

|m(x) − g(x)| ≤ r · dp · C
q! · ‖x‖p∞ ·

(
max

l
‖al − bl‖∞

)p

.

Proof. By the proof of Lemma 11.1 in Györfi et al. [19] we have for any z ∈ R∣∣∣∣∣gl(u) −
q∑

j=0

g
(j)
l (z)
j! · (u− z)j

∣∣∣∣∣ ≤ 1
q! · C · |u− z|p (u ∈ R).

Applying this with u = aT
l x and z = bT

l x we get

|m(x) − g(x)|

≤
r∑

l=1

∣∣∣∣∣gl(aT
l x

)
−

q∑
j=0

g
(j)
l (bT

l x)
j! ·

(
aT
l x− bT

l x
)j∣∣∣∣∣

≤
r∑

l=1

1
q! · C · |aT

l x− bT
l x|p

≤ r · dp · C
q! · ‖x‖p∞ ·

(
max

l
‖al − bl‖∞

)p

.

Lemma 7. Let p = q + s for some q ∈ N0 and s ∈ (0, 1]. Let C > 0, r ∈ N,
gl : R → R (p, C)-smooth functions (l = 1, . . . , r) and al ∈ R

d with ‖al‖ = 1
and bl ∈ [−1, 1]d (l = 1, . . . , r). Let A ≥ 1, M ∈ N, set

ui = −d ·A + i · 2 · d ·A
M

(i = 0, . . . ,M)

and {i1, . . . , iM+1} = {0, . . . ,M}. Then there exist polynomials pik,l : Rd → R of
total degree q, which depend on al and bl and where all coefficients are bounded
in absolute value by

(q+1) ·2p ·d3p/2 ·Ap · max
l∈{1,...,r},j∈{0,...,q}

‖g(j)
l ‖∞, ·

(
max

{
max

l=1,...,r
‖al−bl‖∞, 1

})p

,

Neural network regression estimates 577

such that we have for all x ∈ [−A,A]d∣∣∣∣∣
r∑

l=1

q∑
j=0

g
(j)
l (bT

l x)
j! ·

(
(al − bl)Tx

)j

−
r∑

l=1

M+1∑
k=1

pik,l(x) ·
(

1 − M

2 · d ·A · |bT
l x− uik |

)
+

∣∣∣∣∣
≤ r · 2p · (p + 1) · C · d3p/2 ·A2p ·

(
max

{
1
M

, max
l=1,...,r

‖al − bl‖∞
})p

.

Proof. Let pl,j,ik be the Taylor polynomial of g(j)
l of degree q − j around uik .

Because of the (p − j, C)-smoothness of g
(j)
l Lemma 11.1 in Györfi et al. [19]

implies
∣∣g(j)

l

(
bT
l x

)
− pl,j,ik

(
bT
l x

)∣∣ ≤ 1
(q − j)! · C · |bT

l x− uik |(p−j).

From this we can conclude for x ∈ [−A,A]d∣∣∣∣g
(j)
l (bT

l x)
j! ·

(
(al − bl)Tx

)j − pl,j,ik(bT
l x)

j! ·
(
(al − bl)Tx

)j∣∣∣∣
≤ 1

(q − j)! · C · dj ·Aj ·
(
max

{
|bT

l x− uik |, ‖al − bl‖∞
})p

.

Using
M+1∑
k=1

(
1 − M

2 · d ·A · |bT
l x− uik |

)
+

= 1

for x ∈ [−A,A]d, this in turn implies for x ∈ [−A,A]d∣∣∣∣∣
q∑

j=0

g
(j)
l (bT

l x)
j! ·

(
(al − bl)Tx

)j

−
q∑

j=0

M+1∑
k=1

pl,j,ik(bT
l x)

j! ·
(
(al − bl)Tx

)j · (1 − M

2 · d ·A · |bT
l x− uik |

)
+

∣∣∣∣∣
≤

q∑
j=0

M+1∑
k=1

∣∣∣∣g
(j)
l (bT

l x)
j! ·

(
(al − bl)Tx

)j − pl,j,ik(bT
l x)

j! ·
(
(al − bl)Tx

)j∣∣∣∣
·
(

1 − M

2 · d ·A · |bT
l x− uik |

)
+

≤
q∑

j=0
max

ik∈{0,...,M},
|bT

l
x−uik

|≤2·d·A/M

∣∣∣∣g
(j)
l (bT

l x)
j! ·

(
(al − bl)Tx

)j

− pl,j,ik(bT
l x)

j! ·
(
(al − bl)Tx

)j∣∣∣∣

578 A. Braun et al.

≤ (q + 1) · C · dq ·Aq

(
max

{
2 · d ·A

M
, ‖al − bl‖∞

})p

.

With

pik,l(x) =
q∑

j=0

pl,j,ik(bT
l x)

j! ·
(
(al − bl)Tx

)j
we get the assertion.

5.3. Auxiliary results

Lemma 8. Let βn = c6 · log(n) for some suitably large constant c6 > 0. As-
sume that the distribution of (X,Y) satisfies (14) for some constant c4 > 0 and
that the regression function m is bounded in absolute value. Let Fn be a set of
functions f : Rd → R and assume that the estimate mn satisfies

mn = Tβnm̃n

and
m̃n(·) = m̃n

(
·, (X1, Y1), . . . , (Xn, Yn)

)
∈ Fn

and

1
n

n∑
i=1

|Yi − m̃n(Xi)|2 ≤ min
l∈Θn

(
1
n

n∑
i=1

|Yi − gn,l(Xi)|2 + penn(gn,l)
)

for some nonempty parameter set Θn, some random functions gn,l : Rd → R

and some deterministic penalty terms penn(gn,l) ≥ 0, where the random function
gn,l : Rd → R depend only on random variables

b(1)
1 , . . . ,b(1)

r , . . . ,b(In)
1 , . . . ,b(In)

r ,

which are independent of (X1, Y1), (X2, Y2),
Then mn satisfies

E
∫

|mn(x) −m(x)|2PX(dx)

≤
c13 · (logn)2 · (log(supxn

1 ∈(supp(X))n N1(1
n·βn

,Fn, x
n
1)) + 1)

n

+ 2 · E
(

min
l∈Θn

∫
|gn,l(x) −m(x)|2PX(dx) + penn(gn,l)

)

for n > 1 and some constant c13 > 0, which does not depend on n.

Proof. This lemma follows in a straightforward way from the proof of Theo-
rem 1 in Bagirov et al. [5]. A complete version of the proof is given in the
Appendix A.

Neural network regression estimates 579

In order to bound the covering number N1(1
n·βn

,Fn, x
n
1) we will use the

following lemma.

Lemma 9. Let a > 0 and let d,N, Jn ∈ N be such that Jn ≤ nc14 and set
βn = c6 ·logn. Let σ be 2-admissible according to Definition 2. Let F be the set of
all functions defined by (4), (5) and (6) where k1 = k2 = · · · = kL = 24 · (N +d)
and the weights are bounded in absolute value by c15 · nc16 . Set

F (Jn) =
{

Jn∑
j=1

aj · fj : fj ∈ F and
Jn∑
j=1

a2
j ≤ c17 · nc18

}
.

Then we have for n > 1

log
(
suppxn

1 ∈[−a,a]d·nN1

(
1

n · βn
,F (Jn), xn

1

))
≤ c19 · logn · Jn

for some constant c19 which depends only on L, N , a and d.

