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Abstract

This paper considers the (n, k)-Bernoulli–Laplace urn model in the case when there
are two urns containing n balls each, with two different colors of balls (red and white).
In our setting, the total number of red and white balls is the same. Our focus is
on the large-time behavior of the corresponding Markov chain tracking the number
of red balls in a given urn assuming that the number of selections k at each step
obeys α ≤ k/n ≤ β, where α, β are constants satisfying 0 < α < β < 1

2
. Under this

assumption, cutoff in the total variation distance is established and a cutoff window is
provided. The results in this paper solve an open problem posed by Eskenazis and
Nestoridi in [8].
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1 Introduction

In this paper, we study the (n, k)-Bernoulli-Laplace model. In the model, there are
two urns, a left urn and a right urn, each of which contains exactly n balls. Of the total
2n balls contained in both urns, n are colored red and n are colored white. Starting from
a coloration of n balls in each urn, at each step k balls are selected uniformly at random
without replacement from each urn, with the selections from each urn independent
from one another. The selected balls are then swapped and placed in the opposite urn.
The process then repeats itself. Letting Xx

t denote the number of red balls in the left
urn after t swaps with Xx

0 = x red balls initially in the urn, the process Xx is Markov.
Our main goal is to understand how long it takes for the chain to be within ε > 0 of its
stationary distribution π in total variation. Our focus in this paper is on the case when k
satisfies α ≤ k/n ≤ β, where the constants α, β are such that 0 < α < β < 1

2 . The main
result of this paper resolves an open question posed by Eskenazis and Nestoridi in [8].

Our interest in the (n, k)-Bernoulli-Laplace model comes from shuffling large decks
of cards. Mapping the above model to this setting, the deck of cards has size 2n � 1
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Cutoff in the Bernoulli-Laplace model

and at each step of the shuffle we cut the deck into two equal piles of n cards, shuffle
each deck independently and perfectly, reassemble the deck and then move the top k
cards to the bottom. This process repeats itself until sufficient mixing is achieved. From
this description, it follows that the (n, k)-Bernoulli-Laplace model describes this card
shuffling algorithm without the separate step of shuffling each of the smaller decks
independently and perfectly at each step. See [14] for further details.

1.1 Preliminaries

Before discussing existing results in the literature and the results of this paper, we
first fix some notation and terminology.

Throughout, X = {0, 1, 2, . . . , n} denotes the state space of the Bernoulli–Laplace
chain. By comparing the resulting Bernoulli–Laplace chains that swap k balls at each
step and n− k balls at each step, we may assume without loss of generality that k ≤ n/2.
For x ∈ X , we use the notation Xx to denote the Bernoulli–Laplace chain with Xx

0 = x, as
described formally above. In order to define the chain rigorously, let Hyp(j, `,m) denote
the hypergeometric distribution of m objects selected without replacement from a total
of j objects, ` ≤ j of which are type 1 and j − ` are type 2. That is, if H ∼ Hyp(j, `,m),
then

P(H = z) =

(
`
z

)(
j−`
m−z

)(
j
m

) , z ∈ [0 ∨ (m− (j − `)), ` ∧m] ∩N.

Letting {Hx
−, H

x
+}x∈X denote a collection of independent random variables with Hx

− ∼
Hyp(n, x, k) and Hx

+ ∼ Hyp(n, n− x, k), the one-step transition of the Bernoulli–Laplace
chain is defined by

P(Xx
1 = y) = P(Hx

+ −Hx
− = y − x), x, y ∈ X . (1.1)

An explicit formula for the transition can be readily computed from (1.1) (see, for
example, [8]). However, it will not be particularly useful in our analysis.

It is known that the Bernoulli–Laplace chain has a unique stationary distribution π
which is Hyp(2n, n, n) (see [18]). In this paper, we analyze the distance between the
Bernoulli–Laplace chain and π in total variation as n → ∞ when k = k(n) satisfies
further assumptions. In particular, we note that all of the quantities above depend on
the parameter n. Throughout, unless we must emphasize it (as in the paragraph below),
this dependence is suppressed.

Let

d(n)(t) = max
x∈X
‖P(Xx

t ∈ · )− π( · )‖TV =
1

2
max
x∈X

∑
y∈X
|P(Xx

t = y)− π(y)|, (1.2)

and define for fixed ε > 0 the mixing time t
(n)
mix(ε) by t(n)

mix(ε) = min{t ∈ N : d(n)(t) ≤ ε}.
We say that the Bernoulli–Laplace model exhibits cutoff if

lim
n→∞

t
(n)
mix(ε)

t
(n)
mix(1− ε)

= 1 for all fixed ε ∈ (0, 1). (1.3)

If the Bernoulli–Laplace model exhibits cutoff and if for every ε ∈ (0, 1) fixed there exists
a constant c(ε) and a sequence wn satisfying

wn = o(t
(n)
mix(1/2)) and t

(n)
mix(ε)− t(n)

mix(1− ε) ≤ c(ε)wn for all n, (1.4)

we say that the Bernoulli–Laplace model has cutoff window wn. For other preliminaries
concerning mixing times of Markov chains, see [13].

