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Grid-Uniform Copulas and Rectangle
Exchanges: Bayesian Model and Inference for a

Rich Class of Copula Functions∗

Nicolás Kuschinski† and Alejandro Jara‡

Abstract. Copula-based models provide a great deal of flexibility in modelling
multivariate distributions, allowing for the specifications of models for the marginal
distributions separately from the dependence structure (copula) that links them
to form a joint distribution. Choosing a class of copula models is not a trivial
task and its misspecification can lead to wrong conclusions. We introduce a novel
class of grid-uniform copula functions, which is dense in the space of all contin-
uous copula functions in a Hellinger sense. We propose a Bayesian model based
on this class which posterior distribution is strongly consistent and develop an
automatic Markov chain Monte Carlo algorithm for exploring the corresponding
posterior distribution. The methodology is illustrated by means of simulated data
and compared to the main existing approach.
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modelling, association modelling, multivariate density estimation.
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1 Introduction
One of the primary interests of statistical analysis of multivariate data is the study
of how random variables relate to each other. Among the various ways to express the
relationship between random variables, one of the more flexible ones is the use of a
marginals-copula representation, which provides a way to separate multivariate distri-
butions into their single variate marginals and a function which represents their asso-
ciation structure, the copula function (Nelsen, 2007; Smith, 2013; Joe, 2014). For any
d-variate distribution H : Rd → [0, 1] with d > 1 and marginals F1, F2, . . . , Fd, a copula
is a function C : Rd → [0, 1] such that

H(x) = C
(
F1(x1), F2(x2), . . . , Fd(xd)

)
,

where x = (x1, . . . , xd) ∈ R
d. Sklar’s theorem (Sklar, 1959; Faugeras, 2013; Nelsen,

2007) is a classical result which states that this function C exists for any multivariate

∗N. Kuschinski’s research is supported by ANID – Millennium Science Initiative Program –
NCN17_059 and Fondecyt 3210553 grant. A. Jara’s research is supported by ANID – Millennium
Science Initiative Program – NCN17_059 and Fondecyt 1220907 grant.

†Department of Statistics, Pontificia Universidad Católica de Chile, and Center for the Discovery
of Structures in Complex Data, Casilla 306, Correo 22, Santiago, Chile

‡Department of Statistics, Pontificia Universidad Católica de Chile, and Center for the Discovery
of Structures in Complex Data, Casilla 306, Correo 22, Santiago, Chile, atjara@uc.cl

c© 2023 International Society for Bayesian Analysis https://doi.org/10.1214/23-BA1396

https://bayesian.org/resources/bayesian-analysis/
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
mailto:atjara@uc.cl
https://doi.org/10.1214/23-BA1396


2 Random Grid-Uniform Copulas

distribution H, and that if H is continuous, C is unique. Copula functions are themselves
multivariate probability distributions supported on the unit hyper-cube and are such
that the single variate marginals are uniform (Nelsen, 2007).

Modeling phenomena with copulas involves specifying models for marginals F1, F2,
. . . , Fd, and for C(x) separately. Modeling Fi(xi) is a matter of modeling single variable
probability distributions, which is a well understood topic and that has been studied
with great depth in both frequentist and Bayesian contexts (see, e.g., Müller et al.,
2015). Our primary interest here is the modeling of the copula function C(x). There
is a large body of literature studying parametric copula models arising from standard
multivariate distributions such as the Gaussian and multivariate-t (Nelsen, 2007; Pitt
et al., 2006; Joe, 2014; Choroś et al., 2010; Smith, 2013). Some popular copula models
are members of the Archimedean family, which are single-parameter copulas satisfying

C(u1, . . . , ud | φ, θ) = φ−1(φ(u1 | θ) + · · · + φ(ud | θ) | θ
)
,

for a function φ(· | θ) with a single parameter, known as the generator function of
the Archimedean copula Nelsen (2007), where φ−1 is its inverse function. Archimedean
copulas have been used for both frequentist and Bayesian analyses in the literature
(McNeil and Nešlehová, 2009; Genest et al., 2011; Kaewsompong et al., 2020).

Choosing a class of copula models is not a trivial task and constraining the inference
to parametric copula models can lead to wrong conclusions, because it reduces our ability
to represent relationships between random variables. Motivated by these facts, different
flexible approaches have been discussed in the literature. Non-parametric approaches
for discrete data have been attempted in numerous ways, as described in Genest and
Nešlehová (2007) and Yang et al. (2019). In the context of continuous data, classical
nonparametric approaches can be traced back to Deheuvels (1979), and can be found in
Genest et al. (1995), Kauermann et al. (2013), Oh and Patton (2013), Oh and Patton
(2017), and Mukhopadhyay and Parzen (2020). The classical methods commonly rely on
the use of partial- or pseudo-likelihood, and do not allow for a proper quantification of
the uncertainties associated to the lack of knowledge of the marginal distributions. Fur-
thermore, these approaches cannot be employed for modelling the association structure
of latent variables in the context of hierarchical models. Approaches based on penalized
splines to model the copula function can be extended to allow for a proper uncertainty
quantification about unknowns and to be included in to more general modelling frame-
works. However, to the best of our knowledge, there are no formal guaranties that the
class of copula functions generated by this approach is sufficiently rich to ensure an
appropriate estimation of any copula function.

Flexible Bayesian approaches for copula functions can be found in Guillotte and
Perron (2012), Wu et al. (2013a), Grazian and Liseo (2016), Wu et al. (2013b), and
Ning and Shephard (2018). Guillotte and Perron (2012) proposed an interesting semi-
parametric Bayesian approach for bivariate copulas based on a finite-dimensional ap-
proximation. This approximation is structured from a partition of the unit interval
based of intervals of the same length [(i− 1)/m, i/m], where m is the number of inter-
vals and i ∈ {1, . . . ,m}. Their proposal is constructed using this partition and indicator
functions for the corresponding intervals. The density of the copula is constructed via
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a mixture of the cross products of the indicator functions, resulting in a locally uni-
form distribution over the unit square, parameterized by a doubly stochastic matrix.
Taking advantage of the properties of doubly stochastic matrices, the authors proceed
to develop both a conjugate Jeffreys prior and a Markov chain Monte Carlo (MCMC)
algorithm to sample from the posterior distribution. The approach is flexible but is
difficult to generalize to not equally-spaced partitions and higher dimensions because of
its reliance on the properties of doubly stochastic matrices.

Wu et al. (2013a) proposed a model based on mixtures of Gaussian copulas. A Gaus-
sian copula function is given by

C(u1 . . . ud) = ΦR

(
Φ−1(u1), . . . ,Φ−1(ud)

)
,

where ΦR is the CDF of a d-variate normal distribution with mean zero, variance one
and covariance matrix R, arising from the corresponding correlation function, and Φ is
the CDF of a standard normal distribution function. The authors claim that mixtures of
bivariate Gaussian copulas can approximate any continuous bivariate copula function.
Unfortunately, the Gaussian copula kernel is not rich enough to form a dense class.
For instance, the density function of a bivariate Gaussian copula has the property
that cR(u1, u2) = cR(u2, u1). Therefore, the density of a mixture of arbitrarily many
Gaussian copulas also has this feature and, thus, cannot approximate an asymmetrical
copula function, such as the asymmetrical t copula described by Church (2012). Wu
et al. (2013b) extended the idea of a mixture of copula functions to the class of skew-
normal copulas. However, there is no evidence that this class of copula functions is dense
in the space of all copula functions.

