
Bayesian Analysis (2023) TBA, Number TBA, pp. 1–27

Bayesian Feature Selection in Joint Quantile
Time Series Analysis∗
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Abstract. Quantile feature selection over correlated multivariate time series data
has always been a methodological challenge and is an open problem. In this pa-
per, we propose a general Bayesian dimension reduction methodology for feature
selection in high-dimensional joint quantile time series analysis, under the name
of the quantile feature selection time series (QFSTS) model. The QFSTS model is
a general structural time series model, where each component yields an additive
contribution to the time series modeling with direct interpretations. Its flexibility
is compound in the sense that users can add/deduct components for each time
series and each time series can have its own specific valued components of different
sizes. Feature selection is conducted in the quantile regression component, where
each time series has its own pool of contemporaneous external predictors allowing
nowcasting. Bayesian methodology in extending feature selection to the quantile
time series research area is developed using multivariate asymmetric Laplace dis-
tribution, spike-and-slab prior setup, the Metropolis-Hastings algorithm, and the
Bayesian model averaging technique, all implemented consistently in the Bayesian
paradigm. The QFSTS model requires small datasets to train and converges fast.
Extensive examinations confirmed that the QFSTS model has superior perfor-
mance in feature selection, parameter estimation, and forecast.

Keywords: Bayesian inference, quantile feature selection, dimension reduction,
multivariate time series analysis.
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1 Introduction
We firstly give the background and motivation in Section 1.1 and then state our contri-
butions in Section 1.2, followed with the organization of the paper in Section 1.3.

1.1 Background and Motivation
In the era of “big data”, electronic devices are now involved in many social activities,
and can capture, store, manipulate, and analyze vast caches of such data. Conventional
statistical and econometric techniques become increasingly inadequate to deal with “big
data” problems, such as the curse of dimensionality, large storage requirement, and high
computational cost (see, e.g. Ning et al., 2021). Feature selection, also known as variable
selection, attribute selection, or variable subset selection, is a machine learning technique
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for dimensionality reduction (see, e.g. Lamnisos et al., 2009). It aims to choose a small
subset of the relevant features (variables, predictors) for use in model construction, from
the original ones by removing irrelevant, redundant, or noisy features. It usually leads to
better learning performance in terms of higher learning accuracy, lower computational
cost, and better model interpretability. It has also been proven to be an effective and
efficient way of shortening training times, improving data’s compatibility with a learning
model class, and encoding inherent symmetries present in the input space (see, e.g.
Griffin and Steel, 2021).

Time series forecasting as one of the most applied data science techniques have
been used extensively in finance, supply chain management, production and inventory
planning, etc. However, as the time dimension adds additional information, time series
problems are more difficult to handle compared to other prediction tasks (Kalli and
Griffin, 2014). Scott and Varian (2014, 2015) developed the Bayesian Structural Time
Series (BSTS) model, which can be used for time series forecasting, nowcasting, inferring
causal relationships, etc. Qiu et al. (2018) proposed the multivariate Bayesian structural
time series (MBSTS) model, which extended the BSTS model to multivariate target time
series with various components. The BSTS/MBSTS model has wide applications (see,
e.g., Jammalamadaka et al., 2019; Qiu et al., 2020 and the references therein).

One can think of the future value of a univariate time series as a random variable
whose distribution is the forecast distribution. Analogously, the future values of mul-
tivariate time series can be thought of as correlated random variables with the joint
forecast distribution. The usual time series forecast is often to predict the mean or the
median of the (joint) forecast distribution, which can be categorized as a point forecast.
The (joint) quantile forecast is appealing in many economic applications (Ley and Steel,
2007), such as value at risk in the finance industry in order to develop a strategy for
trading and/or hedging purposes. Recently, Griffin and Mitrodima (2022) proposed a
Bayesian quantile time series model for asset returns which beautifully handled formal
Bayesian inference on quantiles. It is an open question so far on how to incorporate the
feature selection technique in joint quantile time series analysis, which is our goal of
this paper.

1.2 Our Contributions

In this paper, we propose a general Bayesian methodology for feature selection in joint
quantile analysis with multivariate correlated time series data, under the name of quan-
tile feature selection time series (QFSTS) model. Our contributions are four-fold:

• General model structure. First, the QFSTS model is a structural time series
model, which further belongs to state space models. All state components are
assembled independently, and each component yields an additive contribution to
the time series modeling with direct interpretations. The flexibility of the model
allows users to include different components for each target series, such as one
time series has a trend component and a regression component while another
correlated time series only has a regression component. Given that our main goal is
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to illustrate the feature selection methodology in joint quantile time series analysis,
we focus on a trend component, a seasonal component, a regression component,
and an error term (2.1) without loss of generality.
Second, the QFSTS model allows nowcasting and each time series can have its
own pool of contemporaneous external predictors. Nowcasting is to forecast a
current value instead of a future value (Banbura et al., 2011). Two scenarios for
using nowcasting are the following: First, many economic time series are reported
infrequently such as on a monthly or quarterly basis, despite being theoretically
observable on finer time scales; Second, time series are also frequently revised
after they are first reported, as new information becomes available. An effective
nowcasting model considers both the past behavior of the series being modeled
and the values of more easily observed contemporaneous signals. All predictors in
the regression component of the QFSTS model can be contemporaneous with a
known lag by shifting the corresponding predictors in time. The QFSTS model
allows each time series to have its own pool of predictors, for example one time
series has 50 predictors and another has 20 different predictors. Feature selection
is conducted among each times series’ pool of predictors while still considering the
correlations among different times series.

• Methodology. First, the QFSTS model is the first on introducing the multivari-
ate asymmetric Laplace (MAL) distribution to time series analysis. The idea of
Bayesian quantile regression employing a likelihood function that is based on the
asymmetric Laplace (AL) distribution, was introduced in the classical work by Yu
and Moyeed (2001). The use of the AL distribution is proved as a very natural and
effective way of modeling Bayesian quantile regression, irrespective of the original
distribution of the data (Chen et al., 2013). In Section 2.2, we rigorously establish
the explicit linkage between the MAL distribution and joint quantile regression,
by setting the specific forms of parameters of the MAL distributed error term.
Second, the QFSTS model achieves feature selection in joint quantile time series
analysis. It is very challenging to conduct feature selection on correlated time
series where each has its own predictors, while when it comes to selecting features
in quantile regression, it is much more challenging in that one has to take quantiles
into consideration instead of the mean. Further, the Bayesian quantile regression
coefficients depend on the quantile of interest (Yu and Moyeed, 2001). That is,
for different quantiles, the coefficient of any predictor varies. The QFSTS model
uses the Gibbs sampler for quantile feature selection by means of the classical
spike-and-slab prior setup (George and McCulloch, 1997; Madigan and Raftery,
1994), and the Metropolis-Hastings algorithm. Bayesian variable selection can be
performed using mixture priors with a spike and a slab component for the effects
subject to selection, where the spike prior concentrates its mass at values close to
zero allowing shrinkage of small effects to zero, and the slab prior has its mass
spread over a wide range of plausible values for the regression coefficients. As
the spike is concentrated at zero, variable selection is based on the probability
of assigning the corresponding regression effect to the slab component. These
posterior inclusion probabilities can be determined by MCMC sampling.
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Third, the QFSTS model introduces the Bayesian model averaging technique
(Hoeting et al., 1999) in joint quantile time series analysis. Bayesian model aver-
aging provides a coherent mechanism to handle model uncertainty, by averaging
the predicted quantile values from all the models generated in model training (Fer-
nandez et al., 2001; Steel, 2020). In this way, we commit neither to any particular
set of predictors which helps avoid an arbitrary selection, nor to point estimates
of their coefficients which prevents overfitting.