ECP 29 (2024), paper 2.
Page 2/13

https://www.imstat.org/ecp

https://doi.org/10.1214/23-ECP569
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Cutoff in the Bernoulli-Laplace model

1.2 Previous results and statement of the main result

Existing results on mixing times for the (n, k)-Bernoulli–Laplace model largely focus
on the case where the number of selections k is much smaller than the number of balls
n in each urn. The earliest works of Diaconis and Shahshahani [4, 5] and Donnely, Floyd
and Sudbury [6] treat the case when k = 1 and establish cutoff in total variation and in
the separation distance, respectively. Diaconis and Shahshahani proved their results
by analyzing random walks on Cayley graphs of the symmetric group where edges
correspond to transpostions. These results were extended to random walks on distance
regular graphs in [1]. See also [16] for the Bernoulli-Laplace model with multiple urns
in the case when k = 1. We refer to [17] which contains a signed generalization of the
model.

The case when k > 1 in the two-urn Bernoulli–Laplace model was first studied by
Nestoridi and White [14], where a number of estimates were deduced for the mixing
time in different regimes of the parameter k as it depends on n. These estimates were
made sharp in the case when k satisfies k = o(n) as n→∞. In particular, when k = o(n)

as n→∞ it was shown in [8] that

n

4k
log n− c(ε)n

k
≤ tmix(ε) ≤ n

4k
log n+

3n

k
log(log n ∨ 2) +O

( n

ε4k

)
. (1.5)

Thus, the Bernoulli–Laplace model with k = o(n) exhibits cutoff at n
4k log n with cutoff

window n
k log(log n ∨ 2). Estimates deduced in the case when k/n satisfies k/n ∈ (0, 1/2)

and k/n → λ as n → ∞ for some λ ∈ (0, 1/2) were not optimal. That is, in [14], in this
case it was shown that

log n

2| log(1− 2 kn )|
− c(ε) ≤ tmix(ε) ≤ log(n/ε)

2λ(1− λ)
. (1.6)

It was conjectured in [8, Question 1] that the lower bound in (1.6) is sharp, and it was left
there as an open problem to determine the mixing time of the (n, k)-Bernoulli–Laplace
model when k is of order n as n→∞. In this paper, we solve this problem.

In what follows, for k/n ∈ (0, 1/2) we define a sequence of times tn by

tn =
log n

2| log(1− 2 kn )|
. (1.7)

Remark 1.1. Note that when k = o(n), the bound (1.5) implies that the Bernoulli–Lapace
model exhibits cutoff at time tn with cutoff window n

k log(log n ∨ 2) ∨ log n.

Remark 1.2. When k/n ∈ (0, 1/2) satisfies k/n → λ ∈ (0, 1/2) as n → ∞ it is claimed
in [8] that

tmix(ε) ≥ log n

2| log(1− 2λ)|
− c(ε).

It appears that the argument in [14], which is referenced to in [8], shows the lower
bound in (1.6). Note that the lower bound (1.6) implies the claimed bound in [8] in the
case when k/n→ λ sufficiently fast as n→∞.

Remark 1.3. The case when k/n ∈ (0, 1/2] satisfies k/n → 1/2 as n → ∞ was also
studied in [14]. If k = n

2 − c with 2 ≤ c < 1 + log6 n, then it was shown in [14] that

‖P(X0
t ∈ · )− π( · )‖TV ≤ 12π2n2

(6c−1

n

)2t−2

. (1.8)

For example, if c ≥ 2 is bounded in n, then the righthand side in (1.8) decays to zero as
n → ∞ if we set t = 2 + 1/ log log n. However, the above estimate becomes worse as c
gets closer to 1 + log6 n.
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Throughout this paper, we employ the following assumption on n, k.

Assumption 1.4. There exist constants α, β with 0 < α < β < 1
2 such that α ≤ k

n ≤ β.

Our main result is the following:

Theorem 1.5. Suppose that in the (n, k)-Bernoulli-Laplace chain, Assumption 1.4 is
satisfied with parameters α, β. For any ε ∈ (0, 1), there exist positive constants c(ε, α, β)

and C(ε, α, β) depending only on ε, α, β such that

tn − c(ε, α, β) ≤ tmix(ε) ≤ tn + C(ε, α, β). (1.9)

In particular, under Assumption 1.4, the (n, k)-Bernoulli-Laplace model exhibits cutoff at
time tn with cutoff window 1.

The proof of the lower bound in (1.9) can be established under Assumption 1.4
following the calculations in [14]. We provide the details for completeness in Section 2.
These calculations use standard methods developed in [19, 20] by Wilson. Our main
contribution in this work is the proof of the upper bound in (1.9).

The proof of the upper bound (1.9) is split into two parts. In the first part, we show that
two path coupled copies of the chain, defined below in Section 2, are sufficiently close
with high probability after tn + κ steps where κ is a large parameter to be determined
later. The high probability here depends on both n and κ being large. The second part of
the proof shows that the total variation distance of two copies of the chain started at
these sufficiently close initial conditions is order 1/κ2 after one additional step. Picking
a large κ = κ(ε, α, β) ≥ 1 accordingly, we will then arrive at the upper bound in (1.9)
using the strong Markov property.