Grazian and Liseo (2016) proposed an estimation method for a functional of a multi-
variate distribution using a copula representation. The prior on the copula is constructed
by eliciting the prior on the functionals of interest and it is implied for the remaining ele-
ments of the copula function by the use of the exponentially tilted empirical likelihood.
The main advantage of their approach is the ease of elicitation, because it does not
require the prior elicitation about all aspects of the multivariate dependence structure.
However, it does not allow for posterior inferences about all aspects of the multivari-
ate dependence structure. Finally, Ning and Shephard (2018) employed Dirichlet-based
Polya trees models to propose a fully non-parametric Bayesian approach to modeling
copula functions in any number of dimensions and a method for conjugate posterior
simulation from the resulting posterior. This attractive result is, however, significantly
marred by the flaw that the simulations from the posterior distribution are not them-
selves copula functions.

In this paper, we introduce a novel class of grid-uniform copula functions, which is
dense in the space of all continuous copula functions. We propose a Bayesian model
based on this class that has appealing theoretical properties regarding support and
posterior consistency, and develop an automatic MCMC algorithm for exploring the
corresponding posterior distribution, allowing for the flexible modelling of continuous
joint distributions. The paper is organized as follows. In Section 2 we introduce the class
of grid-uniform copula functions and state its main properties, including its ability to
approximate any given continuous copula function. In Section 3 we propose a Bayesian
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model based on the class of grid-uniform copulas, study the behavior of the posterior
distribution under random sampling, and describe the MCMC algorithm. In Section 4,
we illustrate the behavior of the model by means of analyses of simulated data. A final
discussion concludes the article. The proofs of the theoretical results can be found in
Supplementary Material (Kuschinski and Jara, 2023).

2 Grid-Uniform Copulas
2.1 Definition

We begin by defining the class of copulas on which we develop our proposal. Let ρ be an
orthogonal grid of [0, 1]d. Specifically, let ρi be an ordered collection of points in [0, 1],
and set ρ = ρ1 ×· · ·×ρd, such that 1d ∈ ρ. Let νρ be the collection of sets formed by ρ,
which are indexed by their upper right (or higher dimensional equivalent) corner. Now,
let F be a probability measure defined on an appropriate space and B a measurable
set such that F (B) > 0. We denote by F |B to the restriction of F to B defined by
F|B (A) = F (A | B) = F (A ∩ B)/F (B). A probability distribution F on [0, 1]d is said
to be ρ-uniform, if for each set B ∈ νρ, such that F (B) > 0, the restriction of F to the
set B, F|B , is uniform on B.

Definition 1 (Grid-uniform copula). Let ρ be a grid on [0, 1]d. A distribution C on
[0, 1]d is a ρ-uniform copula if it is ρ-uniform and its one-dimensional marginal distri-
butions are uniform.

A grid-uniform copula can be completely described by specifying the grid ρ and the
probabilities for every B ∈ νρ. Hence, for each grid ρ, the space of grid-uniform copulas
over this grid are a compact finite dimensional domain. For a grid ρ and a distribution
C, we will use Cρ to denote the grid-uniform version of C, which assigns to each set
B ∈ νρ the probability assigned by C to that set, i.e., Cρ(B) = C(B) for every B ∈ νρ.
It is easy to see that if C is a continuous copula, then Cρ is also a grid-uniform copula
and that the CDFs of Cρ and C coincide for every y ∈ ρ.

2.2 Richness of Grid-Uniform Copulas

We now prove that the class of grid-uniform copulas is sufficiently rich to approximate
any arbitrary continuous copula function.

Theorem 1. Let C be an arbitrary copula which is absolutely continuous with respect
to Lebesgue measure. Then for every ε > 0, there exists a grid-uniform copula D such
that the Hellinger distance between D and C is smaller than ε, H(D,C) < ε.

None of the steps in the proof actually make use of the fact that C has uniform
marginals, and it can easily be extended to prove that grid-uniform distributions can
approximate any continuous distribution over a rectangular support.
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2.3 Measures of Association
In this section we provide the expression for two important measures of dependence for
grid-uniform copula models. Specifically, we provide the expression for Kendall’s tau
and Spearman’s rho, which are considered the best alternatives to the linear correlation
coefficient as a measure of dependence for non-elliptical distributions, for which the
linear correlation coefficient is inappropriate and often misleading.

Let C be a ρ-uniform copula function. Let C(i,j) be the bivariate marginal copula
of C for the variables in the coordinates i and j. Let a(i,k), k = 0, . . . ,mi, be the kth
element in ρi and b(j,l), l = 0, . . . ,mj , be the lth element in ρj . It is straightforward to
show that C(i,j) is a ρ(i,j)-uniform copula function, where ρ(i,j) = (ρi, ρj) and

C(i,j)((a(i,k−1), a(i,k)] × (b(j,l−1), b(j,l)]) =
∑

B∈S
(a(i,k),b(j,l))
i,j

C(B),

where S
(a(i,k),b(j,l))
i,j is the collection of sets in νρ such that ith coordinate of the index of

the set is a(i,k) and the jth coordinate of the index of the set is b(j,l). Spearman’s rho,
β, and Kendall’s tau, τ , for the variables in the coordinates i and j is given by

β = 3
mi∑
k=1

mj∑
l=1

(
a2
(i,k) − a2

(i,k−1)
)(
b2(j,l) − b2(j,l−1)

)
ck,l − 3,

and

τ = 4
mi∑
k=1

mj∑
l=1

(
a2
i,k − a2

(i,k−1)
)(
b2(j,l) − b2(j,l−1)

)
c2k,l − 1,

respectively, where

ck,l =
C(i,j)((ai,k−1, ai,k] × (bi,l−1, b(i,l)])
(a(i,k) − a(i,k−1))(b(j,l) − b(j,l−1))

.

2.4 Rectangle Exchanges
We now introduce a class of transformations on grid-uniform copulas referred to as
rectangle exchanges, which have the following important properties: (i) a rectangle ex-
change on a ρ-uniform copula produces another ρ-uniform copula, and (ii) given a grid
ρ, and two ρ-uniform copulas C and D, there is a finite sequence of rectangle exchanges
which can transform C into D.

Definition 2. Let ρ be a grid on [0, 1]d and C be a grid ρ-uniform copula function.
The function C∗ is the result of a rectangle exchange of C, if C∗ is constructed using
the following steps:

(1) Set C∗ = C, and pick i and j in the set {1, . . . , d}, such that i < j and the
cardinality of ρi and ρj is greater than or equal to 2. Also, for all k ∈ {1, . . . , d} \
{i, j} pick point xk ∈ ρk.
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(2) Pick a1, a2 ∈ ρi and b1, b2 ∈ ρj .

(3) Set
p(al,bm) = (x1, . . . , xi−1, al, , xi+1, . . . , xj−1, bm, xj+1, . . . , xd),

where l,m ∈ {1, 2}.

