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A Bayesian Sparse Factor Model with Adaptive
Posterior Concentration∗

Ilsang Ohn†, Lizhen Lin‡ and Yongdai Kim§

Abstract. In this paper, we propose a new Bayesian inference method for a high-
dimensional sparse factor model that allows both the factor dimensionality and the
sparse structure of the loading matrix to be inferred. The novelty is to introduce a
certain dependence between the sparsity level and the factor dimensionality, which
leads to adaptive posterior concentration while keeping computational tractability.
We show that the posterior distribution asymptotically concentrates on the true
factor dimensionality, and more importantly, this posterior consistency is adaptive
to the sparsity level of the true loading matrix and the noise variance. We also
prove that the proposed Bayesian model attains the optimal detection rate of
the factor dimensionality in a more general situation than those found in the
literature. Moreover, we obtain a near-optimal posterior concentration rate of the
covariance matrix. Numerical studies are conducted and show the superiority of
the proposed method compared with other competitors.
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1 Introduction
In this paper, we propose a novel Bayesian method for learning a high-dimensional
sparse linear factor model and study asymptotic concentration properties of the pos-
terior distribution. We consider the following linear factor model where p-dimensional
random vectors Y1, . . . ,Yn are distributed as

Yi|(Zi = zi)
ind∼ N(Bzi, ψI), Zi

iid∼ N(0, I) (1.1)

for i ∈ [n] with B representing a p × ξ factor loading matrix, ψ > 0 a noise variance
and Zi a ξ-dimensional (latent) factor related to datum Yi, where ξ ∈ {1, . . . , p − 1}.
Under this model, the marginal distribution of the data Y1, . . . ,Yn is given by

Yi
iid∼ N(0,Σ), Σ := BB� + ψI.
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Therefore, correlations among the observed variables in each Yi in the above factor
model are explained by a low rank matrix BB� which leads to a substantial but efficient
reduction of the model complexity. The factor model has been used in a broad range of
high-dimensional inference tasks including covariance estimation (Fan et al., 2008, 2011,
2018b), linear regression (Bai and Ng, 2006; Kneip and Sarda, 2011; Stock and Watson,
2002), multiple testing under arbitrary dependence (Fan et al., 2012, 2018a; Leek and
Storey, 2008) and other supervised learning tasks (Fan et al., 2017; Silva, 2011).

For high-dimensional data where the dimension p is much large than the sample size
n, we need a low dimensional structure on B to have a consistent estimator and sparsity
is a popularly used condition, which assumes that true loading matrix B� is sparse in
the sense that only few entries of B� is nonzero and the other entries are zero. There
are various Bayesian models for sparse linear factor models including Bhattacharya and
Dunson (2011); Srivastava et al. (2017); Xie et al. (2022); Ning (2021).

Along with considering the sparsity, determining the factor dimensionality ξ is an
important and practical topic in factor modeling. From a theoretical point of view, an
appropriate estimation of the factor dimensionality is required to optimize the bias-
variance trade-off in a factor model. The factor dimensionality is also of practical in-
terest, especially when it has a physical interpretation e.g., the number of interacting
pathways in genomics (Carvalho et al., 2008) and the number of personality traits in
psychology (Caprara et al., 1993).

Frequentist approaches typically adopt a two-step procedure where the factor dimen-
sionality is chosen or estimated before estimating the parameters in the model. Many
consistent model selection methods have been proposed, which fit the factor models for
different values of ξ and select the best ξ based on their choice of model selection crite-
ria (Bai and Ng, 2002, 2007). Alternatively, the eigenvalues of the empirical covariance
or correlation matrix can be used to estimate the factor dimensionality. Several proce-
dures related to this approach have been proposed and yielded consistency (Ahn and
Horenstein, 2013; Fan et al., 2020; Lam and Yao, 2012; Onatski, 2010). The estimation
of the factor dimensionality for high-dimensional sparse factor models has also been
considered by Cai et al. (2013, 2015).