Proof. Since the networks in F (Jn) are linear combinations of Jn fully connected
neural networks with L hidden layers, a bounded number of neurons in each
hidden layers and all weights bounded by a polynomial in n, the result follows
by combining Lemma 16.6 in Györfi et al. [19] with Lemma 2 in the Supplement
of Bauer et al. [8].

5.4. Proof of Theorem 1

Since supp(PX) is bounded and m is (p, C)-smooth, we conclude that m is
bounded in absolute value, and we can assume without loss of generality that
supp(X) ⊆ [−an, an]d and ‖m‖∞ ≤ βn.

Let F be the set of all functions defined by (4), (5) and (6) where L = s+2 =
�log2(N + d)� + 2, where k1 = k2 = · · · = kL = 24 · (N + d) and where the
weights are bounded in absolute value by nc20 . Set

F (Jn) =
{

Jn∑
j=1

aj · fj : fj ∈ F and
Jn∑
j=1

a2
j ≤ c21 · n

}

for c21 chosen below, where

Jn = (Mn + 1)d ·
∣∣{(j1, . . . , jd) : j1, . . . , jd ∈ {0, . . . , N}, j1 + · · · + jd ≤ N

}∣∣.
Then Jn ≤ (Mn + 1)d · (N + 1)d.

Let

gn(x)=
(Mn+1)d∑

k=1

∑
j1,...,jd∈{0,...,q}

j1+···+jd≤q

1
j1! · · · jd!

· ∂j1+···+jdm

∂j1x(1) · · · ∂jdx(d) (xik)·fnet,j1,...,jd,ik(x).

580 A. Braun et al.

Because of the (p, C)-smoothness of m we know that

max
k∈{1,...,(Mn+1)d,j1,...,jd∈{0,...,q},j1+···+jd≤q

∣∣∣∣ ∂j1+···+jdm

∂j1x(1) · · · ∂jdx(d) (xik)
∣∣∣∣ < ∞. (21)

Set

c21 = max
{

1 + E{Y 2}
c′3

, (N + 1)d · max
{∣∣∣∣ 1

j1! · · · jd!
· ∂j1+···+jdm

∂j1x(1) · · · ∂jdx(d) (xik)
∣∣∣∣
2

:

j1, . . . , jd ∈ {0, . . . , q}, j1 + · · · + jd ≤ q

}}
(22)

and let An be the event that

1
n

n∑
i=1

Y 2
i ≤ 1 + E

{
Y 2} (23)

holds. Then

P
(
Ac

n

)
≤ Var{Y 2}

n
≤ c22

n

by Chebyshev’s inequality.
Set m̂n = Tβnm̃n = mn in case that An holds and set m̂n = Tβngn otherwise.

Then

E
∫

|mn(x) −m(x)|2PX(dx)

≤ 4β2
n · P

{
Ac

n

}
+ E

{∫
|mn(x) −m(x)|2PX(dx) · 1An

}

≤ 4 · c22 · β2
n

n
+ E

∫
|m̂n(x) −m(x)|2PX(dx).

The definition of the estimate m̃n implies

m̃n(x) =
Jn∑
j=1

âj · fj

for some fj ∈ F and some âj satisfying

Jn∑
j=1

â2
j ≤ 1

n

n∑
i=1

Y 2
i · n

c′3
.

Hence on An we have
Jn∑
j=1

â2
j ≤ 1 + EY 2

c′3
· n,

Neural network regression estimates 581

and consequently we can assume w.l.o.g. that mn satisfies mn = Tβnm̄n for
some m̄n ∈ F (Jn). And since

1
n

n∑
i=1

|Yi − m̃n(Xi)|2

≤ 1
n

n∑
i=1

|Yi − m̃n(Xi)|2 + c′3
n

·
(Mn+1)d∑

k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a2
ik,j1,...,jd

≤ 1
n

n∑
i=1

|Yi − gn(Xi)|2

+ c′3
n

·
(Mn+1)d∑

k=1

∑
j1,...,jd∈{0,...,q}

j1+···+jd≤q

∣∣∣∣ 1
j1! · · · jd!

· ∂j1+···+jdm

∂j1x(1) · · · ∂jdx(d) (xik)
∣∣∣∣
2

(by definition of m̃n) and (21), we also have

1
n

n∑
i=1

|Yi − m̄n(Xi)|2 ≤ 1
n

n∑
i=1

|Yi − gn(Xi)|2 + c23 ·
(Mn + 1)d

n
.

Set

Pn(x) =
(Mn+1)d∑

k=1

∑
j1,...,jd∈{0,...,q}

j1+···+jd≤q

1
j1! · · · jd!

· ∂j1+···+jdm

∂j1x(1) · · · ∂jdx(d) (xik)

·
(
x(1) − x

(1)
ik

)j1 · · · (x(d) − x
(d)
ik

)jd ·
d∏

j=1

(
1 − Mn

2a · |x(j) − x
(j)
ik |

)
+
.

Application of Lemma 8 (with |Θn| = 1 and gn,1 = gn deterministic) yields

E
∫

|mn(x) −m(x)|2PX(dx)

≤
c23 · (logn)2 · (log(supxn

1 ∈supp(X)n N1(1
n·βn

,F (Jn), xn
1)) + 1)

n

+ 2 ·
∫

|gn(x) −m(x)|2PX(dx) + 2 · c21 ·
(Mn + 1)d

n
.

By Lemma 9 we know that

c23 · log(n)2 · (log(supxn
1 ∈supp(X)n N1(1

n·βn
,F (Jn), xn

1)) + 1)
n

≤ c24 ·
(logn)3 · (N + 1)d · (Mn + 1)d

n
.

582 A. Braun et al.

Furthermore we have∫
|gn(x) −m(x)|2PX(dx)

≤ 2 · sup
x∈[−an,an]d

|gn(x) − Pn(x)|2 + 2 · sup
x∈[−an,an]d

|Pn(x) −m(x)|2.

By Lemma 5 we know

sup
x∈[−an,an]d

|gn(x) − Pn(x)| ≤ (Mn + 1)d · (q + 1)d · c25 · a6(N+d)
n ·M3

n

1
Rn

≤ (Mn + 1)d · (q + 1)d · c25 · (logn) · M
3
n

Rn
,

and Lemma 5 in Schmidt-Hieber [43] implies

sup
x∈[−an,an]d

|Pn(x) −m(x)| ≤ c26 ·
apn
Mp

n
≤ c26 · (logn) · 1

Mp
n
.

Plugging in the values for Rn and Mn we get the assertion.