• Excellent performance. Under the challenging situation that each time series
has its own pool of predictors made of both continuous and categorical covariates,
the QFSTS model provides very accurate feature selection and parameter esti-
mation results, thoroughly examined on simulated data, with different quantile
values, different size of datasets, and different correlation values among multivari-
ate time series. Extensive analyses confirmed that the QFSTS model outperforms
the “auto.arima” function in ten steps of one-step-ahead quantile forecast consis-
tently. The “auto.arima” function automatically fits the autoregressive integrated
moving average with regression (ARIMAX) model that is the most classical and
popular time series model.

• Wide applicability. First, because of the feature selection function embedded
in the QFSTS model, it is applicable in proper applications that desire higher
learning accuracy, lower computational cost, better model interpretability, and
other benefits generated by feature selection. Second, because of the Bayesian
paradigm embedded in the QFSTS model, it is applicable in proper applications
that require Bayesian inference and learning. Third, because of the QFSTS model’s
general model structure, it is applicable in more applications besides the finance
applications demonstrated in this paper. At last, the QFSTS model requires small
datasets to train and converges fast.

1.3 Organization of the Paper

The rest of the paper proceeds as follows: In Section 2, we introduce the QFSTS model
by explaining its model structure and then illustrating the linkage between the specific
design of the QFSTS model with multivariate quantile prediction. In Section 3, we
explain the methodology of the QFSTS model, by firstly writing the system in the
distribution equivalence matrix form, and then providing the prior setup and posterior
formulas. In Section 4, we provide the model training algorithm and the joint quantile
time series forecast algorithm. In Section 5, we demonstrate the model performance with
simulated data generated by three-dimensional target time series, and fully examine
the QFSTS model’s ability in selecting the correct variables, accuracy in parameter
estimation, and strength in forecast, with different quantiles and time series correlations.
In Section 6, we conclude and remark. In the Supplementary Material (Ning, 2023), we
conduct further numerical analysis with simulated data and demonstrate the model
performance with empirical data. Throughout the paper, the symbol τ , with or without
subscripts, will represent the quantile level.
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2 The QFSTS Model
In this section, we introduce the QFSTS model, by firstly explaining its model structure
in Section 2.1, and then illustrating the linkage between the specific design of the QFSTS
model with multivariate quantile prediction in Section 2.2.

2.1 Model Structure
The QFSTS model is a structural time series model, which is constructed by components
with direct interpretations, as follows:

ỹt = μ̃t + ι̃t + ξ̃t + ε̃t, (2.1)

where t stands for a specific time point in {1, . . . , n}, the m-dimensional vector ỹt repre-
sents target time series where m > 1, the m-dimensional vector μ̃t represents the linear
trend component, the m-dimensional vector ι̃t represents the seasonal component, the
m-dimensional vector ξ̃t represents the regression component, and the m-dimensional
vector ε̃t represents the observation error term. Since structural time series models be-
long to state space models, the QFSTS model then belongs to state space models. In
the following, we illustrate each time series components:

• The linear trend component μ̃t = [μ(1)
t , . . . , μ

(m)
t ]T of the QFSTS model is a

generalization of the local linear trend model, in the following form:

μ
(i)
t+1 = μ

(i)
t + δ

(i)
t + u

(i)
t , [u(1)

t , . . . , u
(m)
t ]T iid∼ Nm(0,Σμ̃), (2.2)

δ
(i)
t+1 = Di + λi(δ(i)

t −Di) + v
(i)
t , [v(1)

t , . . . , v
(m)
t ]T iid∼ Nm(0,Σδ̃). (2.3)

The QFSTS model allows each target series to have its own specific linear trend
component. Here, for the i-th target series where i ∈ {1, . . . ,m}, μ(i)

t models the
current “level” of the trend; δ(i)

t models the current “slope” of the trend which
is the expected increase in μ

(i)
t between time point t and time point t + 1; the

parameter Di models the “mean reversion” effect, i.e., a dynamic can be very
unstable in the short run but stable in the long run; the parameter λi ∈ [0, 1] is
the learning rate at which the local trend is updated.

• The seasonal component ι̃t = [ι(1)t , . . . , ι
(m)
t ]T of the QFSTS model in the following

form is one frequently used model:

ι
(i)
t+1 = −

Si−2∑
k=0

ι
(i)
t−k + w

(i)
t , [w(1)

t , . . . , w
(m)
t ]T iid∼ Nm(0,Σι), (2.4)

where Si represents the number of seasons for y(i). The QFSTS model allows
each target series to have its own specific seasonal component. For instance, we
might include a seasonal component with Si = 7 to capture day-of-the-week effect
for target series y(i), and Sj = 30 indicating day-of-the-month effect for another
target series y(j) when modeling daily data.
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• The regression component ξ̃t = [ξ(1)
t , . . . , ξ

(m)
t ]T of the QFSTS model is written

as follows:
ξ
(i)
t = βT

i x
(i)
t . (2.5)

The QFSTS model allows each target series to have its own specific regression
component. Here for i ∈ {1, . . . ,m}, x

(i)
t = [x(i)

t1 , . . . , x
(i)
tki

]T is the pool of all
available ki predictors at time t for the i-th target series, for example ki = 30
for the i-th target series and kj = 20 for the j-th target series where j �= i;
βi = [βi1, . . . , βiki ]T represents corresponding static regression coefficients for the
i-th target series.

• The vector of observation error terms ε̃t = [ε(1)t , . . . , ε
(m)
t ]T follows the multivariate

asymmetric Laplace (MAL) distribution

ε̃t
iid∼ALm(φε,Σε), (2.6)

where φε is a m-dimensional vector of means for each variable, and Σε is a m×m-
dimensional non-negative definite symmetric matrix of variance-covariance. When
φε = 0, the distribution ALm(0,Σε) is the symmetric multivariate Laplace distri-
bution. We refer interested readers to Section 6.2 of Kotz et al. (2012) for further
explanations of the MAL distribution.

2.2 The MAL Distribution and Joint Quantile Regression

In this section, we establish the linkage between the MAL distribution and joint quantile
regression, by setting the specific forms of φε and Σε in the ALm(φε,Σε) distribution,
which is given in (2.15).

Firstly, we subtract the trend component and the seasonal component from the
multivariate target time series and denote

z̃t = [z(1)
t , . . . , z

(m)
t ]T = ỹt − μ̃t − ι̃t.