On the Bayesian side, prior distributions which put prior mass on ξ directly have
been popularly used to infer the factor dimensionality. Examples are the spike and slab
prior with the Poisson prior on ξ (Pati et al., 2014) and spike and slap priors with the
Indian buffet process (IBP) (Chen et al., 2010; Knowles and Ghahramani, 2011; Rockova
and George, 2016; Ohn and Kim, 2022). Recently, a few works have provided theoretical
results for the posterior distribution of the factor dimensionality under nonparametric
priors. Rockova and George (2016) considered a spike and slab prior with the one-
parameter IBP and proved that the posterior probability of the factor dimensionality
being upper bounded by a certain quantity converges to 1. But the upper bound is
much larger than the true factor dimensionality. Ohn and Kim (2022) derived posterior
consistency of the factor dimensionality under a spike and slab prior with the two-
parameter IBP. However, their result is nonadaptive in the sense that the choice of
hyperparameters of the prior distribution relies on the information or knowledge of the
true sparsity of the loading matrix, which is unknown in practice.
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Another promising theoretical result was provided by Gao and Zhou (2015). The
authors studied the Bayesian factor model in the context of sparse principle component
analysis (PCA) in which the prior distribution concentrates its mass on the orthogonal
loading matrix, i.e., B�B is diagonal, and established the adaptive posterior consistency
of the factor dimensionality. However, the orthogonal constraint makes it hard to com-
pute posterior distribution and Gao and Zhou (2015) only succeeded in implementing
a posterior sampler for the factor model with a one-dimensional factor i.e., ξ = 1.

We propose a novel Bayesian model that overcomes the theoretical and practical
limitations of the existing Bayesian approaches. A key feature of the proposed Bayesian
model is that the sparsity and the factor dimensionality are negatively correlated under
the prior distribution, and this a priori negative correlation between them helps to pre-
vent overestimating the true factor dimensionality. This is a critical difference between
the proposed prior and the widely used IBP-type priors. Yet, posterior computation
can be carried out through a simple and efficient Monte Carlo Markov chain (MCMC)
algorithm. Our numerical studies show that the developed MCMC algorithm can apply
to high-dimensional data without many hampers.

We thoroughly investigate the theoretical properties of the posterior distribution of
the proposed Bayesian model. We prove that the posterior distribution of the factor
dimensionality converges to the true one. In particular, we prove that the proposed
Bayesian model attains the optimal detection rate for the eigengap (i.e., the size of
the smallest eigenvalue of the low rank part B�(B�)� of the true covariance matrix
Σ� = B�(B�)� + ψ�I) for the consistency of the factor dimensionality. We also show
that the posterior distribution of the covariance matrix concentrates around the truth at
a near optimal rate. The novelty of our results lies in that it does not require any prior
knowledge of the true sparsity and noise variance and hence all the optimal theoretical
properties of the posterior are adaptive to the sparsity and noise variance.

It should be noted that the proposed Bayesian model has theoretical advantages
over not only other Bayesian factor models but also existing frequentist’s estimators
of the factor dimensionality. The estimator of Cai et al. (2013) is adaptive to the true
sparsity but requires a larger detection rate for the eigengap than the optimal one. On
the other hand, the estimator of Cai et al. (2015) achieves the optimal detection rate
but is not adaptive to the true sparsity. Moreover, both estimators assume the known
noise variance, which limits their applicability.

The rest of the paper is organized as follows. In Section 2, we introduce the proposed
prior distribution and develop an efficient MCMC algorithm for sampling from the
posterior distribution. In Section 3, asymptotic properties of the posterior distribution
are derived. In Section 4, we conduct simulation studies and real data analysis. Section 5
concludes the paper.

1.1 Notation
Let R, R+ and N be the sets of real numbers, positive numbers and natural numbers,
respectively. Let 0 and 1 denote vectors of 0’s and of 1’s, respectively, where the dimen-
sions of such vectors can differ according to the context. For a positive integer p, we let
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[p] := {1, 2, . . . , p}. For a real number x, �x� denote the largest integer less than or equal
to x and �x� denote the smallest integer larger than or equal to x. For two real numbers
a and b, we write a ∨ b := max{a, b} and a ∧ b := min{a, b}. For two positive sequences
{an}n∈N and {bn}n∈N we write an � bn or equivalently bn � an if there exists a positive
constant C > 0 such that an ≤ Cbn for any n ∈ N. Moreover, we write an � bn if both
an � bn and an � bn hold. We denote by 1(·) the indicator function.

For a set S, |S| denotes its cardinality. For a p-dimensional vector β := (βj)j∈[p],
let ‖β‖r := (

∑p
j=1 |βj |r)1/r for r ≥ 1 and ‖β‖0 :=

∑p
j=1 1(βj �= 0). For a set S ⊂

{1, . . . , p}, define β[S] := (βj)j∈S . For a p× q-dimensional matrix A := (ajk)j∈[p],k∈[q],
we denote the spectral norm of the matrix A by ‖A‖ and the Frobenius norm by
‖A‖F, that is, ‖A‖ := supx∈Rq :‖x‖2=1 ‖Ax‖2 and ‖A‖F :=

√
Tr(A�A). Let ‖A‖1 be

the vector �1 norm of A, i.e., ‖A‖1 :=
∑p

j=1
∑q

k=1 |ajk|. For sets S ⊂ [p] and K ⊂ [q],
we let A[S,K] := (ajk)j∈S,k∈K which is the submatrix of A taking the rows in S and
columns in K. For notational simplicity, we write A[:,K] := A[[p],K] and A[S,:] := A[S,[q]].
Furthermore, let A[j,:] := A[{j},:] and A[:,k] := A[:,{k}], which denote the j-th row and
k-th column of A, respectively. We let λ1(Σ) ≥ λ2(Σ) · · · ≥ λp(Σ) be the ordered
eigenvalues and |Σ| be the determinant of a p× p-dimensional matrix Σ. Let Sp

++ be a
set of p× p symmetric positive definite matrices.