5.5. Proof of Theorem 2

W.l.o.g. we assume supp(X) ⊆ [−An, An]d.
Define the estimate m̄n exactly like mn except that for given directions bl

(l = 1, . . . , r) we define the neural network estimate m̃n(x) by

m̃n(x) =
r∑

l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

aik,j1,...,jd,bl
· fnet,j1,...,jd,ik,bl

(x),

where the coefficients ak,j1,...,jd,bl
are chosen from the set{

(ak,j1,...,jd,bl
)k,j1,...,jd,l :

∑
k,j1,...,jd,l

a2
k,j1,...,jd,bl

≤ c27 · n2
}

by minimizing

1
n

n∑
i=1

|Yi − m̃n(Xi)|2 + c′′3
n

·
r∑

l=1

K∑
k=0

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a2
k,j1,...,jd,bl

for some constant c′′3 > 0. Then m̄n satisfies

m̄n ∈
{
Tβnf : f ∈ F (Jn)},

where F (Jn) (with Jn = r · (Mn + 1) · (N+d
d)) is the function space defined in

Lemma 9. On the event

Bn = {|Yi| ≤
√
n : i = 1, . . . , n}

Neural network regression estimates 583

we know by (17) that we have mn = m̄n (provided c27 ≥ 1/c′′3). Hence∫
|mn(x) −m(x)|2PX(dx) ≤

∫
|m̄n(x) −m(x)|2PX(dx) + 4β2

n · 1Bc
n
.

By Markov inequality we know

P
{
Bc

n

}
≤ n · P{|Y | >

√
n} ≤ n · E{ec′′3 ·Y 2}

exp(c′′3 · n) ,

therefore (14) implies that it suffices to show the assertion under the additional
assumption

m̃n

(
·, (X1, Y1), . . . , (Xn, Yn)

)
∈ F (Jn). (24)

By Lemma 7 we know that for each i ∈ {1, . . . , In} there exist coefficients
a
(i)
k,j1,...,jd,l

∈ [−c28 ·Ap
n, c28 ·Ap

n], which depend on al and on b(i)
l , but which are

independent of (X1, Y1), . . . , (Xn, Yn), such that we have for all x ∈ [−An, An]d

∣∣∣∣∣
r∑

l=1

q∑
j=0

g
(j)
l ((b(i)

l)Tx)
j! ·

((
al − b(i)

l

)T
x
)j

−
r∑

l=0

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(i)
ik,j1,...,jd,l

·
(
x(1))j1 · · · (x(d))jd

·
(

1 − Mn

2 · d ·An
· |
(
b(i)
l

)T
x− uik |

)
+

∣∣∣∣∣
≤ r · 2p · (p + 1) · C ·A2p

n ·
(

max
{

1
Mn

, max
l=1,...,r

‖al − b(i)
l ‖∞

})p

. (25)

From the definition of the estimate we get
1
n

n∑
i=1

|Yi − m̃n(Xi)|2

≤ min
t=1,...,In

{
1
n

n∑
i=1

∣∣∣∣∣Yi−
r∑

l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(t)
ik,j1,...,jd,l

·f
net,j1,...,jd,ik,b(t)

l
(Xi)

∣∣∣∣∣
2

+ c′′3
n

·
r∑

l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

(
a
(t)
ik,j1,...,jd,l

)2}

≤ min
t=1,...,In

{
1
n

n∑
i=1

∣∣∣∣∣Yi−
r∑

l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(t)
ik,j1,...,jd,l

·f
net,j1,...,jd,ik,b(t)

l
(Xi)

∣∣∣∣∣
2

+ c29 ·A2p
n · r ·

(
N + d

d

)
· Mn

n

}
.

584 A. Braun et al.

Hence, application of Lemma 8 and Lemma 9 (together with (24)) yields

E
∫

|mn(x) −m(x)|2PX(dx)

≤ c30 ·
(logn)3 ·Mn

n

+ 2 ·E
(

min
t=1,...,In

∫ ∣∣∣∣∣
r∑

l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(t)
ik,j1,...,jd,l

· f
net,j1,...,jd,ik,b(t)

l
(x)

−m(x)

∣∣∣∣∣
2

PX(dx)
)

+ c31 · (logn) · n− 2p
2p+1 .

Because of (a + b + c)2 ≤ 3a2 + 3b2 + 3c2 (a, b, c ∈ R) we have
∫ ∣∣∣∣∣

r∑
l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(t)
ik,j1,...,jd,l

· f
net,j1,...,jd,ik,b(t)

l
(x) −m(x)

∣∣∣∣∣
2

PX(dx)

≤ 3 ·
∫ ∣∣∣∣∣

r∑
l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(t)
ik,j1,...,jd,l

· f
net,j1,...,jd,ik,b(t)

l
(x)

−
r∑

l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(t)
ik,j1,...,jd,l

·
(
x(1))j1 · · · (x(d))jd

·
(

1 − Mn

2 · d ·An
· |
(
b(t)
l

)T
x− uik |

)
+

∣∣∣∣∣
2

PX(dx)

+ 3 ·
∫ ∣∣∣∣∣

r∑
l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(t)
ik,j1,...,jd,l

·
(
x(1))j1 · · · (x(d))jd

·
(

1 − Mn

2 · d ·An
· |
(
b(t)
l

)T
x− uik |

)
+

−
r∑

l=1

q∑
j=0

g
(j)
l ((b(t)

l)Tx)
j! ·

((
al − b(t)

l

)T
x
)j∣∣∣∣∣

2

PX(dx)

+ 3 ·
∫ ∣∣∣∣∣

r∑
l=1

q∑
j=0

g
(j)
l (bT

l x)
j! ·

((
al − b(t)

l

)T
x
)j −m(x)

∣∣∣∣∣
2

PX(dx).

Application of Lemma 5 implies for all x ∈ [−An, An]d∣∣∣∣∣
r∑

l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(t)
k,j1,...,jd,l

· f
net,k,j1,...,jd,b(t)

l
(x)

Neural network regression estimates 585

−
r∑

l=1

Mn+1∑
k=1

∑
j1,...,jd∈{0,...,N}

j1+···+jd≤N

a
(t)
k,j1,...,jd,l

·
(
x(1))j1 · · · (x(d))jd

·
(

1 − K

2 · d ·A · |
(
b(t)
l

)T
x− uk|

)
+

∣∣∣∣∣
2

≤ r2 · (Mn + 1)2 · (N + d)2d · c228 ·A2p
n · c212 · 36·3s ·A6·2s

n ·M6
n · 1

R2
n

≤ c32 ·
(logn)2

n
.

By Lemma 6 we have for all x ∈ [−An, An]d

∣∣∣∣∣
r∑

l=1

q∑
j=0

g
(j)
l ((b(t)

l)Tx)
j! ·

(
(al − bl)Tx

)j −m(x)

∣∣∣∣∣
2

≤ c33 ·A2p
n · ‖al − b(t)

l ‖2p
∞.

Using this together with (25) we see that it remains to show

E
{

min
i=1,...,In

max
s=1,...,r

‖b(i)
s − as‖2p

∞

}
≤ c34 · (logn)2 · n− 2p

2p+1 .

By the random choice of the b(i)
l we know for any t ∈ (0, 1]

P
{

min
i=1,...,In

max
l=1,...,r

‖b(i)
l − al‖∞ > t

}
=

In∏
i=1

(
1 − P

{
max

l=1,...,r
‖b(i)

l − al‖∞ ≤ t
})

≤
(

1 −
(
t

2

)r·d)In

from which we conclude

E
{

min
i=1,...,In

max
l=1,...,r

‖b(i)
l − al‖2p

∞

}

≤
(

logn
n

) 2p
2p+1

+ 22p · P
{

min
i=1,...,In

max
l=1,...,r

‖b(i)
l − al‖∞ >

(
logn
n

) 1
2p+1

}

≤
(

logn
n

) 2p
2p+1

+ 22p ·
(

1 − · 1
2r·d

(
logn
n

) r·d
2p+1

)In

≤ c35 · exp
(
−In · 1

2r·d ·
(

logn
n

) r·d
2p+1

)

= c35 · exp
(
− c9

2r·d · (logn)2
)

≤ c35 ·
(

logn
n

) 2p
2p+1

586 A. Braun et al.

where the last inequality follows from

In ≥ c9 · (logn)2 ·
(

n

logn

) r·d
2p+1

.