Aside from the sometimes tedious differences in asymptotics between the cases when
k = o(n) and when (n, k) satisfies Assumption 1.4, both cases make use of the first and
second eigenvalues of the chain [8]. Here, this is done in the first part of the proof.
However, the second part of the proof requires more work. In this part, as in [8] we use
the representations

Xx
1
d
= x+Hx

+ −Hx
− and Xy

1
d
= y +Hy

+ −H
y
−. (1.10)

Critical to the proof of the main results in the case when k = o(n) in [8] is the total
variation approximation of each of the hypergeometrics above using the binomial distri-
bution. This follows the work of Diaconis and Freedman [3]. When Assumption 1.4 is
satisfied, this approximation is false [7, Theorem 2]. To get around this issue, we derive
a local limit theorem for the hypergeometric distributions (1.10) which is strong enough
to ensure that a discrete normal is a good approximation in total variation. We then
compare each of the approximating discrete normals to see that they are close in total
variation.

This paper is organized as follows: In Section 2, Theorem 1.5 is proven assuming two
results, which are established later in Section 3 and Section 4.

Further notation Throughout, we make use of a large parameter κ ≥ 1 (see, for
example, (2.3) below) to be determined later. For real-valued sequences (an) and (bn),
we use the notation an = Oκ(bn) to mean that there exists a constant C > 0 possibly
depending κ ≥ 1 such that |an| ≤ C|bn| for all n ≥ n0, for some n0 ∈ N. We use an . bn
to denote the existence of a constant C > 0 independent of κ ≥ 1 such that an ≤ Cbn
for all n ≥ n0, for some n0 ∈ N. If H ∼ Hyp(j, `,m), we assume that H is distributed on
{0, 1, . . . ,m} by extending the probability mass function to be zero outside of its support.
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2 Key results and proof of Theorem 1.5

In this section, we state the main results needed to prove Theorem 1.5, namely
Proposition 2.2 and Theorem 2.3 below. These results respectively correspond to part
one and part two of the proof of the upper bound in (1.9), as discussed in the introduction.
We then conclude this section by proving Theorem 1.5 assuming Proposition 2.2 and
Theorem 2.3 hold. Later, we establish Theorem 2.3 and Proposition 2.2 in, respectively,
Section 3 and Section 4.

Before stating these results, we first note some facts about the eigenvalues and eigen-
functions of the Bernoulli–Laplace chain. Although all eigenvalues and eigenfunctions of
the chain are known [5, 11, 14], their expressions beyond the first few are complicated.
Thus similar to [8], we only employ the first and second eigenvalues and eigenfunctions.

For x ∈ X , let

f1(x) = 1− 2x

n
and f2(x) = 1− 2(2n− 1)x

n2
+

2(2n− 1)x(x− 1)

n2(n− 1)
.

The functions f1 and f2 are the first and second eigenfunctions of the Bernoulli–Laplace
chain, and their respective eigenvalues are f1(k) and f2(k) [8]. Note that |f1| ≤ 1 on X
and, after a short exercise optimizing f2(x) on X , it follows that

− 1

2n− 2
≤ f2(x) ≤ 1 for all x ∈ X , n ≥ 2. (2.1)

In addition to these facts, we also need the next lemma, which follows after a short
exercise using the definition of eigenvalue and eigenfunction.

Lemma 2.1. For all t ≥ 0 and all x ∈ X , we have the identities

Ef1(Xx
t ) = f1(k)tf1(x) and Ef1(Xx

t )2 =
1

2n− 1
+

2n− 2

2n− 1
f2(k)tf2(x). (2.2)

In order to state Proposition 2.2, we make use of the following grand coupling
Y 0, Y 1, . . . , Y n of the Markov chains X0, X1, . . . , Xn.

Grand (path) coupling First, label the balls in all left urns at time t separately from 1

to n so that each red ball has a smaller label than each white ball. Next, label all balls in
all right urns from n+1 to 2n so that each red ball has a smaller label than each white ball.
Uniformly and independently select subsets Aleft ⊆ {1, . . . , n} and Aright ⊆ {n+ 1, . . . , 2n}
with |Aleft| = |Aright| = k. To obtain the state of each Markov chain at time t + 1, swap
the balls indexed by elements of Aleft in each left urn with the balls in the corresponding
right urn with index belonging to Aright.

Let κ ≥ 1 be large enough so that

κ6
(
1− 2α+ 2α2

)κ ≤ 1. (2.3)

Note that such a choice is possible since α ∈ (0, 1/2) by Assumption 1.4. The precise
choice of κ will be made later in this section as it depends also on ε > 0. Define sets

I(κ) =
{
x ∈ X : |x− n

2
| ≤ κ

√
n
}

and F (κ) =
{

(x, y) ∈ I(κ)2 : |x− y| ≤
√
n

κ3

}
(2.4)

and for x, y ∈ X , let

τx,y(κ) = min
{
t : (Y xt , Y

y
t ) ∈ F (κ)

}
. (2.5)

Proposition 2.2. Suppose that Assumption 1.4 is satisfied. Then

max
x,y∈X

P
{
τx,y(κ) > tn + κ

}
.

