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A Conditional Bayesian Approach
with Valid Inference for

High Dimensional Logistic Regression∗

Abhishek Ojha† and Naveen N. Narisetty†

Abstract. We consider the problem of performing inference for a continuous
treatment effect on a binary outcome variable while controlling for high dimen-
sional baseline covariates. We propose a novel Bayesian framework for performing
inference for the desired low-dimensional parameter in a high-dimensional logistic
regression model. While it is relatively easier to address this problem in linear
regression, the nonlinearity of the logistic regression poses additional challenges
that make it difficult to orthogonalize the effect of the treatment variable from
the nuisance variables. Our proposed approach provides the first Bayesian alter-
native to the recent frequentist developments and can incorporate available prior
information on the parameters of interest, which plays a crucial role in practi-
cal applications. In addition, the proposed approach incorporates uncertainty in
orthogonalization in high dimensions instead of relying on a single instance of or-
thogonalization as done by frequentist methods. We provide uniform convergence
results that show the validity of credible intervals resulting from the posterior.
Our method has competitive empirical performance when compared with state-
of-the-art methods.

1 Introduction
In the modern era of big data, the analysis of large-scale data sets has become in-
creasingly common across various scientific domains. High-dimensional problems, char-
acterized by data with a large number of variables or features are particularly preva-
lent in many applications such as healthcare, genomics, finance, and econometrics. In
genomics, for instance, researchers analyze large genetic data to identify associations
between genetic variations and disease susceptibility. In finance, high-dimensional data
are employed to model and predict market trends, and asset prices, and use them to
devise investment strategies. While there has been substantial progress in modeling and
estimation of high dimensional models both in the contexts of linear regression mod-
els and binary regression models (see Section 1.2 for a review of relevant literature),
performing inference for certain parameters of importance in the model is still a chal-
lenging problem. For instance, in analyzing the efficacy of a drug in treating a medical
condition, it is important to provide quantitative inference for the effect of the dosage
of the drug while controlling for a large number of covariates in the high dimensional
model. Motivated by this, we consider the problem of performing Bayesian inference for
low-dimensional parameters of interest in high dimensional logistic regression model.
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2 Valid Bayesian Inference for High Dimensional Logistic Regression

1.1 Problem Formulation
Our data consist of a sample of n observations containing binary responses denoted
by Yi, i = 1, . . . , n, q-dimensional target covariates of interest denoted by Xi, i =
1, . . . , n, and d-dimensional nuisance variables (including the intercept) denoted by Zi,
i = 1, . . . , n. We assume that each of the binary response variables is independently
generated from the following logistic regression model:

P [Yi = 1 | Xi, Zi, θ, β] = exp(Xiθ + ZT
i β)

1 + exp(Xiθ + ZT
i β)

, (1.1)

for i = 1, . . . , n, where θ and β are random parameters having dimensions q and d,
respectively.

We consider the problem of providing valid inference for the low dimensional pa-
rameter θ in the above high dimensional logistic regression model where the dimension
d of the nuisance parameter β can be much larger than the sample size. Our goal is to
construct a posterior distribution for the parameter θ given the data (Y,X,Z) that can
be used for obtaining interval estimators having valid frequentist coverage. We would
like the validity of our inferential results to hold for all values of θ.

1.2 Literature Review
For high dimensional data, the number of covariates d can be much larger than the sam-
ple size n. Statistical estimation in such problems is ill-posed unless further assumptions
about sparsity or smoothness are made on the high dimensional parameters. It has led
to extensive development of various high dimensional regularization and variable selec-
tion methods both from frequentist and Bayesian paradigms. Instead of searching for
the optimal parameter in the whole R

d space, these methods restrict the parameter
search to smaller subspaces through the use of an additional penalty or regularization
over the parameters.

Some notable examples of penalty-based methods in the case of linear models in-
clude LASSO (Tibshirani, 1996), SCAD (Fan and Li, 2001), and MCP (Zhang, 2010).
Penalized variable selection methods along with their theoretical properties have been
extended to the case of Generalized Linear Models (GLMs) as well (Van de Geer, 2008;
Friedman et al., 2010; Breheny and Huang, 2011; Huang and Zhang, 2012). Approaches
have been developed for logistic regression in particular (Bach, 2010; Bunea, 2008;
Kwemou, 2016). In the Bayesian paradigm, several methods have been developed for
high dimensional estimation and variable selection using prior distributions that induce
sparsity or shrinkage (George and McCulloch, 1993; Ishwaran and Rao, 2005; Park and
Casella, 2008; Liang et al., 2008; Carvalho et al., 2009; Johnson and Rossell, 2012; Bon-
dell and Reich, 2012; Armagan et al., 2013; Ročková and George, 2014; Narisetty and
He, 2014; Bhattacharya et al., 2015). Bayesian approaches have also been developed
for generalized linear models and logistic regression in particular (O’brien and Dunson,
2004; Genkin et al., 2007; Ghosh et al., 2018; Narisetty et al., 2019).

The aforementioned penalization methods have been shown to possess oracle prop-
erties under certain regularity conditions and sparsity assumptions. These results imply
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that the estimation error converges to zero and the true set of covariates can be recov-
ered with high probability under regularity conditions. Selection consistency and Strong
Selection consistency are well-studied in the Bayesian literature (Johnson and Rossell,
2012; Ročková and George, 2014; Narisetty and He, 2014). The asymptotic normality of
posterior distributions in one-dimensional parameter settings and low-dimensional mul-
tivariate settings have been established (Walker, 1969; Schervish, 2012). The asymptotic
normality of posteriors in generalized linear models has been proven when the number
of covariates is much smaller than the sample size n (Ghosal, 1997, 2000; Dasgupta
et al., 2014).

Variable selection methods are not directly useful for inference tasks where we need
to construct valid credible or confidence intervals for the model parameters. Theoretical
consistency for selection requires that the minimum signal is sufficiently bounded away
from zero. This assumption can be suitable for selection tasks but the inferential results
eventually break down when the true signal for some covariates is close to zero and
it becomes difficult to differentiate such covariates from noise. Moreover, the bias due
to high dimensional estimation is in the order of (log d/n)1/2 (where d is the number
of covariates), which is much larger than the standard n−1/2 rate of convergence in
low dimensions. The impact of model selection on inference has been discussed in the
literature (Pötscher, 1991; Kabaila, 1995). Examples have been investigated where the
signal does not meet the minimum signal strength condition and consequently, the
corresponding estimates are no longer

√
n-consistent and asymptotically normal (Leeb

and Pötscher, 2005, 2008; Pötscher and Leeb, 2009). Furthermore, it has been shown
that the confidence sets are necessarily larger for the methods with oracle properties
when the signal strength assumption is violated (Pötscher, 2009).

In the past decade, multiple methods have proposed estimators with the desired
√
n-

consistency which is essential to provide valid inference in different high-dimensional
settings. Broadly, these approaches can be classified into two categories: exploratory
and selective. In the first line of research, users first perform the variable selection and
then aim to provide asymptotically valid confidence regions for the selected set of co-
variates. There are some approaches that aim at providing valid inference for all the
model parameters irrespective of the model selection criteria that the user utilizes (Berk
et al., 2013; Kuchibhotla et al., 2020). These methods possess the desired asymptotic
consistency and normality but their practical utility is often suboptimal in high dimen-
sions. The volume of confidence regions for these methods becomes too large in practice
even for a slightly large number of covariates even when d < n.