Putting together the above results we get the assertion.

Appendix A: Supplementary Material

A.1. Computation of the linear neural network estimate

The estimate in Subsection 2.2 is given by

m̃n(x) =
J∑

j=1
aj ·Bj(x) (26)

where a = (aj)j=1,...,J ∈ R
J minimizes

1
n

(Y − Ba)T (Y − Ba) + c′3
n

· aTa

= 1
n

(
YTY − 2YTBa

)
+ aT

(
1
n
BTB + c′3

n
· I
)
a.

Since the matrix
A = 1

n
BTB + c′3

n
· I

is positive definite, its inverse matrix A−1 exists and it is easy to see that we
have

1
n
·
(
YTY − 2YTBa

)
+ aT

(
1
n
BTB + c′3

n
· I
)
a

=
(
a − 1

n
·A−1BTY

)T

A
(
a − 1

n
· A−1BTY

)

+ 1
n
YTY − 1

n2 · YTBA−1BTY.

The last expression is minimal for a = 1
n · A−1BTY, which proves that the

vector of coefficients of our estimate (26) is the unique solution of the linear
equation system (13).

A.2. Proof of Lemma 5

Define g
(0)
1 by backward recursion:

g
(s)
k (x) = x(l) − y(l)

Neural network regression estimates 587

for j1 + j2 + · · · + jl−1 + 1 ≤ k ≤ j1 + j2 + · · · + jl and l = 1, . . . , d,

g
(s)
j1+j2+···+jd+k(x) =

(
1 − M

2a · |x(k) − y(k)|
)

+

for k = 1, . . . , d, and
g
(s)
k (x) = 1

for k = j1 + j2 + · · · + jd + d + 1, j1 + j2 + · · · + jd + d + 2, . . . , 2s, and

g
(l)
k (x) = g

(l+1)
2k−1(x) · g(l+1)

2k (x)

for k ∈ {1, 2, . . . , 2l} and l ∈ {0, . . . , s− 1}.
Then we have for any l ∈ {0, . . . , s}, k ∈ {1, . . . , 2l} and x ∈ [−a, a]

|g(l)
k (x)| ≤ (2a)2

s−l

.

By Lemma 2 the network fmult satisfies for any l ∈ {0, . . . , s} and x, y ∈ [−33s−l ·
a2s−l

, 33s−l · a2s−l]

|fmult(x, y) − x · y| ≤ 20 · ‖σ′′′‖∞
3 · |σ′′(tσ)| · 33·3s−l · a3·2s−l · 1

R
.

Furthermore we have by Lemma 1 and Lemma 4 for any x ∈ [−3a, 3a]

|fid(x) − x| ≤ 9 · ‖σ′′‖∞ · a2

2 · |σ′(tσ,id)|
· 1
R

(27)

and for any x ∈ [−a, a]d∣∣∣∣fhat,y(x) −
(

1 − M

2a · |x− y|
)

+

∣∣∣∣
≤ 1792 · max{‖σ′′‖∞, ‖σ′′′‖∞, 1}

min{2 · |σ′(tσ.id)|, |σ′′(tσ)|, 1} ·M3 · 1
R
. (28)

From this and (20) we can recursively conclude

|f (l)
k (x)| ≤ 33s−l · a2s−l

for k ∈ {1, . . . , 2l} and l ∈ {0, . . . , s}.
In order to prove the assertion of Lemma 5 we show in the sequel

|f (l)
k (x) − g

(l)
k (x)| ≤ c36 · 33·3s−l · a3·2s−l ·M3 · 1

R

for k ∈ {1, . . . , 2l} and l ∈ {0, . . . , s}, where

c36 = max
{

20 · ‖σ′′′‖∞
3 · |σ′′(tσ)| ,

9 · ‖σ′′‖∞
|σ′(tσ,id)|

, 1792 · max{‖σ′′‖∞, ‖σ′′′‖∞, 1}
min{2 · |σ′(tσ.id)|, |σ′′(tσ)|, 1}

}
.

588 A. Braun et al.

For s = l this is a consequence of (27), and (28). For l ∈ {0, 1, . . . , s− 1} we
can conclude via induction

|f (l)
k (x) − g

(l)
k (x)|

≤ |fmult

(
f

(l+1)
2k−1 (x), f (l+1)

2k (x)
)
− f

(l+1)
2k−1 (x) · f (l+1)

2k (x)|

+ |f (l+1)
2k−1 (x) · f (l+1)

2k (x) − g
(l+1)
2k−1(x) · f (l+1)

2k (x)|

+ |g(l+1)
2k−1(x) · f (l+1)

2k (x) − g
(l+1)
2k−1(x) · g(l+1)

2k (x)|

≤ c36 · 33·3s−l−1 · a3·2s−l−1 · 1
R

+ 33s−l−1 · a2s−l−1 · 2 · c36 · 33·3s−l−1

· a3·2s−l−1 ·M3 · 1
R

≤ c36 ·
(
33s−l

+ 2 · 34·3s−l−1) · a3·2s−l ·M3 · 1
R

≤ c36 · 33·3s−l · a3·2s−l ·M3 · 1
R
.

A.3. Lemma 5 in the context of projection pursuit

Lemma 10. Let M ∈ N and let σ : R → [0, 1] be 2-admissible according to
Definition 2. Let A ≥ 1, b ∈ R

d with ‖b‖ ≤ 1 and

R ≥ max
{
‖σ′′‖∞ · (M + 1)

2 · |σ′(tσ,id)|
,
9 · ‖σ′′‖∞ ·A
|σ′(tσ,id)|

,

20 · ‖σ′′′‖∞
3 · |σ′′(tσ)| · 33·3s ·A3·2s

, 1792 · max{‖σ′′‖∞, ‖σ′′′‖∞, 1}
min{2 · |σ′(tσ,id)|, |σ′′(tσ)|, 1} · d3/2 ·M3

}
(29)

and let y ∈ [−A,A]. Let N ∈ N and let j1, . . . , jd ∈ N0 such that j1+· · ·+jd ≤ N ,
and set s = �log2(N + 1)�. Let fid, fmult and f̄hat,z (for z ∈ R) be the neural
networks defined in Subsection 3.2. (So in particular f̄hat,z is the neural network
from Lemma 4 with y = z and a = d ·A.) Define the network fnet,j1,...,jd,y by

fnet,j1,...,jd,y(x) = f
(0)
1 (x),

where f
(0)
1 is defined by backward recursion as follows:

f
(l)
k (x) = fmult

(
f

(l+1)
2k−1 (x), f (l+1)

2k (x)
)

for k ∈ {1, 2, . . . , 2l} and l ∈ {0, . . . , s− 1}, and

f
(s)
k (x) = fid

(
fid

(
x(l)))

for j1 + j2 + · · · + jl−1 + 1 ≤ k ≤ j1 + j2 + · · · + jl and l = 1, . . . , d,

f
(s)
j1+j2+···+jd+1(x) = f̄hat,y

(
bTx

)
,

Neural network regression estimates 589

and
f

(s)
k (x) = 1

for k = j1 + j2 + · · ·+ jd +2, j1 + j2 + · · ·+ jd +3, . . . , 2s. Then we have for any
x ∈ [−A,A]d:∣∣∣∣fnet,y(x) −

(
x(1))j1 · · · (x(d))jd ·

(
1 − M

2 · d ·A · |bTx− y|
)

+

∣∣∣∣
≤ c37 · 33·3s ·A3·2s ·M3 · 1

R
.