(4) Pick some ε in the interval[
max

{
−C

(
νρp(a1,b2)

)
,−C

(
νρp(a2,b1)

)}
,min

{
C
(
νρp(a1,b1)

)
, C

(
νρp(a2,b2)

)}]
.

(5) Set

C∗(νρp(a1,b1)

)
= C

(
νρp(a1,b1)

)
− ε, C∗(νρp(a1,b2)

)
= C

(
νρp(a1,b2)

)
+ ε,

C∗(νρp(a2,b1)

)
= C

(
νρp(a2,b1)

)
+ ε, and C∗(νρp(a2,b2)

)
= C

(
νρp(a2,b2)

)
− ε.

The rectangle exchange operation is illustrated in two-dimensions in Figure 1. Rect-
angle exchanges are a closed operation on grid-uniform copulas since they conserve the
uniformity of all marginals.

Lemma 1. Let G be ρ-uniform copula and G the resulting rectangle exchange of G.
Then G is also a ρ-uniform copula.

Another interesting property of grid-uniform copula functions is that starting from
an uniform distribution on [0, 1]d, it is possible to reach any given grid-uniform copula,
say C0, by doing certain type of operations. Specifically for a given grid-uniform copula
C, we will refer as a grid division on C, to the addition of a division along any of the
coordinates, such that the sets that are not divided retain their probabilities, and those
that are divided distribute their probability in proportion to their volume. In other
words, the resulting copula function arising from a grid division of C is identical to C,
but is mapped onto a more refined grid.

Lemma 2. Let U be a uniform distribution in [0, 1]d, and let C be an arbitrary grid-
uniform copula function. Then, there is a finite sequence of grid divisions and rectangle
exchanges which will transform U into C.

These results allow us to prove that via rectangle exchanges is possible to generate
the full space of grid-uniform copula functions.

Theorem 2. The C1 and C2 be two ρ-uniform copulas. There is a finite sequence of
rectangle exchanges to transform C1 into C2.

There is something surprising going on here. Intuition would lead us to believe that
rectangle exchanges would work for 2 dimensions, whereas higher dimensions would
require parallelepiped exchanges. However, the surprising fact is that the above theorem
is true regardless of the number of dimensions. In essence, the apparently very complex
problem of exploring the space of grid-uniform copulas is solved in any number of
dimensions by repeated transformations of the sort illustrated in Figure 1.
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Figure 1: Rectangle exchange – Illustration of a rectangle exchange for a ρ-uniform
bivariate copula function C, where ρ1 and ρ2 have 7 equally-spaced points. Panel (a)
illustrates step (1), where i and j are picked from {1, . . . , d}, and x3 is picked from ρ3.
Panel (b) illustrates step (2), where i, j ∈ {1, . . . , d} and b1, b2 ∈ ρj are picked and where
the rectangles to be exchanged are selected. Panel (c) illustrates step (3), showing the
assigned sets and the mass assigned to them by C. Panel (d) illustrates step (5), where
the mass of the new copula function C∗ is computed.

3 Bayesian Modeling and Inference Using Grid-Uniform
Copulas

Our ultimate objective is to use grid-uniform copulas to perform Bayesian statistical
inference. We state the components of the Bayesian model in this section. Assume
that we observe an independent and identically distributed (i.i.d.) sample of size n

from a d-variate continuous distribution H, y1, . . . ,yn | H
i.i.d.∼ H, where H(y) =

C(F1(y1), F2(y2), . . . , Fd(yd)), with F1, . . . , Fn being the marginal distributions of H,
and C is the corresponding copula function. We model C as a grid-uniform copula
function. Under the grid-uniform copula model, the log-likelihood function is given by:

	(C,F1, . . . , Fd | y1, . . . ,yn)

=
n∑

i=1

d∑
j=1

log
(
fj(yij)

)
+

n∑
i=1

|νρ|∑
j=1

log
(
Cρ(Bj)
λ(Bj)

)
× I{(F1(yi1),...,Fd(yid))∈Bj}(yi), (1)
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where Bj ∈ νρ, |νρ| is the cardinality of νρ, λ(B) is the Lebesgue measure of the set B,
IA(B) is the indicator function that takes the value 1 if B ∈ A, and 0 otherwise.

3.1 Grid-Uniform Prior Models

Let ρ be a grid on [0, 1]d. Let C0 be an arbitrary reference copula function and α > 0.
We propose prior models for grid-uniform copula functions of the form

π(C | ρ, α,C0) ∝ exp
{
−1

2α×D(C,C0)
}
× ICρ(C),

where D be a suitable distance for probability distributions, and Cρ is the space of ρ-
uniform copulas. Many choices for D could be considered. One choice that provides a
simple interpretation of the hyper-parameters is the squared-L2 distance. Let c0 and c
be densities for C0 and C, respectively. Let B1, . . . , Bp be the sets included in νρ. Under
the squared-L2 distance the grid-uniform prior model is given by

π(C | ρ, α,C0) ∝ exp
{
−α

2 ×
∫

[0,1]d

(
c(x) − c0(x)

)2
dx

}
× ICρ(C),

= exp
{
−α

2 ×
|νρ|∑
l=1

[∫
Bl

(
c(x) − c0(x)

)2
dx

]}
× ICρ(C),

∝ exp
{
−α

2 ×
|νρ|∑
l=1

[
−2cl

∫
Bl

c0(x)dx + c2l

]}
× ICρ(C), (2)

where cl =
∫
Bl

c(x)dx
λ(Bl) , with λ(A) being the Lebesgue measure of the set A. The prior

takes the form of a truncated |νρ|-variate normal random distribution, centered at the
ρ-uniform version of C0, C0,ρ, and precision matrix given by α× I|νρ|.

C0,ρ plays the role a centering parameter under the proposed prior and corresponds
to the prior mode. On the other hand, α plays the role of a precision parameter, since
as α → +∞, the prior variance var(π(C|ρ, α,C0)) → 0. Figure 2 illustrates the role of
the parameters of the prior model. The figure displays the value of the center and a
credible interval of the prior distribution of the copula density at different points of the
sample space.

The impact of α scales with the size of the sets in the grid, meaning that for fine
grids, α may have to be very large. To facilitate the prior elicitation process we consider
the parameterization α� = α

|νρ| . For purposes of calculation, we note that using C0,ρ
instead of C0 as a reference copula produces the exact same prior, and calculating the
prior using C0,ρ is much simpler, since its value is constant throughout each cell in the
grid.

Assigning D to the squared-L2 norm provides nicely interpretable parameters. How-
ever, it does not allow for the incorporation of prior information on the degree of smooth-
ness of the copula function. For continuous copulas, it is often reasonable to expect that
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Figure 2: Grid-uniform prior model – Center value (circle) and 95% equal-tail credi-
ble interval (vertical line) of the copula density evaluated at 25 equidistant points of
the bivariate sample space. The horizontal axis is merely the index of each of the 25
equidistant points, and the vertical axis is the value of the copula density at each point.
The results are shown for different values of α� = α

|νρ| . In all cases, the centering copula
model, C0, is a bivariate Gaussian copula function with correlation equals to 0.5. Panel
(a), (b), (c), and (d), provides the results for α� = 2, 20, 200, and 2,000, respectively.

the value of a copula density at a point is similar to the value at nearby points. Let
Vρ be a set containing the elements of νρ in a given order. Let W be a symmetric
matrix in which each entry W i,j encodes information about the spatial relationship of
the sets Vρ

i and Vρ
j . Finally, let DW be a diagonal matrix with DWi,i =

∑|νρ|
j=1 W i,j .