1

κ2
. (2.6)
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Proposition 2.2 will be proved later in Section 4 using the first and second eigenvalues
of the chain as well as the structure of the grand path coupling. This result, in particular,
corresponds to part one in the proof of the upper bound in (1.9), as discussed in the
introduction. The other main result, which corresponds to part two of the proof of the
upper bound in (1.9), is as follows:

Theorem 2.3. Suppose that Assumption 1.4 is satisfied. Then

max
(x,y)∈F (κ)

‖P(Xx
1 ∈ · )−P(Xy

1 ∈ · )‖TV .
1

κ2
. (2.7)

The proof of Theorem 2.3 will be given in Section 3, and it relies heavily on a
total variation approximation of the hypergeometric random variables in (1.10) when
x, y ∈ F (κ).

Assuming Proposition 2.2 and Theorem 2.3, we now conclude Theorem 1.5. This
argument also uses the facts concerning the first and second eigenvalues/eigenfunctions
of the chain, as detailed above in this section. The proof below uses well-established
methods and is very similar to the combination of [8, Proof of Theorem 1] and [14,
Section 4.3]. We provide the details for completeness.

Proof of Theorem 1.5. Let ε ∈ (0, 1). We first prove the upper bound in (1.9). Let x, y ∈ X
be arbitrary, A ⊂ X , and t = tn + κ + 1 where κ ≥ 1 satisfies (2.3). Using the grand
coupling introduced below Lemma 2.1, we see that Proposition 2.2 and the strong
Markov property at time τx,y(κ) imply

|P(Xx
t ∈ A)−P(Xy

t ∈ A)|
= |P(Y xt ∈ A)−P(Y yt ∈ A)|
≤ 2P(τx,y(κ) > t− 1) + |P(Y xt ∈ A, τx,y(κ) ≤ t− 1)−P(Y yt ∈ A, τx,y(κ) ≤ t− 1)|

.
1

κ2
+ max
z,w∈F (κ)
s=1,2,...,t

|P(Y zs ∈ A)−P(Y ws ∈ A)|. (2.8)

For any s ≥ 1 and z, w ∈ X we have

|P(Y zs ∈ A)−P(Y ws ∈ A)| ≤ ‖P(Y zs ∈ · )−P(Y ws ∈ · )‖TV

≤ ‖P(Y z1 ∈ · )−P(Y w1 ∈ · )‖TV (2.9)

= ‖P(Xz
1 ∈ · )−P(Xw

1 ∈ · )‖TV . (2.10)

Combining (2.8) and (2.10) with Theorem 2.3 and using the fact that A ⊂ X was arbitrary
we obtain

max
x∈X
‖P(Xx

t ∈ · )− π( · )‖TV ≤ max
x,y∈X

‖P(Xx
t ∈ · )−P(Xy

t ∈ · )‖TV .
1

κ2
.

Picking κ = κ(ε, α, β) > 0 large enough finishes the proof of the upper bound in (1.9).
Next, for the claimed lower bound in (1.9), let sn = tn − c0 for some constant

c0 = c0(ε, α, β) > 0 to be determined. Recalling that π has Hyp(2n, n, n) distribution,
let H be any random variable with H ∼ Hyp(2n, n, n). By Lemma 2.1, Ef1(H) = 0

and Ef1(H)2 = 1/(2n − 1). By Assumption 1.4, let n0 = n0(α) ≥ 2 be large enough so
that f2(k) > 0 for n ≥ n0. For n ≥ n0, let ∆n = log f2(k) − 2 log f1(k) and note that
Assumption 1.4 implies

|f2(k)− f1(k)2| . n−1, |∆n| . n−1, and (2.11)

f2(k)sn = f1(k)2snesn∆n =
esn∆n

nf1(k)2c0
, n ≥ n0. (2.12)
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Combining (2.11)-(2.12) with Lemma 2.1 and (1.7) we find that for n ≥ n0∣∣∣Var(f1(X0
sn))− 1

2n− 1

∣∣∣ =
∣∣∣2n− 2

2n− 1
f2(k)sn − f1(k)2sn

∣∣∣
= f1(k)2sn

∣∣∣esn∆n − 1 + esn∆n(
2n− 2

2n− 1
− 1)

∣∣∣ ≤ K log n

n2

for some constant K = K(c0, α, β) > 0. Hence, for δ > 0, letting

B =
{
x ∈ X :

√
δ(2n− 1)|f1(x)| ≤ 1

}
,

we note that Chebychev’s inequality implies

π(B) = 1− π(Bc) ≥ 1−Ef1(H)2δ(2n− 1) = 1− δ.

On the other hand, letting

B̃ = {x ∈ X :
√
δ(2n− 1)|f1(x)− f1(k)sn | ≤ 1},

we note by picking c0 = c0(δ, α) > 0 large enough, B ∩ B̃ = ∅. Hence by Chebychev’s
inequality, n ≥ n0 implies

P(X0
sn ∈ B) = 1−P(X0

sn ∈ B
c) ≤ 1−P(X0

sn ∈ B̃) = P(X0
sn ∈ B̃

c) ≤ δ + 2Kδ
log n

n
.