Proof. Define g
(0)
1 by backward recursion:

g
(s)
k (x) = x(l)

for j1 + j2 + · · · + jl−1 + 1 ≤ k ≤ j1 + j2 + · · · + jl and l = 1, . . . , d,

g
(s)
j1+j2+···+jd+1(x) =

(
1 − M

2 · d ·A · |bTx− y|
)

+
,

and
g
(s)
k (x) = 1

for k = j1 + j2 + · · · + jd + 2, j1 + j2 + · · · + jd + 3, . . . , 2s, and

g
(l)
k (x) = g

(l+1)
2k−1(x) · g(l+1)

2k (x)

for k ∈ {1, 2, . . . , 2l} and l ∈ {0, . . . , s− 1}.
Then we have for any x ∈ [−A,A]d

|g(l)
k (x)| ≤ A2s−l

.

By Lemma 2 the network fmult satisfies for any l ∈ {0, . . . , s} and x, y ∈ [−33s−l ·
A2s−l

, 33s−l ·A2s−l]

|fmult(x, y) − x · y| ≤ 20 · ‖σ′′′‖∞
3 · |σ′′(tσ)| · 33·3s−l ·A3·2s−l · 1

R
.

Furthermore we have by Lemma 1 and Lemma 4 for any x ∈ [−3A, 3A]

|fid(x) − x| ≤ 9 · ‖σ′′‖∞ ·A2

2 · |σ′(tσ,id)|
· 1
R

(30)

and for any x ∈ [−A,A]d∣∣∣∣f̄hat,y(x) −
(

1 − M

2 · d ·A · |bTx− y|
)

+

∣∣∣∣
≤ 1792 · max{‖σ′′‖∞, ‖σ′′′‖∞, 1}

min{2 · |σ′(tσ.id)|, |σ′′(tσ)|, 1} ·M3 · 1
R
. (31)

590 A. Braun et al.

From this and (29) we can recursively conclude

|f (l)
k (x)| ≤ 33s−l ·A2s−l

for k ∈ {1, . . . , 2l} and l ∈ {0, . . . , s}.
In order to prove the assertion of Lemma 5 we show in the sequel

|f (l)
k (x) − g

(l)
k (x)| ≤ c37 · 33·3s−l ·A3·2s−l ·M3 · 1

R

for k ∈ {1, . . . , 2l} and l ∈ {0, . . . , s}, where

c37 = max
{

20 · ‖σ′′′‖∞
3 · |σ′′(tσ)| ,

9 · ‖σ′′‖∞
|σ′(tσ,id)|

, 1792 · max{‖σ′′‖∞, ‖σ′′′‖∞, 1}
min{2 · |σ′(tσ.id)|, |σ′′(tσ)|, 1}

}
.

For s = l this is a consequence of (30) and (31). For l ∈ {0, 1, . . . , s − 1} we
can conclude via induction∣∣f (l)

k (x) − g
(l)
k (x)

∣∣
≤

∣∣fmult

(
f

(l+1)
2k−1 (x), f (l+1)

2k (x)
)
− f

(l+1)
2k−1 (x) · f (l+1)

2k (x)
∣∣

+
∣∣f (l+1)

2k−1 (x) · f (l+1)
2k (x) − g

(l+1)
2k−1(x) · f (l+1)

2k (x)
∣∣

+
∣∣g(l+1)

2k−1 (x) · f (l+1)
2k (x) − g

(l+1)
2k−1(x) · g(l+1)

2k (x)
∣∣

≤ c37 · 33·3s−l−1 ·A3·2s−l−1 · 1
R

+ 33s−l−1 ·A2s−l−1 · 2 · c37 · 33·3s−l−1

·A3·2s−l−1 ·M3 · 1
R

≤ c37 ·
(
33s−l

+ 2 · 34·3s−l−1) ·A3·2s−l ·M3 · 1
R

≤ c37 · 33·3s−l ·A3·2s−l ·M3 · 1
R
.

A.4. Proof of Lemma 8

In the proof we use the following error decomposition:∫
|mn(x) −m(x)|2PX(dx)

=
[
E
{
|mn(X) − Y |2|Dn

}
− E

{
|m(X) − Y |2

}
−
(
E
{
|mn(X) − TβnY |2|Dn

}
− E

{
|mβn(X) − TβnY |2

})]
+
[
E
{
|mn(X) − TβnY |2|Dn

}
− E

{
|mβn(X) − TβnY |2

}

− 2 · 1
n

n∑
i=1

(
|mn(Xi) − TβnYi|2 − |mβn(Xi) − TβnYi|2

)]

Neural network regression estimates 591

+
[
2 · 1

n

n∑
i=1

|mn(Xi) − TβnYi|2 − 2 · 1
n

n∑
i=1

|mβn(Xi) − TβnYi|2

−
(

2 · 1
n

n∑
i=1

|mn(Xi) − Yi|2 − 2 · 1
n

n∑
i=1

|m(Xi) − Yi|2
)]

+
[
2
(

1
n

n∑
i=1

|mn(Xi) − Yi|2 −
1
n

n∑
i=1

|m(Xi) − Yi|2
)]

=
4∑

i=1
Ti,n,

where TβnY is the truncated version of Y and mβn is the regression function of
TβnY , i.e.,

mβn(x) = E{TβnY |X = x}.

We start with bounding T1,n. By using a2 − b2 = (a− b)(a + b) we get

T1,n = E
{
|mn(X) − Y |2 − |mn(X) − TβnY |2|Dn

}
− E

{
|m(X) − Y |2 − |mβn(X) − TβnY |2

}
= E

{
(TβnY − Y)

(
2mn(X) − Y − TβnY

)
|Dn

}
− E

{((
m(X)−mβn(X)

)
+(TβnY − Y)

)(
m(X) + mβn(X) − Y − TβnY

)}
= T5,n + T6,n.

With the Cauchy-Schwarz inequality and

I{|Y |>βn} ≤ exp(c4/2 · |Y |2)
exp(c4/2 · β2

n) (32)

we conclude

|T5,n| ≤
√

E
{
|TβnY − Y |2

}
·
√

E
{
|2mn(X) − Y − TβnY |2|Dn

}
≤

√
E
{
|Y |2 · I{|Y |>βn}

}
·
√

E
{
2 · |2mn(X) − TβnY |2 + 2 · |Y |2|Dn

}
≤

√
E
{
|Y |2 · exp(c4/2 · |Y |2)

exp(c4/2 · β2
n)

}

·
√

E
{
2 · |2mn(X) − TβnY |2|Dn

}
+ 2E

{
|Y |2

}
≤

√
E
{
|Y |2 · exp

(
c4/2 · |Y |2

)}
· exp

(
−c4 · β2

n

4

)
·
√

2(3βn)2 + 2E
{
|Y |2

}
.