Borrowing ideas from models commonly used in spatial statistics and the nature of the
grid-uniform model, we propose to take

D(C,C0) =
|νρ|∑
i=1

|νρ|∑
j=1

(DW − γW )i,j
∫
Vρ

i

(
c(x) − c0(x)

)
dx

∫
Vρ

j

(
c(y) − c0(y)

)
dy,

where γ > 0. Under this distance, the grid-uniform prior is given by

π(C | ρ, α,W , γ, C0) ∝ exp
{
−α

2D(C,C0)
}
× ICρ(C),

= exp
{
−α

2
−−−−→
C − C0

T (DW − γW )−−−−→C − C0

}
× ICρ(C), (3)
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where −−−−→
C − C0 is the vector representation of {

∫
B

(c(x) − c0(x))dx : B ∈ νρ} corre-
sponding to the order induced by Vρ. Notice that the proposed prior corresponds to a
truncated Gaussian conditional autoregressive (CAR) model, which allows for spatial
correlation of nearby values, as specified by a smoothing parameter γ > 0. It is worth
noting that D is only a distance under certain conditions on W and γ (see, e.g., Banerjee
et al., 2014).

A popular option is to set W such that W i,j = 1
dij

, where dij is the distance between
the centroids of Vρ

i and Vρ
j (Schmidt and Nobre, 2018). Another option is to set W as an

adjacency matrix, where W i,j = 1 if the sets Vρ
i and Vρ

j are grid-neighbors (in the usual
intuitive sense), and W i,j = 0 otherwise. For practical purposes, the sparseness of the
adjacency matrix produces a prior which is faster to compute, and is a reasonable choice
under most circumstances. When W is the adjacency matrix, then (DW )i,i = |NVρ

i
|,

where NB is the collection of grid-neighbors of the set B and the distance reduces to
the following expression

D(C,C0) =
∑

B∈Vρ

|NB|
(∫

B

(
c(x) − c0(x)

)
dx

)2

− γ
∑

B∈Vρ

(∫
B

(
c(y) − c0(y)

)
dy

∑
A∈NB

∫
A

(
c(z) − c0(z)

)
dz

)
. (4)

Expressions for D as described above are not distances for all values of γ. To force D to
be a distance, we can pick γ ∈ ( 1

λ1
, 1
λn

), where λ1 and λn are the smallest and largest
eigenvalues of D−1/2

W WD
−1/2
W . As discussed by Banerjee et al. (2014, section 6.4.3.3),

the spatial correlation is low unless γ is close to 1. Because of this, a popular alternative
is to consider γ = 1, which is known as the Intrinsic CAR (ICAR) model. Under the
ICAR, D is given by

D(C,C0) =
|V ρ|∑
i=1

|Vρ|∑
j=1

Wi,j

(∫
Vρ

i

(
c(x) − c0(x)

)
dx−

∫
V ρ
j

(
c(y) − c0(y)

)
dy

)2

.

In addition, when W is the adjacency matrix, the distance reduces to

D(C,C0) =
∑
B∈νρ

∑
A∈NB

(∫
B

(
c(x) − c0(x)

)
dx−

∫
A

(
c(y) − c0(y)

)
dy

)2
.

In general, when γ = 1 the latter expression is not a distance, but only to a pseudo-
metric, since adding a constant to either c or c0 does not change the value of D(C,C0).
However, since C and C0 are both restricted to the space of ρ-uniform copulas, D does
define a distance on the corresponding domain. Finally, note that all of the prior models
share the algebraic structure of a truncated Gaussian distribution centered at Cρ

0 . In
fact, all but the ICAR are exactly truncated Gaussian distributions. Therefore, the
interpretation of C0 and α remains intact.
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3.2 On the Choice of Hyper-Parameters
The prior depends on the choice of the grid ρ. The grid plays an equivalent role to
the knots in the context of nonparametric regression based on splines. Rather than
attempting to optimize the choice of a grid of reduced size and “well” located divisions,
here we follow the approach proposed by Eilers and Marx (1996) in the context of
penalized spline regression. Specifically, we consider an equally spaced and fine grid,
along a penalization induced by an ICAR model, given in expression (3). The precise
spacing of the grid can be chosen in relation to the available computational resources.
We have found that on mid-range modern hardware (a 3.9 GHz processor) a good
posterior estimate for a 50 × 50 grid (2401 free sets in the grid) can be computed in
about 24 hours, whereas for a 10 × 10 grid (81 free sets) a posterior estimate can be
computed in about 2 minutes. This is due not only to the greater computational cost of
calculating the prior and likelihood functions, but also since a larger number of MCMC
iterations are required.

The parameters α� and C0 have clear interpretations, and when prior information
is available, it can be used to inform their choice. For situations when such informa-
tion is not readily available, we propose suitable defaults. In this setting, selecting a
single default C0 around which to center the prior is difficult because, once specified,
a single centering distribution may affect inference unduly. For instance, the use of the
independent copula is highly informative because the lack of dependence is itself an
extreme form of association structure. Rather than selecting a single centering copula
function, one option is to consider a mixture of grid-uniform copula models by allowing
the parameters of the centering copula function to be random. One possible choice is
to use the Gaussian copula family given by

C0,R(x) = ΦR

(
Φ−1(x1),Φ−1(x2), . . . ,Φ−1(xd)

)
,

parametrized by the correlation matrix R.

Choosing a prior for R is delicate since π(C|ρ, α,C0) is known only up to a propor-
tionality term, and this term depends on C0 (and hence on R). We can write out the
full prior for C as

π(C|α, ρ,R) = N(R) exp
{
−1

2α×D(C,C0,R)
}

where N(R) is a normalizing constant. By default, we consider a conditional prior for
R, such that π(R | α, ρ, C0) ∝ 1

N(R) . This choice is computationally convenient for
simulation, as described in Section 3.4. It is difficult to find a closed form expression
for this prior, but it is possible to characterize its behavior by means of simulation.
Figure 3 illustrates the form of the prior in the bivariate case by considering 10 × 10
and 20 × 20 grids. We observe that this prior does depend slightly on ρ and α, but the
overall distribution is not greatly affected by the changing to a grid that has four times
as many cells. A similar procedure could be done to observe the prior for R in a higher
dimensional case, but the results of this simulation of a prior over a high dimensional
correlation matrix are quite difficult to interpret. Section 3.4 describes the algorithm to
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Figure 3: Prior distribution for the correlation coefficient of the centering Gaussian
copula function. Panels (a), (c), and (e) display the results for an evenly spaced 10× 10
grid and with α� = 25, 100, and 400, respectively. Panels (b), (d), and (f) display the
results for an evenly spaced 20 × 20 grid and with α� = 25, 100, and 400, respectively.

perform this simulation in the general case, but since the prior is difficult to understand,
our implementation uses a fixed independent C0 in dimensions higher than 2.