Then (2.1) becomes

z̃t = ξ̃t + ε̃t, ε̃t
iid∼ALm(φε,Σε). (2.7)

By Theorem 6.3.1 in Section 6.3 of Kotz et al. (2012), ε̃t can be represented as follows,
in the distribution equivalence sense,

ε̃t = φεW + W 1/2ẽt, W
iid∼ Exp(1), ẽt = [e(1)

t , . . . , e
(m)
t ]T iid∼ Nm(0,Σε), (2.8)

where W and ẽt are independent, therefore we can rewrite (2.7) as

z̃t = ξ̃t + φεW + W 1/2ẽt, (2.9)

in the distribution equivalence sense.



N. Ning 7

The specific forms of φε and Σε in the ALm(φε,Σε) distribution which link the MAL
distribution with joint quantile regression, is based on the corresponding theory in the
univariate case. Now, we summarize some of the findings in Yu and Moyeed (2001). The
standard linear regression model is given by

yut = (xt)Tβ + εut ,

where the superscript “u” indicates the univariate case and bold symbols represent
vectors. Here, xt is the vector of regressors; β is the vector of corresponding coefficients;
the error term εut has zero mean and finite constant variance, but it is not necessary
to specify its distribution as it can take any form. Suppose that the p-th (0 < p < 1)
quantile of the error term εut is the value qp, such that P(εut < qp) = p. The p-th
conditional quantile of yut given xt is then simply

qp(yut | xt) = (xt)Tβp, (2.10)

where βp is a vector of coefficients dependent on p.

The p-th regression quantile is defined as the solution β̂p to the quantile regression
minimization problem

min
β

∑
t

ρp

(
yut − (xt)Tβ

)
,

where ρp(·) is a loss function that has robust properties (see, Huber, 2004) given by

ρp(u) = |u| + (2p− 1)u
2 . (2.11)

Yu and Moyeed (2001) showed that the minimization of the above loss function is
exactly equivalent to the maximization of a likelihood function formed by combining
independently distributed asymmetric Laplace (AL) densities, and the univariate AL
distribution provides a direct connection between the quantile regression minimization
problem and the maximum likelihood estimation.

A random variable U is said to follow the univariate AL distribution AL(θloc, θsca, p)
if its probability density function is given by

fp(u) = p(1 − p)
θsca

exp
{
−ρp

(
u− θloc

θsca

)}
,

where ρp(·) is given in (2.11), θloc is the location parameter, and θsca is the scale pa-
rameter. The mean and the variance of U are given by

E(U) = θloc + θsca
1 − 2p
p(1 − p) , Var(U) = θ2

sca
1 − 2p + 2p2

p2(1 − p)2 .

Now we get back to (2.9) and investigate its univariate case of the i-th target series for
i ∈ {1, 2, . . . ,m}:

z
(i)
t = ξ

(i)
t + φ(i)

ε W + W 1/2e
(i)
t , e

(i)
t

iid∼N (0, (Σε)ii). (2.12)
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Suppose we are interested in the τi-th (0 < τi < 1) quantile and then we need z
(i)
t to

satisfy the univariate AL distribution AL(ξ(i)
t , φi, τi).

In order to obtain

E(z(i)
t ) = ξ

(i)
t + φi

1 − 2τi
τi(1 − τi)

,

it suffices to set

φ(i)
ε = φi

1 − 2τi
τi(1 − τi)

(2.13)

since
E

(
φ(i)
ε W

)
= φ(i)

ε and E

(
W 1/2e

(i)
t

)
= 0.

Furthermore, in order to obtain

Var(z(i)
t ) = (φi)2

1 − 2τi + 2τ2
i

τi(1 − τi)
,

it suffices to set

(Σε)ii = (φi)2
2

τi(1 − τi)
, (2.14)

since then

Var(z(i)
t ) = Var(φ(i)

ε W + W 1/2e
(i)
t )

=
(
φi

1 − 2τi
τi(1 − τi)

)2

+ (φi)2
2

τi(1 − τi)

= (φi)2
1 − 2τi + 2τ2

i

τi(1 − τi)
.

At last, in order to meet the univariate requirements (2.13) and (2.14), we can take

φε = Φφ̃τ and Σε = ΦΣτΦ = Φ(ΨτΣcorrΨτ )Φ, (2.15)

where φ̃τ =
[

1−2τ1
τ1(1−τ1) ,

1−2τ2
τ2(1−τ2) , . . . ,

1−2τm
τm(1−τm)

]T
, Σcorr is the correlation matrix,

Φ =

⎡⎢⎢⎢⎣
φ1 0 . . . 0
0 φ2 . . . 0
...

...
. . .

...
0 0 . . . φm

⎤⎥⎥⎥⎦ , Ψτ =

⎡⎢⎢⎢⎢⎢⎢⎣

√
2

τ1(1−τ1) 0 . . . 0

0
√

2
τ2(1−τ2) . . . 0

...
...

. . .
...

0 0 . . .
√

2
τm(1−τm)

⎤⎥⎥⎥⎥⎥⎥⎦ .



N. Ning 9

3 Methodology
In this section, we explain the methodology of the QFSTS model. In Section 3.1, we
write the system in the distribution equivalence matrix form to facilitate derivations
following. In Section 3.2, we provide the prior setups including the spike-and-slab for
variable selection in this Bayesian paradigm. In Section 3.3, we derive all necessary
conditional probabilities, in order to implement the classical Gibbs sampler in model
training.

3.1 The Distribution Equivalence Matrix Form

Recall that by (2.9) we have

z̃t = ξ̃t + φεW + W 1/2ẽt.

Here, z̃t = [z(1)
t , . . . , z

(m)
t ]T is the m-dimensional vector generated by subtracting the

trend component and the seasonal component from the multivariate target time series;
ξ̃t = [ξ(1)

t , . . . , ξ
(m)
t ]T is the m-dimensional regression component such that ξ(i)

t = βT
i x

(i)
t ,

where βi = [βi,1, . . . , βi,ki ]T is the collection of regression coefficients for the i-th re-

sponse variable, and x
(i)
t =

[
x

(i)
t1 , . . . , x

(i)
tki

]T
is the pool of all available ki predictors

at time t for the i-th target series; φε is the m-dimensional vector of means for the
m-dimensional error term.

Now, we define the n×m matrix Z as

Z = [z̃1, . . . , z̃n]T =

⎡⎢⎢⎣
⎡⎢⎢⎣
z
(1)
1
...

z
(m)
1

⎤⎥⎥⎦ , . . . ,

⎡⎢⎢⎣
z
(1)
n

...
z
(m)
n

⎤⎥⎥⎦
⎤⎥⎥⎦
T

=

⎡⎢⎢⎣
[
z
(1)
1 · · · z

(m)
1

]
· · ·[

z
(1)
n · · · z

(m)
n

]
⎤⎥⎥⎦ ,

and then define the mn-dimensional vector Z̃ as

Z̃ = vec(Z) =
[[
z
(1)
1 · · · z

(1)
n

]
, . . . ,

[
z
(m)
1 · · · z

(m)
n

]]T
.

Analogously, we define the mn-dimensional vector Ẽ as

Ẽ = vec(E) where E = [ε̃1, . . . , ε̃n]T ,

and define the mn-dimensional vector Φ̃ε as

Φ̃ε = vec(Φε) where Φε = [φε, . . . , φε]T .