With x ≤ exp(x) for x ∈ R we get

|Y |2 ≤ 2
c4

· exp
(
c4
2 · |Y |2

)

592 A. Braun et al.

and hence E{|Y |2 · exp(c4/2 · |Y |2)} is bounded by

E
(

2
c4

· exp
(
c4/2 · |Y |2

)
· exp

(
c4/2 · |Y |2

))
≤ E

(
2
c4

· exp
(
c4 · |Y |2

))
≤ c38

which is less than infinity by the assumptions of the lemma. Furthermore the
third term is bounded by

√
18β2

n + c39 because

E
(
|Y |2

)
≤ E(1/c4 · exp

(
c4 · |Y |2

)
≤ c39 < ∞, (33)

which follows again as above. With the setting βn = c6 · log(n) it follows for
some constants c40, c41 > 0 that

|T5,n| ≤
√
c38 · exp

(
−c40 · log(n)2

)
·
√(

18 · c26 · (logn)2 + c39
)
≤ c41 ·

log(n)
n

.

By the Cauchy-Schwarz inequality we get

T6,n ≤
√

2 ·E
{
|
(
m(X) −mβn(X)

)
|2
}

+ 2 · E
{
|(TβnY − Y)|2

}
·
√

E
{
|m(X) + mβn(X) − Y − TβnY |2

}
,

where we can bound the second factor on the right-hand side in the above
inequality in the same way we have bounded the second factor in T5,n, because
by assumption ‖m‖∞ is bounded and furthermore mβn is bounded by βn. Thus
we get for some constant c42 > 0√

E
{
|m(X) + mβn(X) − Y − TβnY |2

}
≤ c42 · log(n).

Next we consider the first term. By Jensen’s inequality it follows that

E
{
|m(X) −mβn(X)|2

}
≤ E

{
E
(
|Y − TβnY |2|X

)}
= E

{
|Y − TβnY |2

}
.

Hence we get
T6,n ≤

√
4 · E

{
|Y − TβnY |2

}
· c42 · log(n)

and therefore with the calculations from T5,n it follows that T6,n ≤ c43 · log(n)/n
for some constant c43 > 0. Altogether we get

T1,n ≤ c44 ·
log(n)

n

for some constant c44 > 0.
Next we consider T2,n and conclude for t > 0

P{T2,n > t}

≤ P
{
∃f ∈Tβn,supp(X)Fn : E

(∣∣∣∣f(X)
βn

− TβnY

βn

∣∣∣∣
2)

−E
(∣∣∣∣mβn(X)

βn
− TβnY

βn

∣∣∣∣
2)

Neural network regression estimates 593

− 1
n

n∑
i=1

(∣∣∣∣f(Xi)
βn

− TβnYi

βn

∣∣∣∣
2

−
∣∣∣∣mβn(Xi)

βn
− TβnYi

βn

∣∣∣∣
2)

>
1
2

(
t

β2
n

+ E
(∣∣∣∣f(X)

βn
− TβnY

βn

∣∣∣∣
2)

−E
(∣∣∣∣mβn(X)

βn
− TβnY

βn

∣∣∣∣
2))}

,

where Tβn,supp(X)Fn is defined as {Tβnf · 1supp(X) : f ∈ Fn}. Theorem 11.4 in
Györfi et al. [19] and the relation

N1

(
δ,

{
1
βn

g : g ∈ G
}
, xn

1

)
≤ N1

(
δ · βn,G, xn

1
)

for an arbitrary function space G and δ > 0 lead to

P{T2,n > t} ≤ 14 · sup
xn
1 ∈supp(X)n

N1

(
t

80 · βn
,Fn, x

n
1

)
· exp

(
− n

5136 · β2
n

· t
)
.

Since the covering number is decreasing in t, we can conclude for εn ≥ 80
n

E(T2,n) ≤ E
(
max{T2,n, 0}

)
=
∫ ∞

0
P
{
max{T2,n, 0} > t

}
dt=

∫ ∞

0
P{T2,n > t} dt

≤ εn +
∫ ∞

εn

P{T2,n > t}dt

≤ εn + 14 · sup
xn
1 ∈supp(X)n

N1

(
1

n · βn
,Fn, x

n
1

)
· exp

(
− n

5136 · β2
n

· εn
)

· 5136 · β2
n

n
.

Choosing

εn = 5136 · β2
n

n
· log

(
14 · sup

xn
1 ∈supp(X)n

N1

(
1

n · βn
,Fn, x

n
1

))

(which satisfies the necessary condition εn ≥ 80
n if the constant c6 in the defini-

tion of βn is not too small) minimizes the right-hand side and implies

E(T2,n) ≤
c45 · log(n)2 · log(supxn

1 ∈supp(X)n N1(1
n·βn

,Fn, x
n
1))

n
.

By bounding T3,n similarly to T1,n we get

E(T3,n) ≤ c46 ·
log(n)

n

for some large enough constant c46 > 0 and hence we get in total

E
(3∑

i=1
Ti,n

)
≤

c47 · log(n)2 · (log(supxn
1 ∈supp(X)n N1(1

n·βn
,Fn, x

n
1)) + 1)

n

594 A. Braun et al.

for some sufficient large constant c47 > 0.
We finish the proof by bounding T4,n. Let An be the event, that there exists

i ∈ {1, . . . , n} such that |Yi| > βn and let IAn be the indicator function of An.
Then we get

E(T4,n) ≤ 2 ·E
(

1
n

n∑
i=1

|mn(Xi) − Yi|2 · IAn

)

+ 2 ·E
(

1
n

n∑
i=1

|mn(Xi) − Yi|2 · IAc
n
− 1

n

n∑
i=1

|m(Xi) − Yi|2
)

= 2 ·E
(
|mn(X1) − Y1|2 · IAn

)
+ 2 ·E

(
1
n

n∑
i=1

|mn(Xi) − Yi|2 · IAc
n
− 1

n

n∑
i=1

|m(Xi) − Yi|2
)

= T7,n + T8,n.

By the Cauchy-Schwarz inequality we get for T7,n

1
2 · T7,n ≤

√
E
((
|mn(X1) − Y1|2

)2) ·√P(An)

≤
√

E
((

2|mn(X1)|2 + 2|Y1|2
)2) ·√n · P{|Y1| > βn}

≤
√

E
(
8|mn(X1)|4 + 8|Y1|4

)
·
√
n · E(exp(c4 · |Y1|2))

exp(c4 · β2
n) ,

where the last inequality follows as in the proof of inequality (32). Using x ≤
exp(x) for x ∈ R we get

E
(
|Y |4

)
= E

(
|Y |2 · |Y |2

)
≤ E

(
2
c4

· exp
(
c4
2 · |Y |2

)
· 2
c4

· exp
(
c4
2 · |Y |2

))

= 4
c24

· E
(
exp

(
c4 · |Y |2

))
,

which is finite by assumption (14) of the lemma. Furthermore ‖mn‖∞ is bounded
by βn and therefore the first factor is bounded by

c48 · β2
n = c49 · (logn)2

for some constant c49 > 0. The second factor is bounded by 1/n, because by
the assumptions of the lemma E(exp(c4 · |Y1|2)) is bounded by some constant
c50 < ∞ and hence we get√

n · E(exp(c4 · |Y1|2))
exp(c4 · β2

n) ≤
√
n ·

√
c49√

exp(c4 · β2
n)

≤
√
n · √c50

exp((c4 · c26 · (logn)2)/2) .