It is also possible to use a similar structure to allow α to be random, but the
proportionality term for π(C|ρ, α,C0) also depends on α. A joint prior on α,R with no
closed form expression would be nearly impossible to interpret.

Finally, there is an important observation regarding the selection of the centering
copula, C0. The prior mode of the prior is not C0 itself but rather its ρ-uniform ver-
sion, C0,ρ. Thus, if two researchers select different C0 functions and these copulas match
up to their ρ-uniform version, the corresponding priors will be identical. The information
found in C0 and C0,ρ is usually similar when the grid ρ is sufficiently fine, and elicit-
ing C0 directly is generally easier. Nonetheless, the user should inspect the ρ-uniform
version of C0 to make sure that it does provide the desired prior information. Assume,
for instance, that a user select a parametric C0 based on the existing prior informa-
tion on Spearman’s correlation coefficient. Depending on the grid, C0 and its ρ-uniform
version do not necessarily have the same information on Spearman’s correlation coef-
ficient. Table 1 of the Supplementary Material (Kuschinski and Jara, 2023) illustrates
the differences between Spearman’s correlation coefficient for the original copula C0 and
its ρ-uniform version, for different degrees of refinement, different copula models, and
degrees of association. In all cases we observe that the differences are small, and that
they become closer as the grid is refined. Additionally, we observe that the differences
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are smaller when the correlation is lower and that the grid-uniform version of the copula
generally has a slightly lower correlation than the original copula function.

3.3 Posterior Consistency

We show that under mild conditions on the prior specification of the proposed model and
assuming the perfect knowledge of the marginal distributions, the posterior distribution
of the proposed model is strongly consistent to the ρ-uniform version of any continuous
copula function under simple random sampling.

Theorem 3. Suppose that y1, . . . ,yn | H i.i.d.∼ H, where

H(y) = C
(
F1(y1), F2(y2), . . . , Fd(yd)

)
,

with F1, . . . , Fn being known marginal distributions, and C is the corresponding copula
function of H. Let Π(· | y1, . . . ,yn) be a version of the posterior distribution for C
using a grid-uniform prior of the form

π(· | ρ, α,C0) ∝ exp
{
−1

2α×D(C,C0)
}
× ICρ(C),

where D be a suitable distance for probability distributions, α > 0, and C0 ∈ C, with
C being the space of all continuous copula functions and Cρ ⊂ C being the space of
ρ-uniform copula functions. Let Cρ be the grid-uniform version of C. Then, for every
ε > 0 and every C ∈ C,

Π(Nε,Cρ | y1, . . . ,yn) −−−−→
n−→∞

1,

H-almost surely, where Nε,Cρ = {Q ∈ C : KL(Q,Cρ) < ε}, where KL denotes the
Kullback-Leibler divergence given by KL(C ′, C) =

∫
[0,1]d c(x) log( c(x)

c′(x) )dx, where c and
c′ is a density of C and C ′ w.r.t. Lebesgue measure, respectively.

The previous result implies that if the true model is ρ-uniform, the posterior distri-
bution induced by the proposed model is strongly consistent at the truth. The result
also implies that if the true model is not ρ-uniform, the posterior distribution will con-
centrate the mass at the ρ-uniform version of the true model and it is not consistent
at the true model. The distance between the true model and its ρ-uniform version will
depend on the characteristics of the true model and of the assumed grid ρ. However, it
is possible to show that the thinner the grid the smaller the distance between the true
model and its ρ-uniform version. This is illustrated in Table 2 of the Supplementary
Material (Kuschinski and Jara, 2023), which shows the integrated squared differences
between the original copula and its ρ-uniform version, for different families of copula
functions and different degrees of association.

To arbitrarily increase the size of the gird, however, is not possible since the ex-
ploration of the posterior distribution becomes too demanding. To ensure the posterior
consistency at any continuous copula function, a prior distribution on the grid ρ has
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to be considered. By employing a prior on evenly spaced partitions, and under mild
conditions on the prior specification of the proposed model, the posterior distribution
of the proposed model is weakly consistent at any continuous copula function under
simple random sampling.

Theorem 4. Let y1, . . . ,yn | H i.i.d.∼ H, where H(y) = C(F1(y1), F2(y2), . . . , Fd(yd)),
with F1, . . . , Fn being known marginal distributions, and C is the corresponding copula
function of H. Suppose that C is absolutely continuous w.r.t Lebesgue measure, with
density c, and that fulfills the following conditions:

1. −∞ <
∫
c(x) log(c(x))dx < ∞,

2. There is B ∈ R and γ > 0 such that if c(x) > B and L2(x, x′) < γ then c(x′) > 1
for all x′ in the unit hypercube.

Let Π(· | y1, . . . ,yn) be a version of the posterior distribution for C using a grid-uniform
prior of the form

π(· | ρ, α,C0) ∝ exp
{
−1

2α×D(C,C0)
}
× ICρ(C),

and a prior π(ρ) for the d-dimensional grid of the form

π(ρ) = PrIξr (ρ),

where Pr > 0,∀r ∈ N with the property that
∑

r Pr = 1, and ξr is the r × r × r · · ·
evenly spaced d-dimensional grid, D is a suitable distance for probability distributions,
α ≥ 0, C0 a continuous copula function, and Cρ ⊂ C is the space of all ρ-uniform copula
functions. Then, for every weak neighborhood N of C,

Π(N | y1, . . . ,yn) −−−−→
n−→∞

1,

H-almost surely.

Furthermore, by considering a prior on evenly spaced partitions with a particular
tail behavior, the posterior distribution of the proposed model is strongly consistent at
any continuous copula function under simple random sampling.

Theorem 5. Let y1, . . . ,yn | H i.i.d.∼ H, where H(y) = C(F1(y1), F2(y2), . . . , Fd(yd)),
with F1, . . . , Fn being known marginal distributions, and C is the corresponding copula
function of H. Suppose that C is absolutely continuous w.r.t Lebesgue measure, with
density c, and that fulfills the conditions of Theorem 4. Let Π(· | y1, . . . ,yn) be a
version of the posterior distribution for C using a grid-uniform prior of the form

π(· | ρ, α,C0) ∝ exp
{
−1

2α×D(C,C0)
}
× ICρ(C),

and a prior π(ρ) for the d-dimensional grid of the form

π(ρ) = PrIξr (ρ),
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where Pr > 0,∀r ∈ N with the property that
∑

r Pr = 1, and ξr is the r × r × r · · ·
evenly spaced d-dimensional grid, D is a suitable distance for probability distributions,
α ≥ 0, C0 a continuous copula function, and Cρ ⊂ C is the space of all ρ-uniform copula
functions. Furthermore, let P̄l =

∑∞
r=l Pr, and assume Pr satisfies P̄l < pl

d+a for some
0 < p < 1, some a > 0 and large enough l. Then, for all ε > 0,

Π(Aε|y1, . . . ,yn) −−−−→
n−→∞

1,

H-almost surely, where Aε = {f : H(C, f) < ε} and H is the Hellinger distance.