For a given probability measure G, let PG denote the probability or the expectation
operator under the probability measure G. We denote by pG the probability density
function of G with respect to the Lebesgue measure if exists. For convenience, we write
PΣ := PN(0,Σ) and pΣ := pN(0,Σ) for a normal distribution N(0,Σ). For n ∈ N, let P(n)

G

be the probability or the expectation under the product measure and, if exists, p(n)
G its

density function.

2 Proposed prior and MCMC algorithm
In this section, we design a novel prior tailored for the loading matrix in a factor model
and develop a computationally efficient MCMC algorithm for sampling the posterior
distribution.

2.1 Prior distribution

The proposed prior on the loading matrix first samples the “sparse structure” of the
loading matrix and then samples nonzero elements. Let u := (u1, . . . , up)� ∈ Δp :=
{0, 1}p \ {0} and, for a positive integer q ∈ N we have chosen, v := (v1, . . . , vq)� ∈
Δq := {0, 1}q \ {0}. They are latent indicator variables that determine nonzero rows
and columns of the loading matrix B, respectively. Note that the sparsity of columns
determines the factor dimensionality ξ, i.e., ξ = ‖v‖0 and q is a pre-specified upper
bound of the factor dimensionality. We impose the prior distribution on u and v such
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that

Π(u,v) = QA(‖u‖0, ‖v‖0)∑
u′∈Δp

∑
v′∈Δq

QA(‖u′‖0, ‖v′‖0)
1(u∈Δp,v∈Δq)

with QA(ω, ξ) := QA,p,q,n(ω, ξ) := 1(
p
ω

)(
q
ξ

) exp
(
−Aωξ log(p ∨ n)

) (2.1)

for some A > 0. Under this prior distribution, the non-sparsity ω = ‖u‖0 and the factor
dimensionality ξ = ‖v‖0 are negatively correlated in the sense that ω becomes smaller
when ξ is large and vice versa. Note that ‖u‖0 and ‖v‖0 are negatively correlated in the
proposed prior (2.1), which sharply contrasts with existing IBP-type priors (Rockova
and George, 2016; Ohn and Kim, 2022) that assume the independence of ‖u‖0 and ‖v‖0.
The IBP-type priors, however, are known to have the posterior consistency only when
the true sparsity is known. We devise the prior (2.1) to achieve an optimal posterior
concentration rate even when the true sparsity is unknown.

Conditional on u and v, we then impose the prior distribution of the loading matrix
B such that

Π(B ∈ B|u,v) =
∫
B

p∏
j=1

q∏
k=1

[
δ0(βjk)

]1−ujvk
[
pLap(1)(βjk)

]ujvk
dβjk (2.2)

for any measurable set B ⊂ R
p×q, where δ0 denotes the Dirac-delta function at 0

and Lap(1) does the Laplace distribution with scale 1. That is, independently for each
loading βjk, we consider a spike and slab type prior distribution with the Dirac spike
and Laplace slab. The use of the Laplace slab, which is more diffused than the normal
distribution, is commonly used in Bayesian sparse factor models (Rockova and George,
2016; Xie et al., 2022; Ning, 2021; Ohn and Kim, 2022) in order to reduce bias in the
estimation of large loadings.

Lastly, we consider the inverse Gamma prior distribution for ψ such that

Π(ψ ∈ B′) = PIG(a)(ψ ∈ B′). (2.3)

for any measurable set B′ ⊂ R, where IG(a) with a := (a1, a2) ∈ R
2
+ denotes the inverse

gamma distribution with shape a1 and rate a2.

The proposed prior is carefully designed to attain the posterior consistency of the
factor dimensionality adaptively to the sparsity, therefore we call the prior defined
through (2.1), (2.2) and (2.3) the adaptive spike and slab (AdaSS) prior.