Since exp(−c · log(n)2) = O(n−2) for any c > 0, we get altogether

T7,n ≤ c51 ·
(logn)2

√
n

n2 ≤ c52 ·
(logn)2

n
.

Neural network regression estimates 595

With the definition of Ac
n and m̃n defined as in the assumptions of this lemma

we conclude

T8,n ≤ 2 · E
(

1
n

n∑
i=1

|m̃n(Xi) − Yi|2 · IAc
n
− 1

n

n∑
i=1

|m(Xi) − Yi|2
)

≤ 2 · E
(

1
n

n∑
i=1

|m̃n(Xi) − Yi|2 −
1
n

n∑
i=1

|m(Xi) − Yi|2
)

≤ 2 · E
(

min
l∈Θn

1
n

n∑
i=1

|gn(Xi) − Yi|2 + penn(gn,l) −
1
n

n∑
i=1

|m(Xi) − Yi|2
)

≤ 2 · E
(

min
l∈Θn

E
(

1
n

n∑
i=1

|gn,l(Xi) − Yi|2 + penn(gn,l)

− 1
n

n∑
i=1

|m(Xi) − Yi|2|b(1)
1 , . . . ,b(1)

r , . . . ,b(In)
1 , . . . ,b(In)

r

))

≤ 2 · E
(

min
l∈Θn

∫
|gn,l(x) −m(x)|2PX(dx) + penn(gn,l)

)

because |Tβz − y| ≤ |z − y| holds for |y| ≤ β. Hence

E(T4,n) ≤ c53 ·
(logn)2

n
+ 2 · E

(
min
l∈Θn

∫
|gn,l(x) −m(x)|2PX(dx) + penn(gn,l)

)

holds. Thus the proof of Lemma 8 is complete.

Acknowledgments

The authors would like to thank the Editor and the two anonymous referees
for their very useful suggestions which helped to substantially improve the
manuscript.

Funding

Supported by NSERC Grant RGPIN-2020-06793.

References

[1] Adams, R. A. and Fournier, J. J. F. (2003). Sobolev Spaces, 2nd ed. Aca-
demic Press, Amsterdam, The Netherlands. MR2424078

[2] Allen-Zhu, Z., Li, Y., and Song, Z. (2019). A convergence theory for deep
kearning via over-parameterization. In: Proceedings of the 36th Interna-
tional Conference on Machine Learning (PMLR 2019), 97, pp. 242–252.
Long Beach, California.

https://mathscinet.ams.org/mathscinet-getitem?mr=2424078

596 A. Braun et al.

[3] Anthony, M. and Bartlett, P. L. (1999). Neural Networks and Learning:
Theoretical Foundations. Cambridge University Press, Cambridge, UK.
MR1741038

[4] Arora, S., Cohen, N., Golowich, N., and Hu, W. (2018). A convergence
analysis of gradient descent for deep linear neural networks. In: Interna-
tional Conference on Learning Representations (ICLR 2019). New Orleans,
Louisiana.

[5] Bagirov, A. M., Clausen, C., and Kohler, M. (2009). Estimation of a regres-
sion function by maxima of minima of linear functions. IEEE Transactions
on Information Theory, 55, 833–845. MR2597271

[6] Barron, A. R. (1993). Universal approximation bounds for superpositions
of a sigmoidal function. IEEE Transactions on Information Theory 39,
930–944. MR1237720

[7] Barron, A. R. (1994). Approximation and estimation bounds for artificial
neural networks. Machine Learning 14, 115–133.

[8] Bauer, B., Heimrich, F., Kohler, M., and Krzyżak, A. (2019). On estimation
of surrogate models for high-dimensional computer experiments. Annals of
the Institute of Statistical Mathematics 71, 107–136. MR3898428

[9] Bauer, B. and Kohler, M. (2019). On deep learning as a remedy for the
curse of dimensionality in nonparametric regression. Annals of Statistics
47, 2261–2285. MR3953451

[10] Ben-Ari, E. N. and Steinberg, D. M. (2007). Modeling data from computer
experiments: an empirical comparison of kriging with MARS and projection
pursuit regression. Quality Engineering, 19, 327–338.

[11] Braun, A., Kohler, M., and Walk, H. (2019). On the rate of convergence
of a neural network regression estimate learned by gradient descent. arXiv:
1912.03921.

[12] Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., and LeCun, Y.
(2015). The loss surface of multilayer networks. In: International Confer-
ence on Artificial Intelligence and Statistics (AISTATS), 2015, San Diego,
CA, USA. Proceeding of Machine Learning Research 38, pp. 192–204.

[13] Devroye, L., Györfi, L., and Lugosi, G. (1996). A Probabilistic Theory of
Pattern Recognition. Springer-Verlag, New York, US. MR1383093

[14] Devroye, L. and Wagner, T. J. (1980). Distribution-free consistency results
in nonparametric discrimination and regression function estimation. Annals
of Statistics, 8, 231–239. MR0560725

[15] Du, S. and Lee, J. (2018). On the power of over-parametrization in neural
networks with quadratic activation. In: Proceedings of the 35th Interna-
tional Conference on Machine Learning (PMLR 2018), 80, pp. 1329–1338.
Stockholm, Sweden.

[16] Du, S., Lee, J., Tian, Y., Poczos, B., and Singh, A. (2018). Gradient descent
learns one-hidden-layer CNN: don’t be afraid of spurious local minima.
In: Proceedings of the 35th International Conference on Machine Learning
(PMLR 2018), 80, 1339–1348. Stockholm, Sweden.

[17] Eckle, K. and Schmidt-Hieber, J. (2019). A comparison of deep networks
with ReLU activation function and linear spline-type methods. Neural Net-

https://mathscinet.ams.org/mathscinet-getitem?mr=1741038
https://mathscinet.ams.org/mathscinet-getitem?mr=2597271
https://mathscinet.ams.org/mathscinet-getitem?mr=1237720
https://mathscinet.ams.org/mathscinet-getitem?mr=3898428
https://mathscinet.ams.org/mathscinet-getitem?mr=3953451
https://arxiv.org/abs/1912.03921
https://arxiv.org/abs/1912.03921
https://mathscinet.ams.org/mathscinet-getitem?mr=1383093
https://mathscinet.ams.org/mathscinet-getitem?mr=0560725

Neural network regression estimates 597

works, 110, 232–242.
[18] Friedman, J. H. and Stuetzle, W. (1981). Projection pursuit regression.

Journal of the American Statistical Association, 76, 817–823. MR0650892
[19] Györfi, L., Kohler, M., Krzyżak, A., and Walk, H. (2002). A Distribution-

Free Theory of Nonparametric Regression. Springer.
[20] Hall, P. (1989). On projection pursuit regression. Annals of Statistics, 17,

573–588. MR0994251
[21] Härdle, W. and Stoker, T. M. (1989). Investigating smooth multiple re-

gression by the method of average derivatives. Journal of the American
Statistical Association, 84, 986–995. MR1134488

[22] Härdle, W., Hall, P., and Ichimura, H. (1993). Optimal smoothing in single-
index models. Annals of Statistics, 21, 157–178. MR1212171

[23] Haykin, S. O. (2008). Neural Networks and Learning Machines, 3rd ed.
Prentice-Hall, New York, US.