Define β as the K-dimensional (K =
∑m

i=1 ki) vector of regression coefficients

β =
[
βT

1 , . . . , β
T
m

]T where βi = [βi,1, . . . , βi,ki ]T .
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Define Xi as the n×ki matrix representing all observations of ki possible predictors for
the i-th response variable

Xi =
[
(x(i)

1 )T , . . . , (x(i)
n )T

]T
=

⎡⎢⎢⎢⎢⎣
x

(i)
1,1 x

(i)
1,2 x

(i)
1,3 . . . x

(i)
1,ki

x
(i)
2,1 x

(i)
2,2 x

(i)
2,i,3 . . . x

(i)
2,ki

...
...

...
. . .

...
x

(i)
n,1 x

(i)
n,2 x

(i)
n,3 . . . x

(i)
n,ki

⎤⎥⎥⎥⎥⎦ , (3.1)

and further define X as the mn×K-dimensional predictor matrix

X =

⎡⎢⎢⎢⎣
X1 0 0 . . . 0
0 X2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . Xm

⎤⎥⎥⎥⎦ . (3.2)

Then we have the following expression, in the distribution equivalence sense,

Z̃ = Xβ + Φ̃εW + W 1/2Ẽ. (3.3)

3.2 Prior Distributions

The spike-and-slab prior setup is a Bayesian variable selection technique. To specify
spike prior, a vector of K =

∑m
i=1 ki indicator variables

γ = [γ1,1, . . . , γ1,k1 , γ2,1, . . . , γ2,k2 , . . . , γm,1, . . . , γm,km ]

is introduced according to the rule:

γi,k =
{

1 if βi,k �= 0,
0 otherwise.

Regressor indicators are assumed to be independent Bernoulli variables:

p(γ|W ) =
m∏
i=1

ki∏
k=1

π
γi,k

i,k (1 − πi,k)1−γi,k , 0 ≤ πi,k = p(γi,k) ≤ 1, (3.4)

where πi,k is the prior inclusion probability. Equation (3.4) is often simplified by setting
πi,k = πi, if prior information of specific predictors on response variables is not avail-
able. One could further simplify by setting πi = qi/ki, where ki is the total number of
candidate predictors for the i-th target series and qi nonzero expected predictors given
by researchers. When there is sufficient prior information, assigning subjectively deter-
mined values to πi,k might provide more robust results. One could also force certain
variables to be excluded or included by setting πij as 0 or 1. By default and in all the
experimental examinations following, we set πik = 0.5 for all i ∈ {1, . . . ,m} and all
k ∈ {1, . . . , ki}.
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We use a simple conventional prior specification which makes β and Σε conditionally
independent

p(β,Στ |γ) = p(β|γ) × p(Στ |γ), (3.5)

where
β|γ iid∼ NK(bγ , A−1

γ ), Στ |γ iid∼ IWm(v0, V0). (3.6)

Equation (3.6) is the slab prior because, conditional on γ, one can choose the prior
parameters to make it only very weakly informative and close to flat. NK(bγ , A−1

γ )
stands for the K-dimensional multivariate normal distribution, bγ is the vector of prior
means, and Aγ is the full-model prior information matrix. One can set Aγ = κXT

γ Xγ/n
where κ is the number of observations worth of weight on the prior mean vector bγ .
IWm(v0, V0) stands for the m-dimensional inverse Wishart (IW) distribution, where v0
is the number of degrees of freedom and V0 is a m×m scale matrix. One can ask analysts
for an expected R2, and a number of observations worth of weight v0 which must be
greater than the dimension of ỹt plus one, and set

V0 = (v0 −m− 1)(1 −R2)Σy,

where Σy is the variance-covariance matrix for multiple target time series. For simplicity,
we set bγ = 0, κ = 0.01, R2 = 0.8, and v0 = 5 in all the experimental examinations
following. We acknowledge that the IW prior setup may not necessarily conform to the
specific form presented in (2.15), which is one example demonstrating the connection
to the univariate case. However, considering the difficulty in estimating the correlation
matrix for multivariate time series, we opt for the IW prior as a simpler alternative.
Consequently, it is important to note that our modeling approach may not be optimal,
and there is potential for further improvements to be made over our methodology.

Since we are going to use the Metropolis-Hastings Algorithm (see Chapter 6.3.1 of
Robert and Casella, 2010) to learn the distribution of Φ, we allow the prior distribution
of its elements to be any distribution that is proportional to 1. The prior distributions
of variance-covariance matrices in the trend component and the seasonal component are
set as the inverse Wishart distribution

Σα
iid∼ IWm(να, Vα), α ∈ {μ̃, δ̃, ι̃}. (3.7)

For simplicity, we set να = Vα = 0.01 in all the experimental examinations following.

3.3 Posterior Conditional Distributions
In order to implement the classical Gibbs sampler in this multivariate setting, we derive
all necessary conditional probabilities of Z̃, β, Φ, Στ , γ, and W . The full likelihood
function under model assumptions is given by

p(Z̃, β,Φ,Στ , γ,W ) = p(Z̃|β,Φ,Στ , γ,W ) × p(β,Στ |γ) × p(γ) × p(W ) × p(Φ).

Then, by (3.3)–(3.6) and the setup of p(Φ), we have that

p(Z̃, β,Φ,Στ , γ,W )
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∝ p(Z̃|β,Φ,Στ , γ,W ) × p(β|γ,W ) × p(Στ |γ,W ) × p(γ) × p(W )

∝ |WΦΣτΦ|−n/2 exp
(
− 1

2W (Z̃−Xγβγ−Φ̃εW )T ((ΦΣτΦ)−1 ⊗ In)(Z̃ −Xγβγ − Φ̃εW )
)

× |Aγ |1/2 exp
(
−1

2(βγ − bγ)TAγ(βγ − bγ)
)
|Στ |−(v0+m+1)/2 exp

(
−1

2 tr(V0Σ−1
τ )

)
× p(γ) × p(W ), (3.8)

where | · | stands for the determinant of a matrix, ⊗ is the Kronecker product, and tr(·)
represents the trace of a matrix.