In the second line of research, the goal is to perform inference on a given set of
variables of interest (such as, treatment variables) and we want to conduct valid infer-
ence controlling the effect of other high dimensional covariates. These methods do not
assume any minimum signal strength for the true signal and have been developed for
both the linear models and the generalized linear models (Taylor and Tibshirani, 2015;
Panigrahi and Taylor, 2018; Panigrahi et al., 2021; Van de Geer et al., 2014; Javanmard
and Montanari, 2014; Zhang and Zhang, 2014; Belloni et al., 2010, 2012, 2014; Cher-
nozhukov et al., 2018; Wang et al., 2020; Belloni et al., 2013). A Bayesian method based
on conditional posteriors has been recently proposed for valid inference in linear models
which forms the methodological motivation for our paper (Wu et al., 2023).
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Our specific goal of constructing a posterior distribution for θ with valid frequentist
properties has not been previously studied in the context of high dimensional logis-
tic regression. The conditional posterior method developed for linear models by Wu
et al. (2023) is demonstrated to have asymptotic normality at an optimal n−1/2 rate.
However, the method heavily relies on the linearity of the regression model. Bayesian
model averaging approaches have been developed (Torrens-i Dinarès et al., 2021; An-
tonelli et al., 2022) for inference of average treatment effect which is different from the
parameter θ of our interest. In the frequentist paradigm, the problem of constructing
valid confidence intervals for low-dimensional parameters in a high-dimensional model
has received more attention. Double selection and double machine learning which are
based on the idea of Neyman orthogonality (Neyman, 1959, 1979) have been explored
for the construction of confidence intervals in linear regression (Belloni et al., 2010, 2012,
2014; Chernozhukov et al., 2018). Belloni et al. (2013) extended the double selection
approach to the logistic regression setting. Shi et al. (2021) proposed an inference pro-
cedure for a low-dimensional parameter in a high-dimensional logistic regression setting
by devising a recursive online-score estimation approach. Ma et al. (2021) proposed a
generalized low dimensional projection method for logistic regression which can be used
to construct global test statistics and confidence intervals for model parameters. Cai
et al. (2021) proposed a two-step bias correction method for generalized linear models
for constructing confidence intervals and performing simultaneous hypothesis testing
for each component of the regression vector. All these recent approaches for inference
in high dimensional logistic regression are based on the frequentist framework whereas
our proposed approach aims to devise a Bayesian paradigm that has valid frequentist
properties.

1.3 Our Contributions
In this paper, we construct a conditional posterior for θ which is motivated by Neyman
orthogonality principle (Neyman, 1959, 1979). As opposed to the double selection-based
method (Belloni et al., 2013) which only uses a single instance of the nuisance parameter
selection, the proposed Bayesian approach has the advantage of utilizing the complete
posterior distributions of the nuisance parameters. We shall show that the posterior
distribution of the parameter of interest achieves asymptotic normality (uniformly at
n−1/2 rate) with valid inference properties. Moreover, our proposed approach inherits
the qualities of a standard Bayesian approach for the low dimensional parameter of in-
terest where prior information or prior belief about the parameter can be incorporated.
The ideas of constructing orthogonal scores (Belloni et al., 2013) and projection-based
de-biasing (Ma et al., 2021; Cai et al., 2021) have been used in the frequentist paradigm
for obtaining valid inference. Therefore, the novel component of our paper is not the
proposal of orthogonalization but rather providing a novel Bayesian framework for this
problem that is carefully devised to induce orthogonalization and is demonstrated to
have conceptual and empirical advantages over existing methods. The primary contri-
bution of the research is to generalize the conditional posterior approach discussed in
linear regression (Wu et al., 2023) to the more challenging situation of logistic regression
which demonstrates that the scope of Bayesian inference for high dimensional models is
not just restricted to linear model settings. This is particularly a challenging task since
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developing conditional posteriors based on orthogonality is much more convenient in
the linear model setting as opposed to the non-linear logistic regression case.

In Section 2, we introduce the proposed method based on the conditional posteriors
and provide motivation behind their construction. In Section 3, we discuss the regularity
assumptions and the theoretical properties of our estimator. In Section 4, we perform
simulation studies to evaluate the proposed method and compare its performance with
existing Bayesian and frequentist methods. In Section 5, we perform real data analysis
on an RNA-seq data set. In Section 6, we provide a final conclusion.

2 Bayesian Conditional Posterior for Inference
We first briefly discuss the concept of conditional posterior (Wu et al., 2023) before
providing a detailed explanation of the proposed method. In a standard Bayesian proce-
dure, a model assumption is made, which leads to a likelihood for the model parameters.
Given a prior distribution for the model parameters and the likelihood based on the
observed data, Bayes’ formula is used to derive a posterior distribution for the model
parameters.

The intuition behind the conditional posterior, as discussed in this paper, is slightly
different. We begin with a prior distribution for the model parameters and given the
observed data, we directly propose a distribution for the model parameters. This pro-
posal is referred to as the “conditional posterior”. The conditional posterior represents
our updated beliefs about the parameters based on the observed data and the condi-
tioning parameters. It is important to note that the data component of this conditional
posterior may correspond to a specific working model. The proposal for the conditional
posterior and the choice of the working model are driven by theoretical and practical
considerations such as the attainment of valid inferential properties and the facilitation
of efficient sampling. Our proposed method utilizes the Neyman orthogonality princi-
ple for the construction of our conditional posterior that yields valid inference for the
parameters of interest.

Notations: Recall that θ is the parameter of interest and β is the high-dimensional
nuisance parameter. We use the notations θ0 and β0 to denote the corresponding oracle
quantities. We denote the diagonal covariance matrix of the binary output Y (given
X,Z) using W0. The diagonal entries of W0 are defined in terms of (θ0, β0) as:

W0i,i = exp(Xiθ0 + ZT
i β0)

(1 + exp(Xiθ0 + ZT
i β0))2

, (2.1)

for i = 1, 2, . . . , n. As W0 depends on the unknown parameters, we use a sample of the
parameters (θ, β) to obtain an estimator for W0 which we denote by W . However, it
is important to note that the sample of θ used in W is not the final sample used for
inference on the parameter of interest. To emphasize this distinction, we denote this
sample with an additional tilde symbol overhead, representing it as θ̃. Therefore, the
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diagonal entries of W are defined in terms of (θ̃, β) as:

Wi,i = exp(Xiθ̃ + ZT
i β)

(1 + exp(Xiθ̃ + ZT
i β))2

, (2.2)

for i = 1, 2, . . . , n. We introduce a high-dimensional parameter γ which captures the
dependence of the target covariate X on the nuisance covariates Z through a working
regression model. Based on (θ̃, β) and γ, we define a re-parameterized high-dimensional
parameter φ as φ = θ̃γ + β. Moreover, we denote the oracle values of γ and φ using γ0
and φ0 respectively. We use the symbol “WM” to denote the working models and the
symbol “CP” to denote the conditional posteriors for the parameters.