An example of a sequence Pr which satisfies the conditions for Hellinger convergence
is Pr ∝ (1 − p)rdp for any 0 < p < 1, which is proportional to a geometric distribution
on the number of cells in the grid.

3.4 An Automatic MCMC Algorithm for a Fixed Grid Model

We propose a Metropolis-within Gibbs algorithm for exploring the posterior distribution
of the copula functions and the parameters associated with the marginal distributions.

Updating C Using a Random Rectangle Exchange as a Proposal

Rectangle exchanges provide us with a way to explore the space of ρ-uniform copulas.
This movement can be used to generate proposals in the context of an Metropolis-
Hastings (MH) algorithm. Let C

(b)
ρ be the grid uniform copula which corresponds to

the current state of the chain. Given, C
(b)
ρ , we propose the candidate C̃ρ using the

following random rectangle exchange:

a) Set C̃ρ = C
(b)
ρ and pick d1 and d2 randomly from the set {1, . . . , d}, and such

that d1 < d2. The precise law of this selection does not matter so long as it is
independent of C

(b)
ρ and every pair of coordinates has a positive probability of

being selected. In practice, we will select them uniformly.

b) Pick a1 and a2 from ρd1 and pick b1 and b2 from ρd2 . Also, for all k ∈ {1, . . . , d} \
{d1, d2}, pick xk ∈ ρk, and set

p(al,bm) = (x1, . . . , xi−1, al, xi+1, . . . , xj−1, bm, xj+1, . . . , xd),

where l,m ∈ {1, 2}. The precise law of these selections does not matter so long as
it is independent of C(b)

ρ and every rectangle along the selected coordinates has
positive probability of being selected. In practice, we will select them uniformly.

c) Pick ε uniformly in the interval[
max

{
−C

(
νρp(a1,b2)

)
,−C

(
νρp(a2,b1)

)}
,min

{
C
(
νρp(a1,b1)

)
, C

(
νρp(a2,b2)

)}]
.
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d) Set

C̃ρ

(
νρp(a1,b1)

)
= C(b)

ρ

(
νρp(a1,b1)

)
− ε, C̃ρ

(
νρp(a1,b2)

)
= C(b)

ρ

(
νρp(a1,b2)

)
+ ε,

C̃ρ

(
νρp(a2,b1)

)
= C(b)

ρ

(
νρp(a2,b1)

)
+ ε, and C̃ρ

(
νρp(a2,b2)

)
= C(b)

ρ

(
νρp(a2,b2)

)
− ε.

We denote by q(· | C(b)
ρ ) to the candidate generating distribution induced by random

rectangle exchange described by steps a)–d). An interesting property of this candidate
generating distribution is that it is symmetric, which simplifies the computation of
the acceptance probability. This is explained by the uniform selection of ε in the valid
interval. The MH acceptance probability of the candidate C̃ρ is given by

max
{
0, r

(
C̃ρ, C

(b)
ρ

)}
,

where

log
(
r
(
C̃ρ, C

(b)
ρ

))
= log

(
π(C̃ρ|ρ, α,C0)

)
− log

(
π
(
C(b)

ρ |ρ, α,C0
))

+ 	(C̃ρ, F1, . . . , Fd|y1 . . . yn) − 	
(
C(b)

ρ , F1, . . . , Fd|y1 . . . yn
)
,

= −α

2
(
D(C̃ρ, C0) −D

(
C(b)

ρ , C0
))

+
n∑

i=1

|νρ|∑
j=1

log
(
C̃ρ(Bj) − C

(b)
ρ (Bj)

λ(Bj)

)
I{(F1(yi1),...,Fd(yid))∈Bj}(yi),

= −α

2
(
D(C̃ρ, C0) −D

(
C(b)

ρ , C0
))

−
n∑

i=1

2∑
k=1

2∑
l=1

log
( C̃ρ(νρp(ak,bl)

) − C
(b)
ρ (νρp(ak,bl)

)
λ(νρp(ak,bl)

)

)
× I{(F1(yi1),...,Fd(yid))∈νρ

p(ak,bl)
}(yi).

Of note, if D is the squared-L2 distance then the term −α
2 (D(C̃ρ, C0) − D(C(b)

ρ , C0))
can also be further simplified to:

−α

2

( 2∑
k=1

2∑
l=1

λ
(
νρp(ak,bl)

)((
c̃ρ
(
νρp(ak,bl)

)
−c0

(
νρp(ak,bl)

))2−(
c(b)ρ

(
νρp(ak,bl)

)
−c0

(
νρp(ak,bl)

))2))
.

In practice, we have found that this MH behaves well, with acceptance rates around
23%.

Updating the Marginal Distributions

There is no single technique which will work efficiently for the updating of the param-
eters of all possible marginal distributions, and tuning the posterior sampler may be
difficult. However, there are some algorithms which are effective for a broad scope of
distributions, and that can do reasonably good posterior exploration without having
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to worry about tuning. A good starting point when parametric marginal distributions
are considered is the t-walk (Christen et al., 2010), which is a general purpose sampler
for parametric continuous distributions. The t-walk is a MH algorithm which adapts to
the scale of the target distribution and can sample well from most finite dimensional
continuous distributions without tuning.

The t-walk requires a support function for the parameters, an energy function, and
two starting points within the support. The energy function as required by the algo-
rithm is the negative log-density of the posterior distribution (up to a proportionality
constant). We write the marginal distributions corresponding to some parametric family
as F1(x1, θ1), F2(x2, θ2), . . . Fd(xd, θd) where θi is a set of parameters which defines the
ith marginal, with prior πi(θi). Then the energy function is

E(θ1, . . . , θd, C̃ρ) ∝ −	(C̃ρ, F1, . . . , Fd|y1, . . . ,yn)

− π(C̃ρ|ρ, α,C0) −
∑
i

πi(θi) −
∑
i

log
(
fi(yi|θi)

)
.

The prior for the copula does not depend on the marginal parameters, so it can be
dropped and we can use

E(θ1, . . . , θd, C̃ρ) ∝ −	(C̃ρ, F1, . . . , Fd|y1, . . . ,yn) −
∑
i

πi(θi) −
∑
i

log
(
fi(yi|θi)

)
.

For the support function, we know that rectangle exchanges assure us that C̃ is always
within the support, so we can define a support function exclusively on (θ1, . . . , θn) to fit
π1(θ1), . . . , πn(θn). Since the t-walk only moves (θ1, . . . , θd) it is not necessary to define
two starting points for Cρ. We only need two starting points for (θ1, . . . , θd), which can
– for instance – be simulated from the prior.

If Dirichlet process mixture models (see, e.g., Müller et al., 2015) are employed
for modeling the marginal distributions, the marginal algorithm of Ishwaran and James
(2001), which assume a finite-dimensional approximation to the nonparametric
marginals, can be easily adapted to our context.

Updating the Centering Copula Hyper-Parameter

When working with a hierarchical prior that establishes a prior distribution for C0 which
depends on R, updating R can be done by adding a kernel to the MCMC chain. To
update C0, we use a variation of the metropolized hit-and-run algorithm (Chen and
Dey, 1998), which makes proposals that are always valid correlation matrices.