Posterior Conditional Distribution of β

To facilitate derivation, we firstly transform

Z̃ = Xβ + Φ̃εW + W 1/2Ẽ,

where
Ẽ = vec(E) = vec([ε̃1, . . . , ε̃n]T ), ẽt

iid∼ Nm(0,Σε = ΦΣτΦ),

to a system with uncorrelated errors using the Cholesky decomposition of Στ ,

Στ = UTU, i.e. (U−1)TΣτU
−1 = I. (3.9)

Thus we have the transformed system with uncorrelated errors:

Ẑ = X̂β + Φ̂εW + W 1/2Ê, (3.10)

where
Ẑ = (((UΦ)−1)T ⊗ In)Z̃, X̂ = (((UΦ)−1)T ⊗ In)X,

Φ̂ε = (((UΦ)−1)T ⊗ In)Φ̃ε, Ê = (((UΦ)−1)T ⊗ In)Ẽ.
(3.11)

For the following term in the first exponential in (3.8), we have

(Z̃ −Xγβγ − Φ̃εW )T ((ΦΣτΦ)−1 ⊗ In)(Z̃ −Xγβγ − Φ̃εW )

= (Z̃ −Xγβγ − Φ̃εW )T (([UΦ]TUΦ)−1 ⊗ In)(Z̃ −Xγβγ − Φ̃εW )

= (Z̃ −Xγβγ − Φ̃εW )T ((UΦ)−1 ⊗ In) × (((UΦ)−1)T ⊗ In)(Z̃ −Xγβγ − Φ̃εW )

= (Ẑ − X̂γβγ − Φ̂εW )T (Ẑ − X̂γβγ − Φ̂εW ). (3.12)

The full conditional distribution of β can be expressed as:

p(β|Ẑ,Φ,Σε, γ,W ) ∝ exp
(
−1

2W
−1(Ẑ − X̂γβγ − Φ̂εW )T (Ẑ − X̂γβγ − Φ̂εW )

)
× exp

(
−1

2(βγ − bγ)TAγ(βγ − bγ)
)
.
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Terms in the above exponential can be written as

W−1(Ẑ − X̂γβγ − Φ̂εW )T (Ẑ − X̂γβγ − Φ̂εW ) + (βγ − bγ)TAγ(βγ − bγ)

= βT
γ (W−1X̂T

γ X̂γ + Aγ)βγ − βT
γ (W−1X̂T Ẑ − X̂T Φ̂ε + Aγbγ)

− (W−1X̂T
γ Ẑ − X̂T

γ Φ̂ε + Aγbγ)Tβγ + W−1(Ẑ − Φ̂εW )T (Ẑ − Φ̂εW ) + bTγAγbγ

= (βγ − βγ)T (W−1X̂T
γ X̂γ + Aγ)(βγ − βγ) + W−1(Ẑ − Φ̂εW )T (Ẑ − Φ̂εW )

+ bTγAγbγ − (βγ)T (W−1X̂T
γ X̂γ + Aγ)βγ , (3.13)

where
βγ = (W−1X̂T

γ X̂γ + Aγ)−1(W−1X̂T
γ Ẑ − X̂T

γ Φ̂ε + Aγbγ).

Therefore, β is still conditionally multivariate normal distributed

β|Ẑ,Φ,Στ , γ,W
iid∼ NK(βγ , (W−1X̂T

γ X̂γ + Aγ)−1). (3.14)

Posterior Conditional Distribution of Στ

Recalling that Xi is the n × ki-dimensional matrix given in (3.1), define the n × K-
dimensional (K =

∑m
i=1 ki) matrix X∗

γ as

X∗
γ = [X1, X2, . . . , Xm]γ .

Define the K ×m-dimensional matrix Bγ as

Bγ =

⎡⎢⎢⎢⎣
β1 0 0 . . . 0
0 β2 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . βm

⎤⎥⎥⎥⎦
γ

, βi =

⎡⎢⎣ βi,1
...

βi,ki

⎤⎥⎦ ,

where βi is the ki-dimensional vector containing the collection of regression coefficients
for the i-th response series. For the reason that trace is invariant under cyclic permu-
tations, from (3.8), we know that

(Z̃ −Xγβγ − Φ̃εW )T ((ΦΣτΦ) ⊗ In)−1(Z̃ −Xγβγ − Φ̃εW )

= vec
(
Z −X∗

γBγ − ΦεW

)T

((ΦΣτΦ)−1 ⊗ In) vec
(
Z −X∗

γBγ − ΦεW

)
= tr

(
(Z −X∗

γBγ − ΦεW )T (Z −X∗
γBγ − ΦεW )Φ−1Σ−1

τ Φ−1
)

= tr
([

(Z −X∗
γBγ − ΦεW )Φ−1

]
Σ−1

τ

[
(Z −X∗

γBγ − ΦεW )Φ−1
]T)

= tr
([

(Z −X∗
γBγ − ΦεW )Φ−1

]T[
(Z −X∗

γBγ − ΦεW )Φ−1
]
Σ−1

τ

)
,
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and then we have

p(Στ |Z̃,Φ, β, γ,W )

∝ |Στ |−(n+v0+m+1)/2 exp
(
−1

2 tr
(

1
W

[
(Z −X∗

γBγ − ΦεW )Φ−1
]T

×
[
(Z −X∗

γBγ − ΦεW )Φ−1
]
Σ−1

τ + V0Σ−1
τ

))
.

That is, the posterior conditional distribution of Στ is in the invert Wishart form

Στ |Z̃, β,Φ, γ,W

iid∼ IWm

(
v0 + n,

1
W

[
(Z −X∗

γBγ − ΦεW )Φ−1
]T[

(Z −X∗
γBγ − ΦεW )Φ−1

]
+ V0

)
.

(3.15)

Posterior Conditional Distribution of Φ

Recall that by the Cholesky decomposition in (3.9) we have that Στ = UTU . Further
recall that by (2.15) we have that the m-dimensional vector φε = Φφ̃τ where Φ is a
m×m-dimensional diagonal matrix and φ̃τ is a m-dimensional vector, and then we can
write the n×m-dimensional matrix Φε as

Φε = [φε, . . . , φε]T = Φ̃τΦ, where Φ̃τ = [φ̃τ , . . . , φ̃τ ]T .

Then by (3.8) we have

p(Φ|Z̃, β,Στ , γ,W )

∝ |Φ|−n exp
(
−1

2 tr
(

1
W

[
(Z −X∗

γBγ − ΦεW )Φ−1
]T

×
[
(Z −X∗

γBγ − ΦεW )Φ−1
]
Σ−1

τ

))

∝ |Φ|−n exp
(
−1

2 tr
(

1
W

[
(Z −X∗

γBγ − ΦεW )Φ−1
]T

×
[
(Z −X∗

γBγ − ΦεW )Φ−1
]
U−1(U−1)T

))

∝ |Φ|−n exp
(
−1

2 tr
(

1
W

[
(Z −X∗

γBγ − ΦεW )Φ−1U−1
]T

×
[
(Z −X∗

γBγ − ΦεW )Φ−1U−1
]))
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∝ |Φ|−n exp
(
−1

2 tr
(

1
W

[
(Z −X∗

γBγ − Φ̃τΦW )Φ−1U−1
]T

×
[
(Z −X∗

γBγ − Φ̃τΦW )Φ−1U−1
]))

∝ |Φ|−n exp
(
−1

2 tr
(

1
W

[
(Z −X∗

γBγ)Φ−1U−1 − Φ̃τU
−1W

]T
×

[
(Z −X∗

γBγ)Φ−1U−1 − Φ̃τU
−1W

]))
. (3.16)

Posterior Conditional Distribution of γ

By (3.8) and (3.13), we know that

p(Z̃, β,Φ,Στ , γ,W )

∝ exp
(
−1

2

[
(β − βγ)T (W−1X̂T

γ X̂γ + Aγ)(β − βγ) + W−1(Ẑ − Φ̂εW )T (Ẑ − Φ̂εW )
])

× |Aγ |1/2 exp
(
−1

2

[
tr(V0Σ−1

ε ) + bTγAγbγ − (βγ)T (W−1X̂T
γ X̂γ + Aγ)βγ

])
p(γ)

× |WΦΣτΦ|−n/2|Στ |−(v0+m+1)/2,

where
βγ = (W−1X̂T

γ X̂γ + Aγ)−1(W−1X̂T
γ Ẑ − X̂T

γ Φ̂ε + Aγbγ).