This then implies

max
x∈X
‖π( · )−P(Xx

sn ∈ · )‖TV ≥ |π(B)−P(X0
sn ∈ B)| ≥ 1− 2δ − 2Kδ

log n

n
.

Pick δ = (1− ε
2 )/2 and note that the claimed lower bound in (1.9) now follows.

3 Proof of Theorem 2.3

Considering (1.10), the proof of Theorem 2.3 relies critically on a local limit theorem
for the hypergeometric distribution in the relevant parameter ranges. This is the content
of Proposition 3.1 below and one of the main results of this paper. Once we establish
Proposition 3.1, we then use it to conclude Theorem 2.3 at the end of the section.

To setup the statement of Proposition 3.1, we let Xk = {0, 1, 2, . . . , k} and φ(x) =

exp(−x
2

2 )/
√

2π, x ∈ R, denote the probability density function of the standard normal
distribution on R. We say that a random variable Z has discrete normal distribution on
Xk with parameters m ∈ R, s > 0, denoted by Z ∼ dNk(m, s), if

P(Z = j) =
1

sNm,s
φ

(
j −m

s

)
, j ∈ Xk, where Nm,s =

∑
j∈Xk

φ
(
j−m
s

)
s

. (3.1)

For any x ∈ X , introduce parameters

px =
x

n
, qx = 1− px, σx = 1 ∨

√
kpxqx(1− k/n), and Nx = Nkpx,σx . (3.2)

For any random variable W , we let µW denote its distribution. We have the following
result.

Proposition 3.1 (Local limit theorem). Suppose that Assumption 1.4 is satisfied and let
x ∈ X be such that x = n/2 + Oκ(

√
n). If H ∼ Hyp(n, x, k) and Z ∼ dNk(kpx, σx), then

for any ζ ∈ (0, 1/3) we have

‖µH − µZ‖TV = Oκ
(
n−

1−3ζ
2

)
. (3.3)
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Remark 3.2. Any hypergeometric random variable H ∼ Hyp(n, x, k) can be written
as H =

∑k
i=1 ξi where the ξi are independent, non-identically distributed Bernoulli

random variables [7, 10]. Although one can use this representation to deduce asymptotic
normality of H using Barry-Esseen type bounds [2, Theorem 1.1 and Theorem 1.2], we
found it challenging to obtain as sharp estimates on the “bulk” of the distributions to
have (3.3). We refer the reader to [15, Theorem 5] for conditions on the sum

∑k
i=1 ξi to

have a local limit theorem in the usual sense. Our proof relies on estimates specific to
the hypergeometric distribution deduced in [12].

Remark 3.3. The righthand side of (3.3) can be improved to Oκ(n−1/2) using the results
in [12]. However, to keep the presentation simpler and more self-contained, we deduce
the slightly weaker estimate above.

Before proving Proposition 3.1, we first establish some preliminary results. First,
we need a technical lemma concerning the asymptotic behavior of the normalization
constant Nx in (3.2) when x = n/2 +Oκ(

√
n).

Lemma 3.4. Suppose Assumption 1.4 is satisfied and that x ∈ X satisfies x = n/2 +

Oκ(
√
n). Then Nx = 1 +Oκ(n−1/2).

Proof. The proof is done using integral comparison, and we only prove the needed
lower bound as the upper bound is done similarly. For simplicity in the proof, below we
suppress the dependence of the parameters in (3.2) on x. To obtain the lower bound,
note that if Z is a standard normal random variable on R we have for all n large enough

N ≥
bkpc∑
j=0

e−
(j−kp)2

2σ2

√
2πσ2

+

k∑
j=bkpc

e−
(j−kp)2

2σ2

√
2πσ2

− 1√
2πσ2

≥
∫ k

0

e−
(u−kp)2

2σ2

√
2πσ2

du− 2√
2πσ2

= 1−P(Z ≤ −kp/σ)−P(Z ≥ kq/σ)− 2√
2πσ2

where the −2/
√

2πσ2 resulted from shifting Riemann rectangles in the integral compar-
ison and we used the substitution u′ = (u − kp)/σ to get the last equality. Employing
Assumption 1.4 and recalling that x = n

2 +Oκ(
√
n), we find that the parameters in (3.2)

satisfy

p =
1

2
+Oκ(n−1/2), q =

1

2
+Oκ(n−1/2), σ = Oκ(

√
n). (3.4)

Applying Chebychev’s inequality and using (3.4), we obtain for n large enough

P(Z ≤ −kp/σ) ≤ σ2

k2p2
= Oκ(n−1).

Similarly, P(Z ≥ kq/σ) = Oκ(n−1) and 2√
2πσ2

= Oκ(n−1/2). We thus conclude the
result.

In addition to the above result, we will also employ the following lemma deduced
in [12, Lemma 1] as well as Hoeffding’s inequality [9]. We note that Lemma 3.5 is a
reformulation of [12, Lemma 1] suited for our purposes.