2.1 Formulation of Proposed Conditional Posteriors

In this paper, for simplicity, we have provided theory and simulations for one-dimensional
X with q = 1. It is straightforward to generalize these to a finite-dimensional X where
q is finite. Our goal is to devise a conditional posterior for θ given (Y,X,Z) which can
be used for valid inference. In order to capture the dependence between X and Z and
to use it later for inference on θ, we introduce the following working linear regression
model which is governed by the regression parameter γ. This approach is consistent
with the existing literature (Belloni et al., 2013; Zhang and Zhang, 2014; Ma et al.,
2021; Cai et al., 2021; Wu et al., 2023).

Working Model for γ:

The working model for the parameter γ is given by the following regression model with
X as the response and Z as the covariates:

X | (Z, γ, σ2,W0) ∼ N(Zγ, σ2W−1
0 ), (γ-WM)

where W0 is a diagonal matrix with entries W0i,i = V ar(Yi | Xi, Zi) as defined in (2.1)
and the parameter σ2 denotes the variance of the residuals W

1/2
0i,i

(Xi − ZT
i γ0). Belloni

et al. (2013) argued that the inclusion of such a parameter is crucial to establish an
orthogonal score for the parameter of interest θ. The role of this additional parameter
γ is akin to the direction of projections used in de-biasing methods in the literature
(Zhang and Zhang, 2014; Ma et al., 2021; Cai et al., 2021; Wu et al., 2023).

With an appropriate prior distribution over γ and the working model provided
by (γ-WM), we can construct a conditional posterior for γ. However, given the ob-
served data (X,Y, Z), we do not have the knowledge of W0. Therefore, we use a sample
of the parameters (θ̃, β) to obtain an estimator for W0 denoted as W having diagonal
elements as defined in (2.2). The tilde notation in θ̃ emphasizes that this sample is
different from the final sample used for inference on the parameter of interest defined
later by (θ-CP).

The working model for (θ̃, β) is the same as the original logistic model given by (1.1).
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Consequently, we obtain samples of (θ̃, β) based on the following conditional posterior:

f((θ̃, β) | Y,X,Z) ∝ π(θ̃)π(β)
n∏

i=1

exp(Xiθ̃ + ZT
i β)Yi

1 + exp(Xiθ̃ + ZT
i β)

, ((θ̃, β)-CP)

where π(θ̃) and π(β) are the priors on the model parameters θ and β, respectively.

Conditional Posterior for γ:

A sample of (θ̃, β) based on ((θ̃, β)-CP) leads to a sample of W defined based on (2.2).
Motivated by the working model (γ-WM), we sample γ and σ2 from the following
conditional posterior:

f((γ, σ2) | Y,X,Z, θ̃, β) ∝ π(γ)π(σ2) exp
(
− 1

2σ2 (X − Zγ)TW (X − Zγ)
)
, (γ-CP)

where π(γ) is the prior on the parameter γ and W is a function of (θ̃, β) as given
in (2.2). Furthermore, we place an inverse-gamma prior (π(σ2)) on σ2, which results in
an inverse-gamma posterior for σ2 after integrating out γ from (γ-CP).

Motivation Behind the Choice of the Working Model for γ:

We shall now describe the main motivation for the choice of the working model (γ-WM).
The score function corresponding to our logistic regression model (1.1) takes the follow-
ing form:

ϕusual(θ;X,Y, Z, β) =
n∑

i=1

∂

∂θ
logP [Yi = 1 | Xi, Zi, θ, β] = XT (Y − μ), (2.3)

where μ is the n× 1 mean vector with μi = exp(Xiθ+ZT
i β)/(1+exp(Xiθ+ZT

i β)). The
expectation of the derivative of this score (2.3) with respect to the nuisance parameter
β, when evaluated at the oracle quantities θ0 and β0 leads to:

E

[
∂

∂β
(ϕusual(θ;X,Y, Z, β))

∣∣
θ0,β0

]
= −E[XTW0Z] �= 0. (2.4)

The derivative of the usual score for θ with respect to the nuisance parameters (2.4)
involves a dot product between W

1/2
0 X and W

1/2
0 Z, which need not be small. This

results in a bias for estimating θ that is usually in the order of (log d/n)1/2 and slower
than the desired n−1/2 rate (Belloni et al., 2013). On the other hand, the product
between W

1/2
0 Z and the residual obtained after performing a linear regression of W 1/2

0 X

on W
1/2
0 Z can be expected to be small due to the orthogonality of the residuals and

the covariates. Therefore, the working model (γ-WM) is based on weighted regression
of the target covariate on the nuisance covariates.



8 Valid Bayesian Inference for High Dimensional Logistic Regression

Working Model for the Parameter of Interest θ:

We first define a re-parameterized nuisance parameter based on the samples (θ̃, β) and
γ given by:

φ = θ̃γ + β. (2.5)
Note that we use θ̃ in the estimation of this parameter φ as it is sampled based
on ((θ̃, β)-CP) and is different from the conditional posterior for θ used for final in-
ference. This makes the posterior concentration for φ and θ not depend on each other.
We assume the following working model for the parameter of interest θ conditional on
γ and φ:

P (Yi = 1 | Xi, Zi, θ, γ, φ) = exp{(Xi − ZT
i γ)θ + ZT

i φ}
1 + exp{(Xi − ZT

i γ)θ + ZT
i φ}

, (θ-WM)

for i = 1, . . . , n.

Conditional Posterior for θ:

Based on the working model (θ-WM), we obtain a sample for the parameter of interest
θ based on the following conditional posterior:

f(θ | Y,X,Z, γ, φ) ∝ π(θ)
n∏

i=1

exp((Xi − ZT
i γ)θ + ZT

i φ)Yi

1 + exp((Xi − ZT
i γ)θ + ZT

i φ)
, (θ-CP)

where π(θ) is the prior distribution on the parameter of interest θ.

In conclusion, γ is sampled from its conditional posterior (γ-CP), φ is sampled based
on (γ-CP) and ((θ̃, β)-CP) together, and θ is sampled based on (θ-CP). Algorithm 1
provides an outline of the main steps involved in defining the conditional posterior
distributions for all the parameters. These three conditional posteriors together provide
a joint posterior for all the parameters involved:

f(θ, γ, φ | Y,X,Z) ∝ f(θ | Y,X,Z, γ, φ) × f(φ | Y,X,Z, γ) × f(γ | Y,X,Z). (2.6)

Here, f(θ | Y,X,Z, γ, φ) is given by (θ-CP) and f(φ | Y,X,Z, γ) is obtained from
((θ̃, β)-CP) as φ is a linear function of θ̃ and β given γ. We obtain f(γ | Y,X,Z)
by integrating out θ̃, β, and σ2 from the product of (γ-CP) and ((θ̃, β)-CP). It is
worth noting that this joint posterior is not based on a single working model for all
the parameters together but rather utilizes different working models for each parameter
separately as described earlier.