Furthermore, by the fact that

β|Ẑ,Φ,Στ , γ,W
iid∼ NK(βγ , (W−1X̂T

γ X̂γ + Aγ)−1),

we have∫ ∞

−∞
exp

(
−1

2(β − βγ)T (W−1X̂T
γ X̂γ + Aγ)(β − βγ)

)
dβ ∝ |W−1X̂T

γ X̂γ + Aγ |−1/2,

and then

p(Z̃,Φ,Στ , γ,W )

=
∫ ∞

−∞
p(Z̃, β,Φ,Στ , γ,W )dβ

∝ exp
(
−1

2

[
W−1(Ẑ − Φ̂εW )T (Ẑ − Φ̂εW ) − ΞT

γ (W−1X̂T
γ X̂γ + Aγ)−1Ξγ

])
× |Aγ |1/2 exp

(
−1

2
[
tr(V0Σ−1

ε ) + bTγAγbγ
])

|W−1X̂T
γ X̂γ + Aγ |−1/2p(γ)

× |WΦΣτΦ|−n/2|Στ |−(v0+m+1)/2p(W ),
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where
Ξγ = (W−1X̂T

γ Ẑ − X̂T
γ Φ̂ε + Aγbγ).

Therefore, the posterior conditional distribution of γ is given by

p(γ|Z̃,Φ,Στ ,W ) ∝ exp
(
−1

2

[
bTγAγbγ − ΞT

γ (W−1X̂T
γ X̂γ + Aγ)−1Ξγ

])
× |Aγ |1/2|W−1X̂T

γ X̂γ + Aγ |−1/2p(γ). (3.17)

Posterior Conditional Distribution of W

Recall that the generalized inverse Gaussian distribution (GIG) is a three-parameter
family of continuous probability distributions with probability density function (see
page 1 of Jorgensen, 2012)

f(x) = (a/b)p/2

2Kp(
√
ab)

x(p−1)e−(ax+b/x)/2, x > 0,

where Kp is a modified Bessel function of the second kind, a > 0, b > 0, and p is a real
parameter. By (3.8) and (3.12), we have that

p(W |Z̃, β, Φ̃,Σε, γ)

∝ |W |−n/2 exp
(
− 1

2W (Ẑ − X̂γβγ − Φ̂εW )T (Ẑ − X̂γβγ − Φ̂εW ) −W

)
,

based on which,

W |Z̃, β,Σε, γ
iid∼ GIG(a, b, p),

a = 2 + Φ̂T
ε Φ̂ε, b = (Ẑ − X̂γβγ)T (Ẑ − X̂γβγ), p = 1 − n/2.

(3.18)

Posterior Conditional Distribution of Σα

Next we need to derive conditional posterior distribution of Σα where α ∈ {μ̃, δ̃, ι̃} in the
trend component and the seasonal component. Similarly, as the posterior conditional
distribution of Στ in the invert Wishart form in (3.15), the posterior distribution of Σα

is conditionally inverse Wishart distributed

Σα|Ỹ , α,W
iid∼ IWm

(
να + n, Vα + 1

W
AAT

)
, α ∈ {μ̃, δ̃, ι̃}, (3.19)

where A is the matrix of a collection of residues of each time series component.

4 Algorithms
Gibbs sampling is a Markov chain Monte Carlo (MCMC) algorithm for obtaining a
sequence of observations, which are approximated from a specified multivariate prob-
ability distribution. MCMC methods are to construct a Markov chain that has the
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desired distribution as its equilibrium distribution. One can draw samples of the de-
sired distribution by discarding the initial MCMC steps as “burn-in”, since the quality
of samples is an increasing function of the number of steps. In Algorithm 1, the posterior
distributions of the model are simulated by Gibbs sampling approach, in the way that
looping through the 7 steps yields a sequence of draws θ = (α,Σα, β,Φ,Στ , γ,W ) where
α ∈ {μ̃, δ̃, ι̃}, from a Markov chain with the stationary probability distribution p(θ|Y )
which is the posterior distribution of θ given Y .

Algorithm 1 Model Training.
Time series state components

1: Draw the latent state α from p(α|Ỹ ,Σα, β,Φ,Στ , γ,W ) where α ∈ {μ̃, δ̃, ι̃}, using
the posterior simulation algorithm from Durbin and Koopman (2002).

2: Draw time series state component parameters Σα from Σα
iid∼ p(Σα|Ỹ , α,W ) based

on the inverse Wishart distribution in (3.19).

Quantile regression component
3: Loop over i in an random order, draw each γi|γ−i, Z̃,Φ,Στ ,W , namely simulat-

ing γ
iid∼ p(γ|Z̃,Φ,Στ ,W ) in (3.17), using the stochastic search variable selection

(SSVS) algorithm from George and McCulloch (1997).
4: Draw β from β

iid∼ p(β|Ẑ,Φ,Στ , γ,W ) based on the multivariate normal distribution
in (3.14).

Error term
5: Draw Στ from Στ

iid∼ p(Στ |Z̃, β,Φ, γ,W ) based on the inverse Wishart distribution
in (3.15).

6: Draw Φ based on p(Φ|Z̃, β,Στ , γ,W ) in (3.16) using the Metropolis-Hastings Algo-
rithm.

7: Draw W from W
iid∼ p(W |Z̃, β,Σε, γ) based on the generalized inverse Gaussian

distribution in (3.18).

Algorithm 2 Joint Quantile Predictions.
1: Draw the next trend component αt+1 = (μ̃t+1, δ̃t+1, ι̃t+1), given current trend com-

ponent αt = (μ̃t, δ̃t, ι̃t) and variance-covariance parameters Σα = (Σμ̃,Σδ̃,Σι̃), by
(2.2) and (2.3).

2: Based on indicator variable γ, compute the regression component ξ̃t+1 given the
information about predictors at time t + 1, by (2.5).

3: Draw a random error ε̃t+1 in the multivariate asymmetric Laplace distribution by
(2.6), whose mean and variance are generated by expressions given in (2.15).

4: Sum up μ̃t+1, ι̃t+1, ξ̃t+1, and ε̃t+1 to generate predictions, by (2.1).
5: Sum up all the generated predictions and divide by the total number of effective

MCMC iterations to generate the joint quantile predictions.
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Given draws of model parameters and latent states from their posterior distributions,
we can draw samples from the posterior predictive distribution

p(Ŷ |Y ) =
∫

p(Ŷ |θ)p(θ|Y )dθ,

where Ŷ represents the set of values to forecast. Here, the posterior predictive distribu-
tion is not conditioned on parameter estimates or the inclusion/exclusion of predictors,
all of which have been integrated out. Algorithm 2 conducts joint quantile prediction,
where forecasts are generated by the Bayesian model averaging approach which pro-
vides a coherent mechanism to handle model uncertainty, by averaging the predicted
values from all the models generated in the MCMC model training. Through Bayesian
model averaging, we commit neither to any particular set of predictors which helps
avoid an arbitrary selection, nor to point estimates of their coefficients which prevents
overfitting.