To setup the statement of the results, for ζ ∈ (0, 1/3) and x ∈ X define

Lx = inf
{
j ∈ Xk :

j − kpx
σx

≥ −σζx
}

and Rx = sup
{
j ∈ Xk :

j − kpx
σx

≤ σζx
}
. (3.5)

Lemma 3.5. Consider the parameters introduced in (3.2) and (3.5). Suppose that
Assumption 1.4 is satisfied and x ∈ X satisfies x = n

2 +Oκ(
√
n). If H ∼ Hyp(n, x, k), for
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Cutoff in the Bernoulli-Laplace model

any j ∈ Xk let r(j, x) ∈ R be defined by P(H = j) = 1
σx
φ((j − kpx)/σx) exp(r(j, x)) when

P(H = j) 6= 0 and r(j, x) = 0 otherwise. Then

max
j∈{Lx,Lx+1,...,Rx−1,Rx}

|r(j, x)| = Oκ(n−
1−3ζ

2 ).

Theorem 3.6 (Hoeffding’s inequality). Suppose that ξ1, ξ2, . . . , ξj are independent
Bernoulli random variables and Sj = ξ1 + · · ·+ ξj . Then for any t ≥ 0 we have

P{|Sj −ESj | ≥ t} ≤ 2e−
2t2

j .

We are now prepared to prove Proposition 3.1. For notational simplicity in the
following arguments, we will suppress the dependence on x in the parameters in (3.2)
and (3.5), and we will use the shorthand notation

ϕ(j) = P[Z = j] =
φ((j − kp)/σ)

Nσ
and uj =

j − kp
σ

. (3.6)

Proof of Proposition 3.1. Using the definitions of L,R, as well as Assumption 1.4 and
x = n

2 +Oκ(
√
n), applying the triangle inequality and then optimizing the normal density

produces

2‖µH − µZ‖TV ≤
k∑

j=R+1

ϕ(j) +

L−1∑
j=0

ϕ(j) + P(H < L) + P(H > R) +

R∑
j=L

|P(H = j)− ϕ(j)|

≤ (k + 1)√
2πNσ

e−
σ2ζ

2 + P(H < L) + P(H > R) +

R∑
j=L

|P(H = j)− ϕ(j)|

=: T1 + T2 + T3 + T4.

Note first that our assumptions and Lemma 3.4 give T1 = Oκ(n−1/2). For T2 + T3, recall
from Remark 3.2 that H =

∑k
i=1 ξi where the ξi are independent Bernoulli random

variables and that EH = kp. Using the definitions of L and R, Assumption 1.4 and
x = n

2 +Oκ(
√
n), Theorem 3.6 implies

T2 + T3 = P(H − kp < L− kp) + P(H − kp > R− kp) = Oκ

(
e−2σ

2+2ζ

k

)
= Oκ(n−1/2).

Finally for T4, first using the triangle inequality and then applying Lemma 3.4 and
Lemma 3.5, we obtain for n large enough

T4 ≤
R∑
j=L

φ(uj)

σ
|1− 1

N
|+

R∑
j=L

∣∣∣P(H = j)− φ(uj)

σ

∣∣∣ ≤ |N − 1|+
R∑
j=L

φ(uj)

σ
|er(j,x) − 1|

(3.7)

≤ Oκ(n−1/2) +

R∑
j=L

φ(uj)

σ
|r(j, x)|e|r(j,x)|

≤ Oκ(n−1/2) +NOκ
(
n−

1−3ζ
2

)
= Oκ

(
n−

1−3ζ
2

)
. (3.8)

Combining the estimates finishes the proof.

We now employ Proposition 3.1 in order to see what we have left to estimate to
conclude Theorem 2.3. Let x, y ∈ X and assume without loss of generality that x 6= y.
Let Zx− ∼ dNk(kpx, σx), Zx+ ∼ dNk(kqx, σx), Zy− ∼ dNk(kpy, σy) and Zy+ ∼ dNk(kqy, σy)
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be independent and independent of the hypergeometric random variables in (1.10).
Recalling that µW denotes the distribution of the random variable W , first observe that

µHx+−Hx−+x − µHy+−Hy−+y (3.9)

= (µHx+−Hx−+x − µHx+−Zx−+x + µHx+−Zx−+x − µZx+−Zx−+x + µZx+−Zx−+x − µZx+−Zy−+x)

− (µHy+−H
y
−+y − µHy+−Zy−+y + µHy+−Z

y
−+y − µZy+−Zy−+y) + (µZx+−Z

y
−+x − µZy+−Zy−+y).

Also, recall that for any random variables X,Y,W distributed on Z with W independent
of X and Y , we have ‖µX+W −µY+W ‖TV ≤ ‖µX −µY ‖TV . This fact, (1.10), independence
and the triangle inequality give

‖P(Xx
1 ∈ · )−P(Xy

1 ∈ · )‖TV ≤
∑

z∈{x,y}
sg∈{+,−}

‖µHzsg
− µZzsg

‖TV

+ ‖µη+Zx+
− µZy+‖TV + ‖µZx− − µZy−‖TV

where η = x − y. Under Assumption 1.4 and x, y ∈ I(κ), Proposition 3.1 implies∑
z,sg ‖µHzsg

− µZzsg
‖TV = Oκ(n−1/4). Thus, to conclude Theorem 2.3, we are left to show:

Lemma 3.7. Suppose that Assumption 1.4 is satisfied and let x, y ∈ X be such that
(x, y) ∈ F (κ) with x 6= y. Consider the random variables Zx− ∼ dNk(kpx, σx), Zx+ ∼
dNk(kqx, σx), Zy− ∼ dNk(kpy, σy) and Zy+ ∼ dNk(kqy, σy), and let η = x− y. Then

‖µη+Zx+
− µZy+‖TV + ‖µZx− − µZy−‖TV .