Motivation Behind the Choice of the Working Model of θ:

Given the oracle quantities θ0 and β0, the logistic regression model (1.1) takes the form:

P (Yi = 1 | Xi, Zi, θ0, β0) = exp(Xiθ0 + ZT
i β0)

1 + exp(Xiθ0 + ZT
i β0)

. (2.7)
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An important observation is that the working model (θ-WM) given the oracle quan-
tities θ0, γ0, and φ0 (= γ0θ0 + β0) is exactly same as the true model (2.7). To see this:

P (Yi = 1 | Xi, Zi, θ0, γ0, φ0) = exp{(Xi − ZT
i γ0)θ0 + ZT

i φ0}
1 + exp{(Xi − ZT

i γ0)θ0 + ZT
i φ0}

= exp{Xiθ0 + ZT
i (φ0 − θ0γ0)}

1 + exp{Xiθ0 + ZT
i (φ0 − θ0γ0)}

= exp(Xiθ0 + ZT
i β0)

1 + exp(Xiθ0 + ZT
i β0)

.

This implies that the working model (θ-WM) retains the same form as the true model
under the oracle values of the parameters. This correspondence is essential to capture
the essential features of the original model and to yield valid inference.

We shall now discuss how the working model for θ yields an orthogonal score. For
given values of γ and φ, the score for the working model for θ in (θ-WM) is:

ϕorth(θ;X,Y, Z, γ, φ) =
n∑

i=1

∂

∂θ
[logP (Yi = 1 | Xi, Zi, γ, φ]) = (X − Zγ)T (Y − μ),

where μ is n-dimensional vector with each component being μi = exp{(Xi − ZT
i γ)θ +

ZT
i φ}/(1 + exp{(Xi − ZT

i γ)θ + ZT
i φ}) for i = 1, . . . , n.

Next, we will verify the orthogonal property for this score. The derivative of the
score with respect to the nuisance parameter φ is given by:

E
[ ∂

∂φ
ϕorth(θ;X,Y, Z, γ, φ)

∣∣∣∣
(θ0,γ0,φ0)

]
= −E[(X − Zγ0)TW0Z] = 0, (2.8)

where the last equality holds because of Assumption A6. Furthermore, the derivative of
the score w.r.t the nuisance parameter γ is given by:

E
[ ∂

∂γ
ϕorth(θ;X,Y, Z, γ, φ)

∣∣∣∣
(θ0,γ0,φ0)

]
= −E[(X − Zγ0)TW0Z] − E[ZT (Y − μ0)] = 0,

(2.9)

where μ0 is the true mean vector μ0 = E[Y | X,Z]. Equations (2.8) and (2.9) assure that
the working model (θ-WM) gives an orthogonal score for estimating θ. This orthogonal
property facilitates obtaining inference for θ at an n−1/2 rate, as expected in low-
dimensional settings, even though γ and φ are high-dimensional.

Further Discussion on the Use of θ̃:

One can argue that the sample of θ, obtained from equation (θ-CP), can be utilized
to obtain W in equation (2.2) for estimating W0. However, this will make the posterior
sampling of γ to be conditional on the samples of θ which could interfere with the
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Algorithm 1 The Proposed Conditional Posterior Formulation.
1. To get a sample of the nuisance parameter γ, we first need to estimate the unknown

diagonal matrix W0 (2.1), W0i,i = V ar(Yi | Xi, Zi).
2. We estimate W0 using W based on a sample of (θ̃, β) as defined in (2.2). Samples

of (θ̃, β) are obtained from the conditional posterior given by ((θ̃, β)-CP):

f((θ̃, β) | Y,X,Z) ∝ π(θ̃)π(β)
n∏

i=1

exp(Xiθ̃ + ZT
i β)Yi

1 + exp(Xiθ̃ + ZT
i β)

.

3. Given a sample of W , we obtain a sample of γ from the conditional posterior given
by (γ-CP):

f((γ, σ2) | Y,X,Z, (θ̃, β)) ∝ π(γ)π(σ2) exp
(
− 1

2σ2 (X − Zγ)TW (X − Zγ)
)
.

4. Define a re-parameterization φ = θ̃γ + β. Given a sample of γ and φ, we obtain a
sample for the parameter of interest θ based on its conditional posterior given by
(θ-CP):

f(θ | Y,X,Z, γ, φ) ∝ π(θ)
n∏

i=1

exp((Xi − ZT
i γ)θ + ZT

i φ)Yi

1 + exp((Xi − ZT
i γ)θ + ZT

i φ)
.

implicit orthogonalization induced by the conditional posterior (θ-CP). Moreover, it
could lead to intractability of the final posterior distributions of all the parameters
involved which makes the corresponding posterior concentrations difficult to achieve.
We use samples θ̃ while estimating the weights W so that the posterior concentration
for γ is achieved separately without relying on the posterior concentration of θ.

Conceptual Advantage of the Proposed Method:

Based on the orthogonal properties in (2.8) and (2.9) one can observe that the as-
sumption about weight matrix W0 in (3.6) is crucial for ensuring that the orthogonal
property holds. In the double selection algorithm (Belloni et al., 2013), this weight ma-
trix is estimated once based on a post-LASSO logistic regression using all the covariates.
In the projection-based methods, the debiasing is based on an estimate of the nuisance
parameters and a single projection direction (Ma et al., 2021; Cai et al., 2021). In the
proposed Bayesian framework, the weight estimates are adaptive to the posterior of
nuisance parameters. Moreover, the adaptive sampling of the extra nuisance parameter
γ allows extensive exploration of the orthogonality. The samples can depend on differ-
ent instances of the orthogonality and therefore provide a more complete picture. This
intuition is similar to the advantages observed in the use of integrated likelihood meth-
ods over profile likelihood methods for eliminating nuisance parameters (Berger et al.,
1999; Severini, 2007, 2011). In frequentist approaches, the estimation of nuisance pa-
rameters is equivalent to maximizing a penalized likelihood function. As discussed in the
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aforementioned references, this approach may not fully capture the uncertainty in nui-
sance parameters, resulting in inadequate uncertainty quantification for the parameter
of interest. In contrast, integrated likelihood methods average over multiple conditional
likelihoods and do a better job in capturing the uncertainty associated with nuisance
parameters. The adaptive sampling employed in the proposed method resembles the
averaging behavior of integrated likelihood methods and shares similar advantages.

3 Theoretical Guarantees
3.1 Notations and Definitions
Notations: We use Xi to denote the covariate of interest and (Zi)d×1 to denote the
high dimensional nuisance covariates for the observation i. We use the term logit(x)
to represent the logistic link function (1.1). Ln(θ | γ, φ) denotes the conditional log-
likelihood function of the parameter of interest θ for a given γ and φ. Ln(θ | γ0, φ0)
denotes the conditional log-likelihood function given the oracle nuisance parameters
γ0, φ0. For sequences an and bn, an = O(bn) means an/bn ≤ M for some M > 0 and
an = o(bn) means an/bn

n→∞−−−−→ 0. Convergence in probability is denoted by the symbol
P−→. oP (1) stands for convergence in probability to zero. OP (1) stands for stochastically

bounded. ‖·‖0, ‖·‖1, and ‖·‖2 represent the l0, l1 and l2 norms of a vector, respectively.

We first explicitly write the log-likelihoods. Based on (θ-CP), the conditional log-
likelihood is:

Ln(θ | γ, φ) =
n∑

i=1
Yi{(Xi − ZT

i γ)θ + ZT
i φ} − log{1 + exp((Xi − ZT

i γ)θ + ZT
i φ)}.