5 Model Performance with Simulated Data
In this section, we demonstrate the model performance with simulated data generated
by three-dimensional target time series given in Section 5.1, in terms of selecting the
correct variables and accuracy in parameter estimation in Section 5.2, and forecast
performance of the model with different quantiles and different time series correlations in
Section 5.3. The AL likelihood is known to be very restrictive in modeling the underlying
error distributions and unlikely to be the true data generating likelihood (Yang et al.,
2016), so it is primarily used as a working likelihood in the Bayesian quantile regression
literature. Even though its posterior consistency for coefficient estimation has been
established by Sriram et al. (2013) under model misspecification, the validity of using
AL likelihood for prediction purpose still remains questionable. Hence, we use error
terms simulated by the AL likelihood for coefficient estimation and by the Gaussian
distribution for response prediction.

5.1 Generated Data

The simulated data is generated by the following three-dimensional model (i.e., m = 3)

ỹt = μ̃t + ι̃t + BT x̃t + ε̃t, (5.1)

where each time series has its own trend component, seasonal component, and regression
component. We will mainly uses the dataset size n = 500. The trend component μ̃t is
generated as follows:

μ̃t+1 =

⎡⎢⎣μ
(1)
t+1

μ
(2)
t+1

μ
(3)
t+1

⎤⎥⎦ =

⎡⎢⎣μ
(1)
t

μ
(2)
t

μ
(3)
t

⎤⎥⎦ +

⎡⎢⎣δ
(1)
t

δ
(2)
t

δ
(3)
t

⎤⎥⎦ +

⎡⎢⎣u
(1)
t

u
(2)
t

u
(3)
t

⎤⎥⎦ ,

⎡⎢⎣u
(1)
t

u
(2)
t

u
(3)
t

⎤⎥⎦ iid∼ N3

(⎡⎣0
0
0

⎤⎦ ,

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦)
.
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where its slope is generated as⎡⎢⎣δ
(1)
t

δ
(2)
t

δ
(3)
t

⎤⎥⎦ =

⎡⎢⎣0.04 + 0.6(δ(1)
t−1 − 0.04)

0.05 + 0.3(δ(2)
t−1 − 0.05)

0.02 + 0.1(δ(3)
t−1 − 0.02)

⎤⎥⎦ +

⎡⎢⎣v
(1)
t

v
(2)
t

v
(3)
t

⎤⎥⎦ ,

⎡⎢⎣v
(1)
t

v
(2)
t

v
(3)
t

⎤⎥⎦ iid∼ N3

(⎡⎣0
0
0

⎤⎦ ,

⎡⎣1 0 0
0 1 0
0 0 1

⎤⎦)
.

The seasonal component ι̃t is generated as follows:

ι̃t+1 =

⎡⎢⎣ι
(1)
t+1
ι
(2)
t+1
ι
(3)
t+1

⎤⎥⎦ =

⎡⎢⎣−
∑100

k=0 ι
(1)
t−k

−
∑70

k=0 ι
(2)
t−k

−
∑40

k=0 ι
(3)
t−k

⎤⎥⎦ +

⎡⎢⎣w
(1)
t

w
(2)
t

w
(3)
t

⎤⎥⎦ ,

⎡⎢⎣w
(1)
t

w
(2)
t

w
(3)
t

⎤⎥⎦ iid∼ N3

(⎡⎣1
1
1

⎤⎦ ,

⎡⎣0.5 0 0
0 0.5 0
0 0 0.5

⎤⎦)
.

The regression component BT x̃t is generated with 8 explanatory variables, at least one
of which has no effect on each target series with zero regression coefficient, as follows:

B =

⎡⎣ 2 4 −3.5 −2 0 0 −1.6 0
3 0 2.5 −3 0 −1.5 0 2

−2.5 0 −2 −1 3 2 0 4

⎤⎦T

,

x̃t =
[
xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8

]T
,

xt1
iid∼N (5, 2), xt2

iid∼ Pois(10), xt3
iid∼ Pois(5), xt4

iid∼N (−2, 5),

xt5
iid∼N (−5, 2), xt6

iid∼ Pois(15), xt7
iid∼ Pois(20), xt8

iid∼N (0, 10).

To examine the accuracy of variable selection and parameter estimation in Sec-
tion 5.2, we use the simulated data generated by the following MAL distributed error
term ε̃t

iid∼ALm(φε,Σε) according to (2.15) where, for τ = (τ1, τ2, τ3),

φε = Φφ̃τ , Σε = ΦΣτΦ = Φ(ΨτΣcorrΨτ )Φ,

Σcorr =

⎡⎣1 ρ ρ
ρ 1 ρ
ρ ρ 1

⎤⎦ , Φ =

⎡⎣0.7 0 0
0 0.6 0
0 0 0.9

⎤⎦ ,

φ̃τ =

⎡⎢⎢⎣
1−2τ1

τ1(1−τ1)
1−2τ2

τ2(1−τ2)
1−2τ3

τ3(1−τ3)

⎤⎥⎥⎦ , and Ψτ =

⎡⎢⎢⎢⎣
√

2
τ1(1−τ1) 0 0

0
√

2
τ2(1−τ2) 0

0 0
√

2
τ3(1−τ3)

⎤⎥⎥⎥⎦ .

(5.2)

To examine the prediction strength in Section 5.3, we use the simulated data generated
by the following normal distributed error term

ε̃t
iid∼ N3

(⎡⎣0
0
0

⎤⎦ ,

⎡⎣1 ρ ρ
ρ 1 ρ
ρ ρ 1

⎤⎦)
. (5.3)
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5.2 Model Training Performance
In this section, we are going to demonstrate the superior feature selection performances
of the QFSTS model with small datasets, using only 400 MCMC iterations including
200 discarded as burn-in. The left three plots in Figure 1 provide the feature selection
results for a dataset of 500 observations, generated by Model (5.1) with quantile τ =
(0.9, 0.9, 0.9) and pairwise correlation 0.7. The threshold inclusion probability was set as
0.8, i.e., ≥ 80% times a predictor was selected out of the (400− 200) MCMC iterations.
We can see that the selected features exactly match the model setup, where the value 1
means a feature was selected all the time out of the (400− 200) MCMC iterations. The
signs of selected variables also exactly match the model setup, and were marked with red
for positive and blue for negative. The right three plots of Figure 1 reveal that, for each
target series, only in a very small portion out of the (400− 200) MCMC iterations, the
model selected more variables. Further analyses with different quantiles, correlations,
and inclusion probabilities are provided in the Supplementary Material (Ning, 2023).