In our specific case, we allow δ to be a pre-specified tuning parameter. We consider
values between 0.3 and 1.0, as discussed by Chen and Dey (1998). To update R, we
propose a move from R(i) to R(i+1) = R(i) + H , by picking H as follows:

(1) Let ξ(i) be the least eigenvalue of R(i).

(2) Pick a sequence of i.i.d. standard normal variables z1,2, z1,3, . . . zd−1,d.
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(3) Pick δ ∼ N(0, r2) truncated to (− ξ(i)
√

2 ,
ξ(i)
√

2 ).

(4) For i < j set hi,j = δzi,j∑d−1
j=1

∑D
l=j z2

j,l

. Also set hi,i = 0 for all i, and for i > j set
hi,j = hj,i. Set the matrix H = [hi,j ].

The acceptance probability is given by

max
{
0, r

(
R(i+1),R(i))},

where

log
(
r
(
R(i+1),R(i))) = log

(
π
(
C(i)|α(i), ρ,R(i+1)))− log

(
π
(
C(i)|α(i)ρ,R(i))),

= 1
2α

(i)(D(C,C0,R(i)) −D(C,C0,R(i+1))
)
.

Our prior is selected so that log(N(R))−log(N(R)) cancels and we are not hampered
by our inability to calculate it. Note that for a two dimensional copula, R depends only
the single dimensional correlation coefficient, r and the hit and run algorithm reduces
to a standard random walk Metropolis kernel (Robert and Casella, 2013).

4 Illustrations
We illustrate the behavior of the proposed model by means of the analysis of simu-
lated data. Functions implementing the MCMC algorithms employed in these analyses
were written in Julia and are available upon request to the authors and in a GitHub
repository.

4.1 Estimation of Parametric and Non-standard Copula Functions

To illustrate that the proposal model does not overfit the data when a parametric copula
model holds and that is able to capture deviations from the standard parametric models
with finite sample sizes, we consider bivariate models with Gaussian (0, 1) marginals,
under the following copula functions:

• Model 1: A Clayton copula with parameter θ = 3, given by Cθ(x1, x2) =
(max{u−θ + v−θ − 1; 0})−1/θ.

• Model 2: A Gaussian copula with correlation 0.5.

• Model 3: A copula arising from a mixture of two Gaussian distributions, both
with identity covariance matrix, and centered at (1, 1) and (−1,−1), respectively.

Figure 4 display the true models under consideration. For each model, we simulate a
single data set of size N = 500, 1,000, 5,000, and 10,000. For each simulated dataset
we fit our proposed model by considering a 50 × 50 grid, the hierarchically centered

https://github.com/tuerda/GUcopulas
https://github.com/tuerda/GUcopulas
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Figure 4: Posterior mean of the bivariate density function. Panel (a)–(d) show the results
for N = 500, 1,000, 5,000, and 10,000, respectively. Panel (e) displays the true model.
Model 1 (Clayton copula). Model 2 (Gaussian copula) Model 3 ((Copula of a Gaussian
mixture model).
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Figure 5: Posterior mean (point) and 95% credibility interval (vertical bar) for the
Hellinger distance to the true joint distribution, for different sample sizes (the horizontal
axis is the sample size). Panel (a) displays the results for Model 1 (Clayton copula).
Panel (b) displays the results for Model 2 (Gaussian copula). Finally, panel (c) displays
the results for Model 3 (a copula of a mixture of Gaussian distributions).

prior, with the ICAR correlation structure described in Section 3.1, and α� = 400. In
these analyses we assume the marginals distributions to be known. We create a Markov
chain of (conservative) of size 2,000,000 using the automatic algorithm described in
Section 3.4. We considered a burn-in period of 20,000 and a thinning of 1,000. Figure 4
show the posterior mean under the different models and sample sizes.

Figure 5 displays the posterior mean and 95% credibility intervals for the Hellinger
distance to the true model under the different models and sample sizes. The results show
that adequate estimates for complex true models can be obtained, even for reduced
sample sizes, and that when the copula model is simple, the proposed model does not
overfit the data. The results also show that the posterior mean gets closer to the true
model when the sample size increases and that the posterior distribution concentrates
around the true model as the sample size increases.

4.2 Estimation of a Four Dimensional Copula with Unknown
Marginals

We illustrate the model under a more difficult set of circumstances. Data was simulated
from a four dimensional distribution with a Gaussian copula and correlation matrix
reflecting different degrees of association, given by⎛⎜⎜⎝

1.0 0.4 0.6 0.7
0.4 1.0 0.7 0.3
0.6 0.7 1.0 0.2
0.7 0.3 0.2 1.0

⎞⎟⎟⎠ .

We considered different supports and types for the marginals distributions. Specifically,
for coordinate one, we considered mixture of Gaussian distributions given by 0.5 ×
N(0, 1)+0.5×N(3, 1). For the second coordinate we considered a log-normal distribution
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with location and scale parameters set to 0 and 1, respectively. For the third coordinate
we considered Gamma distribution with shape and scale parameter set to 5 and 9,
respectively. Finally, for the fourth coordinate, we considered a Beta distribution with
parameters 2 and 4.

We simulated a single realization of the data set and considered three sample sizes:
N = 1,000, 5,000, and 10,000. For each simulated dataset, inference was performed
under the ICAR prior and a 5× 5× 5× 5 grid. Posterior inference was performed using
the t-walk algorithm described previously, assuming the true marginal distributions with
unknown parameters, and flat priors on them. We considered a burn-in period of 10,000
and the chain was run until it produced an effective posterior sample of length 1,000.

Figure 1 of the Supplementary Material (Kuschinski and Jara, 2023) shows sum-
mary statistics of the posterior distribution of the Hellinger distance to the true copula
function for the different sample sizes. As expected, we observe that the posterior dis-
tribution concentrates the mass around the true copula function as the sample size
increases. Figure 6 shows the posterior inferences on the marginal distributions for the
different sample sizes. We observe that even under a complex marginal distribution,
the marginal estimation is close to the truth in all cases and that posterior distribution
concentrate the mass around the true density function as the sample size increases.

4.3 The Effect of Lack of Knowledge of Marginal Distributions

To illustrate the effect of lack of knowledge of marginal distributions on the quantifi-
cation of the uncertainty regarding the copula function estimation, we generated data
from bivariate Gaussian distribution. We simulated a single realization of the data set
and considered three sample sizes: N = 2,500, 5,000, and 10,000. For each simulated
dataset, inference was performed under the ICAR prior and a 20×20 grid. Furthermore,
we considered the following three settings:

• Setting 1: The copula was estimated along with the marginals. The marginals
were modeled as Gaussian, and estimated using a flat prior which was centered
around the true marginals. In particular the prior variance was set to 1 for all
parameters.

• Setting 2: The copula was estimated along with the marginals. The marginals
were modeled as Gaussian, and estimated using a concentrated prior which was
centered around the true marginal. In this case, the prior variance for the mean and
variance of each marginal was 10−4 and 10−6, respectively. This choice of prior
variance is similar to the posterior variance of the parameters in the previous
scenario, as estimated with sample size of 5,000.

• Setting 3: The marginals are assumed known and set equal to the truth.