(3.1)

Similarly, under γ0 and φ0, the conditional log-likelihood can be written as:

Ln(θ | γ0, φ0) =
n∑

i=1
Yi{(Xi − ZT

i γ0)θ + ZT
i φ0} − log{1 + exp((Xi − ZT

i γ0)θ + ZT
i φ0)}.

(3.2)

3.2 Assumptions/Regularity Conditions
A1 On dimension of nuisance parameters: log d = o(n) as n → ∞.

A2 On the regularity of design: The nuisance variables are bounded, that is,

max{|Zij |, 1 ≤ i ≤ n, 1 ≤ j ≤ d} ≤ C, for some 0 < C < ∞.

A3 On sparsity of true nuisance parameter: Suppose the number of non-zero elements
in γ0 is s1 and the number of non-zero elements in φ0 is s2. Let s := max{s1, s2},
then

s2 log(d ∨ n) = o(
√
n). (3.3)
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A4 Concentration of the marginal posterior of nuisance parameters γ, φ: Let γ0 and
φ0 be the oracle nuisance parameters from the frequentist perspective. We assume
the following properties:

P

(
max

{‖γ − γ0‖1

s
,
‖γ − γ0‖2

s1/2

}
≥ M

√
log(d ∨ n)

n
| Y,X,Z

)
≤ C(d ∨ n)−c1 ,

(3.4)
on a set E1, with P (E1) ≥ 1 − (d ∨ n)−c1 , and

P

(
max

{‖φ− φ0‖1

s
,
‖φ− φ0‖2

s1/2

}
≥ M

√
log(d ∨ n)

n
| Y,X,Z

)
≤ C(d ∨ n)−c2 ,

(3.5)
on a set E2, with P (E2) ≥ 1− (d∨ n)−c2 , where M,C, c1 and c2 are some positive
constants.

A5 On prior of the parameter of interest π(θ): The prior density of the parameter of
interest π(θ) is continuous at θ = θ0, and π(θ0) > 0.

A6 On the oracle quantity γ0: We assume that γ0 satisfies the following moment
condition:

E[(X − Zγ0)TW0Z] = 0, (3.6)

where W0 is the diagonal matrix of the variances of the binary response Y (given
X,Z) given by (2.1).

Assumption A1 is the growth condition for the number of high dimensional covariates
in the model. We consider the setting where the total number of covariates can increase
as the sample size increases at a sub-exponential rate. Assumption A2 requires that
each component of the nuisance covariate vector is bounded. Assumption A3 presents a
bound on the level of sparsity for the nuisance parameters. Assumption A4 intuitively
means that with high probability, the posterior of the nuisance parameter concentrates
around their oracle values at

√
log(d ∨ n)/n rate. This is the standard concentration

rate in high-dimensional settings and is commonly satisfied by most regularization and
selection methods both from the frequentist or Bayesian paradigms (Ishwaran and Rao,
2005; Fan and Li, 2001; Van de Geer, 2008; Liang et al., 2008; Castillo et al., 2015; Song
and Liang, 2022). In this paper, we use the Skinny Gibbs (Narisetty et al., 2019) method
for the nuisance estimation which satisfies this concentration rate as well. However, it
is important to note that this concentration rate does not guarantee valid inference,
and the resulting estimates may exhibit significant bias. As mentioned in Section 1, this
concentration rate is slower than the desired 1/

√
n rate of convergence. Assumption A5

guarantees the positive support of prior at θ0 which can be verified in the case of a
Gaussian prior for example. Assumption A6 is made to achieve orthogonality. This
assumption has been previously considered in the existing literature (Belloni et al.,
2013). This assumption can be relaxed further to E[(X − Zγ0)TW0Z] = o(n1/2) to
achieve similar theoretical properties.
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Remark 1 (On the use of eigenvalue condition). In our theoretical analysis, we as-
sumed that the nuisance covariates are bounded, but we did not impose further regularity
conditions on the maximum eigenvalue of the covariate matrix. Although our sparsity
requirement s2 log(d ∨ n) = o(

√
n) is stronger than some other results in the literature

due to this, we can also relax it with an additional assumption. Define the maximum
s-sparse empirical eigenvalues of the nuisance design matrix as:

φmax(s) = max
1≤‖v‖0≤s

1
n

∑n
i=1 ‖ZT

i v‖2
2

‖v‖2
2

. (3.7)

Consider some fixed sequence of constants ln → ∞ and δn → 0 and a constant 0 <
C < ∞. If we impose further regularity conditions over nuisance design matrix Z
and assume that the sparse maximal eigenvalues are bounded with high probability, i.e.
P (φmax(sln) ≤ C) ≥ 1 − δn, then Assumption A3 can be relaxed to

s log(d ∨ n) = o(
√
n). (3.8)

The bounded maximum eigenvalue condition is commonly used in the existing vari-
able selection literature (Van de Geer, 2008; Bondell and Reich, 2012; Belloni et al.,
2013). The sparsity assumption in (3.8) is commonly assumed for the methods in the
high-dimensional literature that can achieve

√
n-consistency and valid inferential results

(Zhang and Zhang, 2014; Van de Geer et al., 2014; Belloni et al., 2013; Wu et al., 2023).

3.3 Main Results
When the oracle values of the nuisance parameters are known, the conditional posterior
of θ is given by:

f(θ | Y,X,Z, γ0, φ0) ∝ π(θ)
n∏

i=1

exp{(Xi − ZT
i γ0)θ + ZT

i φ0}Yi

1 + exp{(Xi − ZT
i γ0)θ + ZT

i φ0}
. (3.9)

This posterior is for one-dimensional parameter θ and there is no variable selection
involved. This corresponds to a logistic model with (Xi − ZT

i γ0) as the input variable
and ZT

i φ0 as the random effect. Moreover, the log-likelihood in this case is given by:

Ln(θ | γ0, φ0) =
n∑

i=1
Yi{(Xi − ZT

i γ0)θ + ZT
i φ0} − log{1 + exp((Xi − ZT

i γ0)θ + ZT
i φ0)}.

(3.10)
The corresponding score has an expectation zero at the oracle value θ0. Therefore, the
posterior concentration theorem (Walker, 1969; Schervish, 2012) applies here, and the
posterior concentrates around θ0 at the desired n−1/2 rate. We denote the Maximum
Likelihood Estimator for the likelihood in (3.10) by θ̂0.

θ̂0 = arg max
θ∈Θ

1
n
Ln(θ | γ0, φ0). (3.11)

This is the Maximum Likelihood Estimate of a one-dimensional parameter in a logistic
model which does not have a closed-form expression. However, based on the theory of
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the Maximum Likelihood Estimates (Fahrmeir and Kaufmann, 1985), we know that it
concentrates around θ0 at the desired n−1/2 rate. The standard deviation of θ̂0 will be
denoted by σn and is defined as:

σn =

√
− ∂2

∂θ2Ln(θ | γ0, φ0)
∣∣∣∣
θ=θ̂0

. (3.12)

We now provide the main theoretical results. The conditional posterior for θ as defined
in (θ-CP) is:

f(θ | Y,X,Z, γ, φ) = π(θ) exp{Ln(θ | γ, φ)}∫
Θ π(θ) exp(Ln(θ | γ, φ))dθ

, (3.13)

where Ln is the log likelihood function based on the (θ-CP) as defined in (3.1). Let
f(θ | Y,X,Z) be the marginal posterior for θ obtained after integrating out γ and φ from
the joint posterior f(θ, γ, φ | Y,X,Z) given by (2.6). Our theorem below will guarantee
the concentration of this posterior for θ at the optimal rate.