1

κ2
. (3.10)

Proof. For simplicity, let Z1 = Zx+ and Z2 = Zy+ and note that it suffices to show that
‖µη+Z1 − µZ2‖TV . κ−2 assuming η ≥ 0. Let Yη = Xk ∩ (Xk + η) and N1 = Nkqx,σx
and N2 = Nkqy,σy denote the normalization constants for Z1 and Z2, respectively. Set
J = [k2 − 4κ

√
n, k2 + 4κ

√
n]. Note that by the triangle inequality

2‖µη+Z1 − µZ2‖TV ≤
∑

j∈Yη∩J
|P(Z1 = j − η)−P(Z2 = j)|

+
∑

j∈Yη∩Jc
P(Z1 = j − η) +

∑
j∈Yη∩Jc

P(Z2 = j)

+
∑

j∈Xk\(Xk+η)

P(Z2 = j) +
∑

j∈(Xk+η)\Xk

P(Z1 = j − η)

=: T1 + T2 + T3 + T4 + T5.

We next show how to estimate T4. The term T5 can be estimated analogously. Observe
that since η = x − y ≥ 0 and j ∈ Xk \ (Xk + η), then j ≤ η − 1. Since (x, y) ∈ F (κ), we
have η = |x− y| ≤

√
n/κ3. Applying Assumption 1.4 and using (x, y) ∈ F (κ), we find that

1 ∨ ( 1
2 − κn

−1/2)
√
nα(1− β) ≤ σy ≤

√
n and kqy ≥ α(n2 − κ

√
n). Applying Lemma 3.4, for

all n large enough we obtain

T4 ≤
η−1∑
j=0

P(Z2 = j) ≤ ηP(Z2 = η − 1) =
η

N2σy
φ
(η − 1− kqy

σy

)
≤ C0e

−ε0n

for some constants C0, ε0 > 0 independent of n.
We next estimate T2. Term T3 can be estimated analogously. Let Z be a standard

normal random variable. Using κ ≥ 1 and the assumptions that (x, y) ∈ F (κ), 0 < k/n <

1/2, we obtain the bounds

k

2
+ 4κ

√
n ≥ κ

√
n+ η + kqx + 1 and

k

2
− 4κ

√
n ≤ −κ

√
n+ η − 1 + kqx. (3.11)
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Consequently, using integral comparison (with rectangles of width one), monotonicity of
the standard normal density away from the mean, and Lemma 3.4 we have

T2 ≤
2

N1σx
+

∫
Jc

φ
(
u−η−kqx

σx

)
N1σx

du .
2

N1
P
{
Z ≥ κ

√
n

σx

}
≤ 2σ2

x

nN1

EZ2

κ2
.

1

κ2

where we first made the integral substitution u′ = (u− η − kqx)/σx and then used (3.11)
to obtain the second asymptotic inequality.

Turning finally to the remaining term T1, we first do a calculation to show that that
σ−1
x − σ−1

y = Oκ(n−1) for (x, y) ∈ F (κ). Let f(z) = (1− z)z and note by the Mean Value
Theorem, for z1, z2 ∈ [0, 1] we have |f(z1) − f(z2)| ≤ |z1 − z2|. We thus find that there
exists a constant C1 > 0 independent of n such that for all n large enough∣∣∣∣ 1

σx
− 1

σy

∣∣∣∣ =

∣∣∣∣ σ2
y − σ2

x

σxσy(σx + σy)

∣∣∣∣ =
1√

k(1− k/n)

∣∣∣∣ pyqy − pxqx√
pyqypxqx(

√
pyqy +

√
pxqx)

∣∣∣∣
≤ C1

|f(y/n)− f(x/n)|√
n

≤ C1
|x− y|
n3/2

= Oκ(n−1) (3.12)

as (x, y) ∈ F (κ).
Next, by first using calculations similar to (3.7) and then appealing to (3.12), we get

T1 =
∑

j∈Yη∩J

∣∣∣∣φ
(
j−η−kqx

σx

)
σx

−
φ
( j−kqy

σy

)
σy

∣∣∣∣+Oκ(n−1/2)

≤
∑

j∈Yη∩J

∣∣∣∣φ
(
j−η−kqx

σx

)
σx

−
φ
( j−kqy

σy

)
σx

∣∣∣∣+
∑

j∈Yη∩J
φ
(j − kqy

σy

)∣∣∣∣ 1

σx
− 1

σy

∣∣∣∣+Oκ(n−1/2)