• Setting 4: A two-step approach is considered. The marginals are first estimated
by using the empirical distribution of the data. This distribution is then treated
as the truth and the copula is estimated.
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Figure 6: Four dimensional copula with unknown marginals. Posterior mean (tick line)
and 95% point-wise credibility interval (grey band) for the marginal distribution. Panels
(a)–(c), (d)–(f), (g)–(i), and (j)–(l) display the results for coordinate 1, 2, 3, and 4,
respectively. Panels (a), (d), (g), and (j), (b), (e), (h), and (k), and (c), (f), (i), and
(l) display the results for N = 1,000, 5,000, and 10,000, respectively. In each figure, the
true marginal distribution is shown as a thin line.

Figure 7 shows summary statistics of the posterior distribution of the Hellinger
distance to the true copula function under the different estimation settings and sample
sizes. For sample sizes of 2,500 and 5,000, we observe that the whiskers of the box plot
progressively contract as more information about the marginals is known. For a sample
size of 10,000, enough marginal information is available in the sample that the four box
plots might represent samples from the same distribution. Of particular interest is the
fourth scenario, where the marginals are treated as known but an estimate is used in
place of the true marginals. In this situation, the whiskers are just as contracted as
in the oracle scenario, showing that the copula uncertainty has been under-estimated.
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Figure 7: Two dimensional copula model. Box plots summarizing the posterior distri-
bution of the Hellinger distance to the true copula function under different estimation
settings and sample sizes. For each sample size, four box plots are presented. From left
to right, the information about the posterior distribution of the Hellinger distance to
the true copula function is presented under Setting 1, 2, 3, and 4, respectively.

With 2,500 observations the error is greater than for the other scenarios. In this case,
it is reasonable to assume that this deviation is due to the estimation error.

We note that these results are for one random sample from one particular density,
and conclusions should be drawn with care. Nonetheless, these examples do show how
our model allows the user to properly account for the uncertainty associated with the
lack of knowledge of the marginal distributions and that even with a large sample sizes
and accurate estimation procedures for the marginal distributions, the posterior uncer-
tainty for the copula can be strongly underestimated if full joint inference is replaced
with point estimation of the marginal distributions.

4.4 A Comparison with Existing Approaches

We compared our proposal with the flat prior proposed by Guillotte and Perron (2012).
There are similarities between our model and their flat proposal. The model proposed by
Guillotte and Perron (2012) is a specific case of a grid-uniform copula, restricted to two
dimensions and with grids that are necessarily evenly spaced. When these conditions
hold, the models differs in way the prior probability mass is assigned. The work of
Guillotte and Perron (2012) focused mainly on reference priors, whereas our prior is
designed to share information on neighboring sets. We compare our proposal with the
flat prior proposed by Guillotte and Perron (2012) here. The flat prior of Guillotte and
Perron (2012) can be thought as a limiting case of our model when α −→ 0.
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We compare the models under settings considered by Guillotte and Perron (2012) in
the evaluation of their proposal. We consider a two dimensional problem, a 6×6 grid, and
a Gaussian, Gumbel and Clayton copula. We set the parameters of the different copula
models such that they imply a similar association structure for the two variables. In
particular, we set them such that they have the same Kendall’s τ , and consider τ = 0.05,
0.35, 0.50, and 0.64. We consider three sample sizes in the comparison, N = 30, N = 100,
N = 400, and N = 800.

We performed a Monte Carlo study, considering 100 replicates for each model and
sample size. For each data set we fit our proposal with the hierarchically centered prior,
the ICAR correlation structure described in Section 3.1, and α� = 40. The performance
of the models was evaluated by computing the mean integrated squared error between
the posterior mean and the true data generating copula model. The results are presented
in Table 3 of the Supplementary Material (Kuschinski and Jara, 2023).

The results illustrate that the proposed model outperforms the flat prior across the
board. As expected, the biggest differences between models are observed at small sample
sizes; the larger the sample size, the smaller the difference between models regardless
of the association structure. Furthermore, for a given sample size, our model tends to
produce better results than the flat prior as the level of association increases.

5 Concluding Remarks
Flexible inference of copula functions had mainly relied on partial likelihood or pseudo-
likelihood methods. This approach is useful in some cases. However, they do not allow
for a proper quantification of the uncertainties associated to the lack of knowledge of the
marginal distributions and cannot be employed for modelling the association structure
of latent variables in the context of hierarchical models. We have proposed a novel
and rich family of copula functions that can overcome these problems, the class of grid-
uniform copula functions. We prove that this class is dense in the space of all continuous
copula functions in a Hellinger sense.

We proposed a hierarchically centered prior distribution based on the proposed fam-
ily, borrowing ideas from spatial statistics, and that have appealing support and poste-
rior consistency properties. We have described a class of transformations on grid-uniform
copulas which is closed in the space of grid-uniform copula functions and that is able
to span the complete space of grid-uniform copula functions in finite number of steps,
starting from any point in the space. This family of transformations, referred to as
rectangle exchanges, is employed to develop an automatic MCMC algorithm for explor-
ing the corresponding posterior distribution. We have illustrated the behavior of the
proposal and compared it with the approach proposed by Guillotte and Perron (2012).
By considering similar simulation settings to the ones considered by Guillotte and Per-
ron (2012), we show that our proposal outperforms their flat model when the posterior
mean is the point estimator and mean integrated squared error is considered as a model
comparison criteria.

The proposed prior model can be extended in different ways. The current implemen-
tation of the proposal depends on a user-specified grid ρ. The size of the grid and the
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location of the points may have an important influence in the resulting model. For in-
stance, equally spaced grids can lead to over fitting of the copula function in areas where
few data points are “observed”. On the other hand, they can lead to under fitting in
areas where more data points are “observed”. The study of strategies for the estimation
of the optimal size and location of the grid is the subject of ongoing research.

The proposed model suffers from the curse of dimensionality. For a sample of size
1,000, for a grid-uniform prior with a 10×10 grid it takes only a few seconds to generate
a Markov chain of length 20,000 using the automatic MCMC algorithm and an i5
processor. We have also been able to use the proposed model in dimensions up to 10.
However, the implementation of the models in high dimensions and with fine grids
would result in an explosion of parameters that need to be updated, which makes the
implementation of this approach practically impossible. The study of marginal versions
of the model, where the copula probabilities are integrated out of the model is also
subject of ongoing research.

Finally, the extension of the model to handle mixed, discrete and continuous, vari-
ables and to copula regression problems, and the extension of the consistency results to
unknown marginal distributions is also subject of ongoing research.

Supplementary Material
Supplementary Material (DOI: 10.1214/23-BA1396SUPP; .pdf). In the Supplementary
Material (Kuschinski and Jara, 2023) we provide: Spearman’s correlation coefficient for
the original copula and ρ-uniform versions of different degrees of refinement, integrated
square differences between the original copula and ρ-uniform versions of it for different
degrees of refinement, mean integrated squared error for the posterior mean of the copula
function under our default hierarchical prior (proposal) and under the flat prior proposed
by Guillotte and Perron (2012), box plots summarizing the posterior distribution of the
Hellinger distance to the true copula function for different sample sizes, and proofs for
Lemmas 1–2, and Theorems 1–5.
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