Theorem 1 (Posterior Concentration). Suppose Assumptions A1–A6 presented above
hold. Consider θ̂0 and σn as defined in (3.11) and (3.12) respectively. If a and b are con-
stants, where a < b, then the marginal posterior probability P (θ̂0 +aσn < θ < θ̂0 +bσn |
Y,X,Z) given by ∫ θ̂0+bσn

θ̂0+aσn

f(θ | Y,X,Z)dθ

converges in probability to

1√
2π

∫ b

a

exp
(
− 1

2z
2
)
dz,

as n → ∞.

Therefore, the theorem states that the posterior concentrates around θ̂0 which is the
oracle estimator (3.11) at n−1/2 rate because σn = O(

√
n). Concentration of θ̂0 around

θ0 implies that the conditional posterior concentrates around the true parameter θ0
at n−1/2 rate. The conditional posterior attains asymptotic normality and hence the
interval estimates would be valid as confirmed by the following corollary:

Corollary 1.1. The (1−α)-credible interval has the correct coverage in the frequentist
sense. Let q̂CB

α/2 and q̂CB
1−α/2 be the α/2th and (1 − α/2)th percentiles of the marginal

posterior distribution f(θ | Y,X,Z) respectively. Then, we have∣∣∣∣∣P
[
θ0 ∈

(
q̂CB
α/2, q̂

CB
1−α/2

)
| Y,X,Z

]
− (1 − α)

∣∣∣∣∣ P−→ 0.

The proofs of the theorem and the corollary have been presented in Ojha and
Narisetty (2023).
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4 Simulation Studies
4.1 Simulation Setup

We investigate the performance of our proposed method under different simulation
settings. Through simulation results, we see that the proposed Bayesian method achieves
valid coverage in the frequentist sense. Even with the default hyper-parameter values
without tuning, we observe that the coverage, bias, and interval lengths are more robust
to the simulation settings than the existing frequentist methods. Our simulations are
based on the following models:

P [Yi = 1 | Xi,Zi] = logit(Xiθ0 + ZT
i β), Xi = ZT

i γ + εi,

where εi
i.i.d.∼ N(0, 1). Zi is the high-dimensional nuisance variable with intercept as the

first component and the last d−1 components are generated according to a multivariate
normal, N(0, Hd−1×d−1) with Hij = 0.5|i−j|. The nuisance parameters β and γ are
chosen to be sparse vectors according to

βd×1 = (1, 1/2, 1/3, 1/4, 1/5, 0, 0, 0, 0, 0, 1, 1/2, 1/3, 1/4, 1/5, 0, 0, . . . , 0)T ,
γd×1 = (1, 1/2, 1/3, 1/4, 1/5, 1/6, 1/7, 1/8, 1/9, 1/10, 0, 0, . . . , 0)T .

The data-generating process for the target covariate Xi does not involve weights which
were part of the assumption (3.6) for both our Bayesian approach and the frequentist
approach of Belloni et al. (2013).

We now provide our prior specifications which we use for our empirical investigations.

P1 Prior for β: Let I1j denote the binary latent variables that decide the active and
inactive state of the component βj . The priors are:

βj | I1j = 0 ∼ N(0, τ2
0n), βj | I1j = 1 ∼ N(0, τ2

1n),
P (I1j = 1) = 1 − P (I1j = 0) = qn,

for j = 1, . . . , d. The parameters τ0n, τ1n, and qn are chosen exactly the same
way as in Narisetty et al. (2019). To be specific, we have chosen τ2

0n = 1/n,
nτ2

1n = max{n, 0.01d2.1}, and qn such that P [
∑d

j=1 I1j > K] = 0.1 for K =
max{10, logn}.

P2 Prior for γ: Let I2j denote the binary latent variable that decides the active and
inactive state of the component γj . The priors are:

γj | I2j = 0 ∼ N(0, τ2
0n), γj | I2j = 1 ∼ N(0, τ2

1n),
P (I2j = 1) = 1 − P (I2j = 0) = qn,

for j = 1, . . . , d. The choice of the prior hyper-parameters is the same as that
discussed in the prior for β.
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P3 Prior for σ2: This is the variance parameter in defining the working model be-
tween X and Z (γ-WM). We take the inverse-Gamma prior for this variance
parameter. σ2 ∼ IG(a, b). We have chosen a = b = 1 in our simulations.

P4 Prior for θ: This is a finite-dimensional parameter that does not require any
variable selection step. We assume a Gaussian prior for this parameter with a
large variance λ > 0: θ ∼ N(0, λ). We have chosen λ = 10 in our simulations.

Remark 2 (On the choice of priors and high dimensional posterior samplers). In
this paper, we use continuous spike-and-slab priors with the Skinny Gibbs algorithm
(Narisetty et al., 2019) for posterior sampling. However, this is just an example choice
but any other method that facilitates computationally feasible sampling from the con-
ditional posteriors of the high-dimensional nuisance parameters can be used alterna-
tively. For the validity of posterior based inference, we require that the samples of the
high-dimensional nuisance parameters satisfy the concentration rates as presented in
Assumption 4. The theoretical results of Narisetty et al. (2019) guarantee concentration
of the stationary distribution corresponding to the algorithm although this stationary
distribution is not the same as the exact posterior distribution. For continuous spike
and slab priors, Biswas et al. (2022) introduced an exact and efficient sampling method
for high dimensional posteriors that can also be used.

We consider two pairs of sample sizes and number of covariates such that (n, d) ∈
{(200, 300), (300, 400)} and select the true signal θ0 from a set of varying signal strengths,
θ0 ∈ {0, 0.1, 0.2, . . . , 1}. We calculate the empirical 95% credible (confidence) intervals
for different values of θ0 based on 1000 Monte Carlo simulations. We report the fre-
quentist coverage, interval length, and bias for each method under consideration. The
methods that we compare in this study are:

• DS: Double Selection – To implement the Double Selection algorithm proposed
by Belloni et al. (2013), we used the pseudo-code given in Table 2 of their paper
using the exact values of the penalty parameters they described.

• WLP: Global and Simultaneous Hypothesis Testing for High-Dimensional Logis-
tic Regression Models (Ma et al., 2021) – This method uses a generalized low-
dimensional projection technique for the bias correction of the parameter esti-
mates which are obtained after employing logistic LASSO. They construct global
test statistics and construct confidence intervals for all the parameters using the
debiased estimates. We use the intervals and estimates for the parameter of in-
terest θ in our results. This method has been implemented based on the code
provided by the authors.

• LSW: Statistical Inference for High-Dimensional Generalized Linear Models With
Binary Outcomes (Cai et al., 2021) – This is a two-step bias correction method
that employs a novel weighting strategy for the bias correction and consequently
construct confidence intervals. This method has been implemented based on the
code provided by the authors.
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• NAIVE: Post LASSO Logistic Regression – In the first step of this method, we
perform LASSO using the glmnet package to select the significant nuisance co-
variates. In the second step, we use the covariate of interest X along with the
selected nuisance covariates from the first step to perform a low-dimensional lo-
gistic regression and use the estimated parameter and its variance for inference
using Wald intervals.