[24] Hertz, J., Krogh, A., and Palmer, R. G. (1991). Introduction to the Theory
of Neural Computation. Addison-Wesley, Redwood City, California, US.
MR1096298

[25] Horowitz, J. L. and Mammen, E. (2007). Rate-optimal estimation for a gen-
eral class of nonparametric regression models with unknown link functions.
Annals of Statistics, 35, 2589–2619. MR2382659

[26] Huber, P. J. (1985). Projection pursuit. Annals of Statistics, 13, 435–475.
MR0790553

[27] Imaizumi, M. and Fukamizu, K. (2019). Deep neural networks learn non-
smooth functions effectively. In: Proceedings of the 22nd International Con-
ference on Artificial Intelligence and Statistics (AISTATS 2019). Naha,
Okinawa, Japan.

[28] Jiao, Y., Lai, Y., Lu, X., Wang, F., Yang, J. Z., and Yang, Y. (2023).
Deep neural networks with relu-sine-exponential activations break curse of
dimensionality in approximation on Hölder class. SIAM Journal on Math-
ematical Analysis, 55, 3635–3649. MR4629853

[29] Jones, L. K. (1987). On a conjecture of Huber concerning the convergence of
projection pursuit regression. Annals of Statistics, 15, 880–882. MR0888447

[30] Jones, L. K. (1992). A simple lemma on greedy approximation in Hilbert
space and convergence rates for projection pursuit regression and neural
network training. Annals of Statistics, 20, 608–613. MR1150368

[31] Kawaguchi, K. (2016). Deep learning without poor local minima. In:
30th Conference on Neural Information Processing Systems (NIPS 2016).
Barcelona, Spain.

[32] Kawaguchi, K. and Huang, J. (2019). Gradient descent finds global min-
ima for generalizable deep neural networks of practical sizes. arXiv:1908.
02419v1.

[33] Kohler, M. and Krzyżak, A. (2017). Nonparametric regression based on
hierarchical interaction models. IEEE Transaction on Information Theory,
63, 1620–1630. MR3625984

[34] Kohler, M., Krzyżak, A., and Langer, S. (2022). Estimation of a function
of low local dimensionality by deep neural networks. IEEE Transaction on

https://mathscinet.ams.org/mathscinet-getitem?mr=0650892
https://mathscinet.ams.org/mathscinet-getitem?mr=0994251
https://mathscinet.ams.org/mathscinet-getitem?mr=1134488
https://mathscinet.ams.org/mathscinet-getitem?mr=1212171
https://mathscinet.ams.org/mathscinet-getitem?mr=1096298
https://mathscinet.ams.org/mathscinet-getitem?mr=2382659
https://mathscinet.ams.org/mathscinet-getitem?mr=0790553
https://mathscinet.ams.org/mathscinet-getitem?mr=4629853
https://mathscinet.ams.org/mathscinet-getitem?mr=0888447
https://mathscinet.ams.org/mathscinet-getitem?mr=1150368
https://arxiv.org/abs/1908.02419v1
https://arxiv.org/abs/1908.02419v1
https://mathscinet.ams.org/mathscinet-getitem?mr=3625984

598 A. Braun et al.

Information Theory, 68, 4032–4042. MR4433267
[35] Kohler, M. and Langer, S. (2021). On the rate of convergence of fully con-

nected deep neural network regression estimates Annals of Statistics 49,
2231–2249. MR4319248

[36] Kong, E. and Xia, Y. (2007). Variable selection for the single-index model
Biometrika, 94, 217–229. MR2367831

[37] Lepski, O and Serdyukova, O. (2014). Adaptive estimation under single-
index constraint in a regression model. Annals of Statistics, 42, 1–28.
MR3161459

[38] Liang, S., Sun, R., Lee, J., and Srikant, R. (2018). Adding one neuron
can eliminate all bad local minima. In: Proceedings of the 32nd Conference
on Neural Information Processing Systems (NIPS 2018), pp. 4355–4365.
Montreal, Canada.

[39] Lu, J., Shen, Z., Yang, H., and Zhang, S. (2021). Deep network approxi-
mation for smooth functions. SIAM Journal on Mathematical Analysis, 53,
5465–5506. MR4319100

[40] Ripley, B. D. (2008). Pattern Recognition and Neural Networks. Cambridge
University Press, Cambridge, UK. MR2451352

[41] Scarselli, F. and Tsoi, A. C. (1998). Universal Approximation Using Feed-
forward Neural Networks: A Survey of Some Existing Methods, and Some
New Results. Neural Networks, 11, 15–37.

[42] Schmidhuber, J. (2015). Deep learning in neural networks: an overview.
Neural Networks, 61, 85–117.

[43] Schmidt-Hieber, J. (2020). Nonparametric regression using deep neural net-
works with ReLU activation function. Annals of Statistics, 48, 1875–1897
(with discussion). MR4134774

[44] Stone, C. J. (1982). Optimal global rates of convergence for nonparametric
regression. Annals of Statistics, 10, 1040–1053. MR0673642

[45] Stone, C. J. (1985). Additive regression and other nonparametric models.
Annals of Statistics, 13, 689–705. MR0790566

[46] Stone, C. J. (1994). The use of polynomial splines and their tensor prod-
ucts in multivariate function estimation. Annals of Statistics, 22, 118–184.
MR1272079

[47] Yarotsky, D. (2017). Error bounds for approximations with deep ReLU
networks. Neural Networks, 94, 103–114.

[48] Yu, Y. and Ruppert, D. (2002). Penalized spline estimation for partially
linear single-index models. Journal of the American Statistical Association,
97, 1042–1054. MR1951258

[49] Zhao, Y. and Atkeson, C. G. (1992). Some approximation properties of
projection pursuit learning networks. In: Advances in Neural Information
Processing Systems, pp. 936–943.

https://mathscinet.ams.org/mathscinet-getitem?mr=4433267
https://mathscinet.ams.org/mathscinet-getitem?mr=4319248
https://mathscinet.ams.org/mathscinet-getitem?mr=2367831
https://mathscinet.ams.org/mathscinet-getitem?mr=3161459
https://mathscinet.ams.org/mathscinet-getitem?mr=4319100
https://mathscinet.ams.org/mathscinet-getitem?mr=2451352
https://mathscinet.ams.org/mathscinet-getitem?mr=4134774
https://mathscinet.ams.org/mathscinet-getitem?mr=0673642
https://mathscinet.ams.org/mathscinet-getitem?mr=0790566
https://mathscinet.ams.org/mathscinet-getitem?mr=1272079
https://mathscinet.ams.org/mathscinet-getitem?mr=1951258

	Introduction
	A first estimate: random neural features
	Definition of the network architecture
	Learning the output weights
	Rate of convergence

	A second estimate: random neural features and projection pursuit
	Definition of the network architecture
	Learning the output weights
	Choice of the directions

	Rate of convergence

	Application to simulated data
	Proofs
	Approximation results for neural networks
	Approximation of a projection pursuit model by piecewise polynomials
	Auxiliary results
	Proof of Theorem 1
	Proof of Theorem 2

	Supplementary Material
	Computation of the linear neural network estimate
	Proof of Lemma 5
	Lemma 5 in the context of projection pursuit
	Proof of Lemma 8

	Acknowledgments
	Funding
	References