≤
∑

j∈Yη∩J

∣∣∣∣φ
(
j−η−kqx

σx

)
σx

−
φ
( j−kqy

σy

)
σx

∣∣∣∣+ 9κ
√
n

∣∣∣∣ 1

σx
− 1

σy

∣∣∣∣+Oκ(n−1/2) =: T ′1 +Oκ(n−1/2),

where on the penultimate line above we used φ ≤ 1 and the number of integers in
the interval J is bounded above by 9κ

√
n. To estimate T ′1 , observe that there exists a

universal constant C2 > 0 such that |φ(x) − φ(y)| ≤ C2|x − y| for all x, y ∈ R. Hence
using (3.12) again, the definition of J and (x, y) ∈ F (κ) we obtain

T ′1 ≤
C2

σx

∑
j∈Yη∩J

∣∣∣∣j − kqyσy
− j − η − kqx

σx

∣∣∣∣
=
C2

σx

∑
j∈Yη∩J

∣∣∣∣j − kqyσx
− j − η − kqx

σx

∣∣∣∣+
C2

σx

∣∣∣∣ 1

σx
− 1

σy

∣∣∣∣ ∑
j∈Yη∩J

|j − kqy|

≤ C2

σx

18κ
√
nη

σx
+
C2

σx

∣∣∣∣ 1

σx
− 1

σy

∣∣∣∣45κ2n =
18C2n

κ2σ2
x

+O(n−1/2) .
1

κ2

where we used |j − kqy| ≤ 5κ
√
n for j ∈ J and y ∈ I(κ). Also, on the last line above, we

used the fact that (x, y) ∈ F (κ) implies η = |x − y| ≤
√
n/κ3 and Assumption 1.4 with

x ∈ I(κ) implies σx ≥ 1 ∨ ( 1
2 − κn

−1/2)
√
nα(1− β).

4 Proof of Proposition 2.2

The goal of this section is to prove Proposition 2.2. First, below in Lemma 4.1, we
use the grand coupling introduced in Section 2 to estimate E|Y xt − Y

y
t | for x, y ∈ X . We

then use this estimate along with the facts established in Section 2 concerning the first
and second eigenvalues/eigenfunctions of the chain to conclude Proposition 2.2.
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Lemma 4.1. Let x, y ∈ X . Then for all t ≥ 0

E|Y xt − Y
y
t | ≤

(
1− 2k(n− k)

n2

)t
|x− y|.

Proof. Let x, y ∈ X with x > y. By the Markov property, it suffices to show the claimed
bound for t = 1. Notice that if x− y = 1, then by the definition of the coupling, direct
calculation gives (see also [14, Equation (15)])

E[|Y x1 − Y
y
1 |] =

(
1− 2k(n− k)

n2

)
.

Hence, for general x > y it follows from the triangle inequality that

E[|Y x1 − Y
y
1 |] ≤

x−y−1∑
i=0

E[|Y y+i
1 − Y y+i+1

1 |] = (x− y)

(
1− 2k(n− k)

n2

)
.

This finishes the proof.

Proof of Proposition 2.2. Using a union bound we obtain

P
{
τx,y(κ) > tn + κ

}
≤ P

{
Y xtn /∈ I(κ)

}
+ P

{
Y ytn /∈ I(κ)

}
(4.1)

+ P
{
Y xtn+κ /∈ I(κ)

}
+ P

{
Y ytn+κ /∈ I(κ)

}
+ P

{
Y xtn , Y

y
tn ∈ I(κ), |Y xtn+κ − Y

y
tn+κ| >

√
n

κ3

}
.

We first work to control the first four terms on the righthand side of (4.1). Observe that
Lemma 2.1 implies that for any z ∈ X and t ≥ 0

P{Y zt /∈ I(κ)} = P{f1(Y zt )2 > 4κ2/n}

≤ n

4κ2
E[f1(Y zt )2] =

n

4κ2

(
1

2n− 1
+

(
2n− 2

2n− 1

)
f2(k)tf2(z)

)
. (4.2)

Hence using (2.1), (2.11) and the definition of tn in (1.7) we find that for all n large
enough (so that f2(k) > 0)

f2(k)tn+κf2(z) ≤ f2(k)tn = etn log f2(k) = e2tn log f1(k)etn∆n . n−1. (4.3)

From this and (4.2) it follows that

P
{
Y xtn /∈ I(κ)

}
+ P

{
Y ytn /∈ I(κ)

}
+ P

{
Y xtn+κ /∈ I(κ)

}
+ P

{
Y ytn+κ /∈ I(κ)

}
.

1

κ2
.

Lastly, we turn our attention to bounding the remaining term on the righthand side
of (4.1). Using the Markov property, Lemma 4.1 and the choice of κ in (2.3) we have

P

{
Y xtn , Y

y
tn ∈ I(κ), |Y xtn+κ − Y

y
tn+κ| >

√
n

κ3

}
≤ max
x,y∈I(κ)

P{|Y xκ − Y yκ | ≥
√
n

κ3
}

≤ max
x,y∈I(κ)

κ3

√
n
E|Y xκ − Y yκ |

≤ 2κ4

(
1− 2k(n− k)

n2

)κ
.

1

κ2
.

Combining these estimates completes the proof.
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