• BMA: Bayesian Model Averaging (Tüchler, 2008) – This method utilizes spike
and slab priors over the high-dimensional nuisance parameter for model selection
and subsequently averages over selected models to obtain estimates and standard
deviation for the parameter of interest. The point estimator and the estimated
standard deviation are used to obtain intervals. We implement this method using
the package BoomSpikeSlab.

• BLASSO: Bayesian LASSO (Park and Casella, 2008) – This is the Bayesian
logistic regression method with Laplace priors on the model parameters. We use
the bayesreg package to implement this method.

• CB-SG: This is our proposed Bayesian approach based on conditional posteriors
using the Skinny Gibbs sampler.

• ORACLE – We regress the output Y on the target covariate X and the nuisance
covariates Z which truly affect Y . The selection of nuisance covariates is based on
the indices where the components of β are non-zero. As this corresponds to a low-
dimensional logistic regression scenario, we employ the glm package without any
form of regularization. We include this approach as a benchmark but it cannot
be implemented in practice as it uses the knowledge of the unknown sparsity
structure of the true data generating model.

4.2 Results and Discussion

In this section, we compare the results for all the methods considered. Table 1 and
Table 2 contain the coverage and the interval lengths of methods under comparison for
the (n = 200, d = 300) and (n = 300, d = 400) cases, respectively. Table 3 contains
the biases of the estimates produced by the methods under comparison based on 1000
Monte Carlo simulations.

Based on the results in Tables 1–3, we find that the coverage of the proposed method
(CB-SG) is close to the desired coverage in most settings while keeping the length of the
interval and the bias similar to the optimal ones obtained by ORACLE. While the cov-
erage of BLASSO is at least as much as the nominal coverage, it has very large interval
lengths especially for large signal values. On the other hand, DS, WLP, NAIVE, and
BMA methods suffer from severe under-coverage and large bias for most signal values.
Among the frequentist methods, LSW has the least bias and better coverage for most of
the signal values. When compared to our CB-SG method, LSW has lower coverage even
though the interval lengths are similar. In summary, the proposed method demonstrates
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Frequentist Bayesian
Quantities θ0 DS WLP LSW NAIVE BMA BLASSO CB-SG ORACLE

0.0 0.127 0.007 0.882 0.906 0.495 1.000 0.931 0.940
0.1 0.206 0.020 0.906 0.892 0.482 0.998 0.922 0.942
0.2 0.297 0.028 0.924 0.877 0.431 0.981 0.920 0.954
0.3 0.370 0.045 0.951 0.874 0.416 0.947 0.932 0.955

Coverage 0.4 0.425 0.113 0.953 0.846 0.403 0.956 0.939 0.942
0.5 0.510 0.240 0.967 0.833 0.379 0.937 0.962 0.959
0.6 0.549 0.443 0.963 0.806 0.396 0.939 0.977 0.957
0.7 0.667 0.706 0.962 0.824 0.394 0.955 0.978 0.937
0.8 0.713 0.889 0.955 0.797 0.371 0.966 0.982 0.944
0.9 0.767 0.968 0.950 0.820 0.377 0.953 0.985 0.941
1.0 0.828 0.971 0.930 0.830 0.432 0.960 0.976 0.938
0.0 0.440 0.403 0.749 1.119 0.795 0.600 0.730 0.738
0.1 0.460 1.380 0.760 1.188 0.823 0.758 0.752 0.760
0.2 0.476 0.600 0.796 1.209 0.856 0.922 0.771 0.781
0.3 0.496 0.695 0.820 1.309 0.882 1.069 0.798 0.801

Interval 0.4 0.521 0.638 0.860 1.333 0.939 1.262 0.823 0.823
Length 0.5 0.538 0.773 0.885 1.560 0.981 1.469 0.861 0.867

0.6 0.564 0.669 0.915 1.645 1.051 1.763 0.913 0.908
0.7 0.596 1.642 0.967 1.736 1.119 1.994 0.966 0.956
0.8 0.622 1.693 1.041 1.971 1.186 2.235 1.023 1.001
0.9 0.652 1.250 1.143 1.962 1.265 2.405 1.080 1.054
1.0 0.680 2.369 1.154 2.091 1.345 2.658 1.174 1.113

Table 1: Coverage and interval length for each method considered for n = 200, d = 300
under signal strengths θ0 ∈ {0, 0.1, 0.2, . . . , 1}.

a competitive overall performance in terms of achieving the desired coverage, smaller
interval length and bias.

Recent studies have highlighted that double selection methods often run into prob-
lems related to variance inflation (Antonelli et al., 2022; Torrens-i Dinarès et al., 2021).
In Ojha and Narisetty (2023), we present an additional simulation study where the con-
founding between the covariate of interest X and the nuisance covariates Z is larger. We
choose larger non-zero coefficients for the nuisance parameter γ and study its impact on
coverage, interval length, and bias. We observe that our proposed method has relatively
less impact due to confounding compared to other methods.

Furthermore, in Ojha and Narisetty (2023), we provide simulation results where d
is much larger than the sample size.

5 Analysis of a Single-Cell RNA-seq Data
We revisit the single-cell RNA-seq data (Shalek et al., 2014), which includes expression
estimates in transcripts per million for mouse genes that are annotated and calculated
by Li and Dewey (2011). The data consist of 1861 cells, specifically dendritic cells
derived from mouse bone marrow. The main goal of the study is to understand how gene
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Frequentist Bayesian
Quantities θ0 DS WLP LSW NAIVE BMA BLASSO CB-SG ORACLE

0.0 0.177 0.000 0.843 0.907 0.454 0.999 0.946 0.936
0.1 0.266 0.004 0.883 0.870 0.442 1.000 0.929 0.948
0.2 0.368 0.006 0.904 0.846 0.390 0.990 0.935 0.941
0.3 0.381 0.007 0.928 0.796 0.375 0.976 0.951 0.948

Coverage 0.4 0.419 0.026 0.950 0.775 0.378 0.969 0.960 0.949
0.5 0.386 0.082 0.934 0.733 0.341 0.974 0.962 0.950
0.6 0.420 0.205 0.957 0.719 0.348 0.973 0.983 0.946
0.7 0.464 0.425 0.953 0.682 0.342 0.966 0.976 0.945
0.8 0.567 0.741 0.935 0.685 0.337 0.968 0.966 0.947
0.9 0.608 0.908 0.926 0.668 0.320 0.967 0.952 0.939
1.0 0.652 0.976 0.924 0.665 0.337 0.964 0.955 0.952
0.0 0.365 0.333 0.568 0.824 0.627 0.483 0.569 0.585
0.1 0.379 0.363 0.589 0.876 0.650 0.595 0.582 0.600
0.2 0.394 0.400 0.605 0.999 0.665 0.732 0.590 0.612
0.3 0.409 0.440 0.631 1.010 0.686 0.898 0.607 0.632

Interval 0.4 0.431 0.501 0.651 1.038 0.713 1.082 0.628 0.656
Length 0.5 0.455 0.592 0.689 1.203 0.738 1.276 0.651 0.683