Figure 2 demonstrates the fast convergence and superior parameter estimation per-
formance, with datasets generated by Model (5.1) with quantile τ = (0.9, 0.9, 0.9),
pairwise correlation ρ = 0.7, and 7 dataset sizes (100, 200, 300, 400, 500, 600, 700), us-
ing only 400 MCMC iterations including 200 discarded as burn-in. The left three plots
provide the normalized estimation errors calculated as the

|(estimated value − true value)/true value|,

and the right three plots provide the standard deviations of estimation. We can see
that both the estimation errors and estimation standard deviations decrease fast as
the sample size increases. Similar superior model training performances for different
quantiles and correlations are provided in the Supplementary Material (Ning, 2023).

5.3 Forecast Performance
Quantile time series forecasting is the prediction of the distribution of a future value
of a time series. It is much more challenging than the time series mean or median fore-
cast which is already difficult given the additional time information. The QFSTS model
is a Monte Carlo-based algorithm for quantile prediction. The Monte Carlo samples
generate the empirical distribution, whose mean is the quantile prediction. The most
well-known quantile forecast algorithm that is publicly available, is the “auto.arima”
function for univariate time series analysis, in the “forecast” R package (Hyndman and
Khandakar, 2008). “auto.arima” automatically fits the best ARIMAX Model, which
is the most classical and popular time series model, according to either AIC, AICc,
or BIC value. Setting the “biasadj” option in the “auto.arima” function to “FALSE”,
whose default value is “TRUE” for mean prediction, gives the quantile prediction. There
are only 4 quantile values possible: 2.5%, 10%, 90%, and 97.5%. Therefore, based on
these 4 quantile values, we analyze the QFSTS model’s forecast performances. Figure 3
reports the forecast performances for three-dimensional target time series datasets of
500 observations, generated by (5.1) with fixed pairwise correlation ρ = 0.7 but dif-
ferent quantiles: τ = (0.025, 0.025, 0.025), τ = (0.1, 0.1, 0.1), τ = (0.9, 0.9, 0.9), and
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Figure 1: Feature selection results with simulated data. The 3-dimensional time series
dataset of 500 observations is generated by Model (5.1) with quantile τ = (0.9, 0.9, 0.9)
and pairwise correlation 0.7. The threshold inclusion probability was set as 0.8. Model
training used 400 MCMC iterations including 200 discarded as burn-in. The left three
plots ((a), (c), and (e)) provide the feature selection results whose X-axis represents the
empirical probability (for example, 1 means that variable was selected 200 times out
of the 200 MCMC iterations after burn-in), and whose Y-axis represents the variables
selected. The right three plots ((b), (d), and (f)) report the count distribution out of
these 200 iterations (Y-axis), where the X-axis stands for the count of selected variables
(for example, 5 in (b) corresponds to the 5 variable selected in (a)).
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Figure 2: Estimation errors and standard deviations of regression coefficients. The 3-
dimensional time series datasets were generated by Model (5.1) with quantile τ =
(0.9, 0.9, 0.9), pairwise correlation ρ = 0.7, and 7 dataset sizes (100, 200, 300, 400, 500,
600, 700), using only 400 MCMC iterations including 200 discarded as burn-in. The left
three plots ((a), (c), and (e)) provide the estimation errors of regression coefficients, and
the right three plots ((b), (d), and (f)) provide the standard deviations of regression
coefficients, for target series 1, 2, and 3, respectively.
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Figure 3: Cumulative absolute one-step-ahead prediction errors with simulated data for
different quantiles. The red colored line is the performance of the ARIMAX model gen-
erated by “auto.arima” function, and the blue colored line is the performance of the QF-
STS model. Three-dimensional time series datasets of 500 observations were generated
by Model (5.1) with pairwise correlation ρ = 0.7. Model training used 400 MCMC iter-
ations including 200 discarded as burn-in. Prediction error is measured by the quantile
loss function given in (2.11). Plots ((a), (b), (c), and (d)) provide cumulative prediction
errors for quantiles τ = (0.025, 0.025, 0.025), τ = (0.1, 0.1, 0.1), τ = (0.9, 0.9, 0.9), and
τ = (0.975, 0.975, 0.975), respectively.

τ = (0.975, 0.975, 0.975). The cumulative prediction error is calculated accumulatively
according to the quantile loss function given in (2.11), where this standard approach
can also be seen in Chen et al. (2013). We can see that the QFSTS model outperforms
“auto.arima” consistently in the tens steps of one-step ahead forecast.
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6 Conclusion
In this paper, we have proposed the QFSTS model for joint quantile analysis of cor-
related time series with dimension m > 1. The correlation matrix of multivariate time
series is usually very hard to estimate, while users of QFSTS do not need to evaluate
the correlation among series. Hence, running QFSTS for multiple series is simpler than
running it for time series one by one, with fewer user efforts involved. The IW prior
is commonly used as the prior for the covariance matrix. In the distributional sense,
the covariance matrix in the current setting is proportional to the correlation matrix.
Hence, given the challenging situation that we allow each time series to have its own
time series components (trend and season) and its own pool of predictors, we used the
IW prior for simplicity. For univariate time series (the variance is just one constant and
there is no correlation anymore), the current prior setup is not optimal but its proper
design is out of the scope of this paper.

QFSTS achieves accurate quantile feature selection utilizing the spike-and-slab
Bayesian prior setup, which uses the Bernoulli prior distribution for indicator vari-
ables. If no specific prior information on the initial inclusion probabilities of particular
variables is available, the Bernoulli prior distribution is a common default choice. Vari-
ant spike-and-slab modeling can be used instead, such as spike-and-slab being normal
distributions (George and McCulloch, 1993) or scale mixtures of normals (Ishwaran and
Rao, 2005). The QFSTS model uses the standard Metropolis-Hastings algorithm in the
MCMC model training while its speed and performance may be further improved with
advanced Metropolis-Hastings algorithms (Banterle et al., 2019; Sherlock et al., 2017;
Atchadé and Perron, 2005; Atchadé et al., 2011). As the first multivariate time series
model with joint quantile feature selection, the QFSTS model sheds light on this new
research area and outperforms the classical ARIMAX time series model consistently.

Probabilistic forecasts play a fundamental role in addressing the inherent uncertainty
in data, supporting decision-making under uncertainty, evaluating and refining forecast-
ing models, and enabling informed decision-making in various domains (Gneiting et al.,
2007). Our methodology is motivated by the asymmetric Laplace working likelihood.
It can also be extended to represent functional coefficients using basis representations,
allowing for the borrowing of strength from nearby locations and incorporating a global-
local shrinkage prior on the basis coefficients to achieve adaptive regularization (Liu
et al., 2020a,b). Also motivated by a working Laplace likelihood approach, the Bayesian
median autoregressive model proposed in Zeng and Li (2021) adopts a parametric model
bearing the same structure as autoregressive models by altering the Gaussian error to
Laplace, leading to a simple, robust, and interpretable modeling strategy for time series
forecasting. Lastly, we acknowledge that the QFSTS model produces point joint quan-
tile estimation, rather than joint interval predictions which is a challenging task that
we leave for future research.

Supplementary Material
Supplement to “Bayesian Feature Selection in Joint Quantile Time Series Analysis”
(DOI: 10.1214/23-BA1401SUPP; .pdf).

https://doi.org/10.1214/23-BA1401SUPP
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