0.6 0.474 0.631 0.707 1.357 0.775 1.445 0.684 0.710
0.7 0.501 0.746 0.771 1.413 0.812 1.774 0.733 0.749
0.8 0.523 0.736 0.778 1.468 0.857 1.850 0.779 0.775
0.9 0.552 1.018 0.814 1.634 0.900 2.143 0.833 0.823
1.0 0.575 1.004 0.867 1.820 0.952 2.363 0.897 0.863

Table 2: Coverage and interval length for each method considered for n = 300, d = 400
under signal strengths θ0 ∈ {0, 0.1, 0.2, . . . , 1}.

expressions vary under specific stimuli. We focus on Particle In Cell (PIC) stimulations,
which are viral-like double-stranded RNAs. Following the analysis of Cai et al. (2021)
who previously analyzed this data, we examine the expression profiles of cells after
6 hours of stimulation, including 96 control cells and 96 cells stimulated with PIC. To
ensure reliable analysis, we preprocess the data by removing genes that are not expressed
in at least 80% of the cells and keep genes that have variance within the top 10 percentile
for our analysis. This results in a total of 697 genes. We apply log transformation and
normalize the data set to have mean zero and unit variance in each cell.

5.1 Goal of the Study

Based on previous experimental findings (Jang et al., 2018), which suggest that RSAD2
plays an important in the immune response against viruses mediated by mature den-
dritic cells, we focus on RSAD2 as our target covariate. Our aim is to quantify the
association between RSAD2 expression and PIC stimulations while controlling for the
influence of all other genes in the analysis. Formally, we assume a logistic model for the
association between gene expressions and the stimulations. For i = 1, 2, . . . , 192,:

P (stimulationi = 1 | RSAD2,Gene1, . . . ,Gene696) =
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Bias Table Frequentist Bayesian
(n, d) θ0 DS WLP LSW NAIVE BMA BLASSO CB-SG ORACLE

0.0 0.363 0.483 0.181 0.009 0.365 0.113 0.073 0.000
0.1 0.340 0.473 0.166 0.196 0.409 0.079 0.091 0.022
0.2 0.306 0.445 0.146 0.391 0.451 0.045 0.080 0.023
0.3 0.290 0.421 0.122 0.496 0.486 0.028 0.083 0.025

n=300 0.4 0.281 0.387 0.091 0.595 0.521 0.021 0.092 0.020
d=400 0.5 0.254 0.367 0.076 0.811 0.539 0.050 0.106 0.049

0.6 0.250 0.333 0.058 1.081 0.586 0.123 0.103 0.076
0.7 0.216 0.310 0.042 1.090 0.630 0.180 0.095 0.092
0.8 0.205 0.285 0.016 1.181 0.684 0.227 0.081 0.093
0.9 0.183 0.239 0.002 1.117 0.718 0.281 0.056 0.114
1.0 0.136 0.215 0.011 1.098 0.749 0.372 0.038 0.135
0.0 0.308 0.495 0.154 0.001 0.327 0.106 0.052 0.008
0.1 0.284 0.470 0.138 0.163 0.340 0.062 0.051 0.004
0.2 0.248 0.448 0.119 0.272 0.376 0.041 0.037 0.017
0.3 0.248 0.426 0.105 0.388 0.402 0.043 0.048 0.019

n=400 0.4 0.244 0.403 0.079 0.424 0.417 0.074 0.036 0.019
d=500 0.5 0.253 0.384 0.076 0.614 0.446 0.132 0.028 0.041

0.6 0.248 0.357 0.054 0.681 0.467 0.186 0.013 0.043
0.7 0.243 0.347 0.062 0.766 0.488 0.336 0.012 0.069
0.8 0.223 0.292 0.025 0.793 0.526 0.335 0.038 0.053
0.9 0.216 0.284 0.002 0.894 0.549 0.475 0.073 0.075
1.0 0.207 0.243 0.015 1.058 0.573 0.569 0.094 0.088

Table 3: Bias for different methods under signal strengths θ0 ∈ {0, 0.1, 0.2, . . . , 1}.

(
1 + exp−

(
α0 + θ ∗RSAD2 +

696∑
j=1

αj ∗ Genej
))−1

, (5.1)

where stimulationi is marked as “1” if that cell is stimulated by PIC and “0” otherwise.
Moreover, RSAD2,Gene1, . . . , and Gene696 are the normalized gene expressions. Our
aim is to estimate θ in (5.1) and provide a valid interval estimator for θ.

5.2 Results and Discussion

Table 4 presents the results of our analysis on the association between RSAD2 and PIC
stimulations. An additional row labeled as “MARGINAL on RSAD2” is included, which
reports the results obtained when fitting a binary output (PIC stimulations ∈ {0, 1})
against RSAD2 and an intercept term.

We observe that the inferences obtained by CB-SG and DS show a strong positive
association between RSAD2 expression and the PIC stimulations, similar to the results
of the “MARGINAL on RSAD2” approach. However, BLASSO and BMA fail to detect
this association. On the other hand, WLP and LSW methods also indicate a positive
effect, but the effect estimated by these methods is not as strong as CB-SG and DS.
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METHODS Estimate for θ SE of the Estimate LOWER UPPER
DS 6.44 1.27 3.94 8.93

WLP 2.81 0.34 2.13 3.49
LSW 2.12 0.43 1.27 2.97
BMA 0.00 0.01 −0.02 0.02

BLASSO 0.33 0.55 −0.74 1.41
CB-SG 5.72 1.41 2.96 8.49

MARGINAL on RSAD2 4.75 0.77 3.25 6.26

Table 4: Estimates, standard errors (SE), lower and upper ends of interval estimators
for PIC stimulation data.

Furthermore, the variance estimates of WLP and LSE are smaller than the variance
obtained from “MARGINAL on RSAD2”. This is surprising as we would expect the
variance to inflate in comparison with the marginal model as these methods consider a
potentially larger model with high dimensional nuisance covariates.

6 Conclusion
There are several common applications in various fields including economics and bio-
statistics where it is important to understand the impact of a specific covariate of
interest on a binary output. We propose a new conditional Bayesian approach for con-
structing Bayesian posterior for a finite-dimensional parameter of interest in the high
dimensional logistic regression model. Our approach leads to credible intervals with
O(n−1/2) length and have valid frequentist coverage properties. The proposed poste-
rior is based on the idea of Neyman orthogonality to construct a conditional Bayesian
model. Moreover, the proposed Bayesian approach has multiple conceptual and prac-
tical advantages compared to the frequentist approach based on double selection. The
proposed Bayesian framework can be used to incorporate prior information on the pa-
rameters of interest. Moreover, the proposed Bayesian approach provides a more exten-
sive exploration of the orthogonalization as opposed to a fixed orthogonalization used
by the frequentist approach. Similarly, the underlying weights required for the orthogo-
nalization are updated adaptively in our Bayesian approach leading to better empirical
performance.

Supplementary Material
A Conditional Bayesian Approach with Valid Inference for High Dimensional Logistic
Regression (DOI: 10.1214/23-BA1408SUPP; .pdf). In the supplementary file, we discuss
the computational aspects of the proposed method, provide all the proofs related to the
theoretical results, and present further empirical studies.

https://doi.org/10.1214/23-BA1408SUPP
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