2.2 Posterior computation

In this section, we develop an MCMC algorithm to compute the posterior distribution
of the parameters u := (uj)j∈[p], v := (vk)k∈[q], B := (βjk)j∈[p],k∈[q], ψ and the latent
factors Z1, . . . ,Zn. We first introduce additional notations. Let Yij be the j-th element
of Yi and Zik be the k-th element of Zi. Let S := {j ∈ [p] : uj = 1} and K := {k ∈ [q] :
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vk = 1}. We use the notation f(Y |X = x) to denote the conditional density of Y given
X = x.

To make posterior sampling of the factor loading βjk easy, we employ the scale
mixture representation of the Laplace distribution. Note that if βjk|τjk ∼ N(0, τjk) and
τjk ∼ Exp(1/2), then marginally we have βjk ∼ Lap(1), where Exp(1/2) stands for the
exponential distribution with mean 2. In the MCMC algorithm, we introduce auxiliary
scale parameters τjk for j ∈ [p] and k ∈ [q].

Then a single iteration of our proposed MCMC sampler goes as follows.

Sample βjk for j ∈ [p] and k ∈ [q]: We sample βjk from

βjk|− ∼
{
N(β̂jk, τ̂jk) if uj = 1 and vk = 1
δ0 otherwise ,

where

β̂jk := τ̂jk

⎧⎨⎩ψ−1
n∑

i=1
Zik

(
Yij −

∑
h∈[q]:h�=k

Zihβjh

)⎫⎬⎭ (2.4)

τ̂jk :=

⎛⎝ψ−1
n∑

i=1
Z2
ik + τ−1

jk

⎞⎠−1

. (2.5)

Sample τjk for j ∈ [p] and k ∈ [q]: We sample τjk from

τjk|− ∼
{
GIG(1, β2

jk,
1
2 ) if uj = 1,

Exp(1
2 ) otherwise,

(2.6)

where GIG(a, b, c) denotes the generalized inverse Gaussian distribution with density
pGIG(a,b,c)(z) ∝ zc−1e−(az+b/z)/21(z > 0).

Sample uj for j ∈ [p]: If S \ {j} = ∅, we set uj = 1. Otherwise, we sample uj from
Bernoulli(ρrow

j /(1 + ρrow
j )) with

ρrow
j := Π(uj = 1|−)

Π(uj = 0|−)

= QA(|S \ {j}| + 1, |K|)
QA(|S \ {j}|, |K|)

∏n
i=1 f(Yi|uj = 1,v,Tj,K,B[−j,:], ψ,Zi)∏n

i=1 f(Yi|uj = 0,B[−j,:], ψ,Zi)

= (p ∨ n)−A|K|

(
p

|S\{j}|
)(

p
|S\{j}|+1

)
×

∫ ∏n
i=1 f(Yi|B, ψ,Zi)

∏q
k=1

{
pN(0,τjk)(βjk)

}vk {
δ0(βjk)

}1−vk dβjk∏n
i=1 f(Yi|B[j,:] = 0,B[−j,:], ψ,Zi)
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= (p ∨ n)−A|K| |S \ {j}| + 1
p− |S \ {j}|

√
|T̂j,K|
|Tj,K|

exp
(

1
2 β̂

�
j,KT̂−1

j,Kβ̂j,K

)
, (2.7)

where B[−j,:] := B[[p]\{j},:], Tj,K := diag((τjk)k∈K), T̂j,K := diag((τ̂jk)k∈K) and
β̂j,K := (β̂jk)k∈K.

Sample vk for k ∈ [q]. If K \ {k} = ∅, we set vk = 1. Otherwise, we sample vk from
Bernoulli(ρcol

k /(1 + ρcol
k )) with

ρcol
k := Π(vk = 1|−)

Π(vk = 0|−)

= QA(|S|, |K \ {k}| + 1)
QA(|S|, |K \ {k}|)

∏n
i=1 f(Yi|vk = 1,u,TS,k,B[:,−k], ψ,Zi)∏n

i=1 f(Yi|vk = 0,B[:,−k], ψ,Zi)

= (p ∨ n)p−A|S|

(
q

|K\{k}|
)(

q
|K\{k}|+1

)
×

∫ ∏n
i=1 f(Yi|B, ψ,Zi)

∏p
j=1

{
pN(0,τjk)(βjk)

}uj {
δ0(βjk)

}1−uj dβjk∏n
i=1 f(Yi|B[:,k] = 0,B[:,−k], ψ,Zi)

= (p ∨ n)−A|S| |K \ {k}| + 1
q − |K \ {k}|

√
|T̂S,k|
|TS,k|

exp
(

1
2 β̂

�
S,kT̂−1

S,kβ̂S,k

)
, (2.8)

where B[:,−k] := B[:,[q]\{k}], TS,k := diag((τjk)j∈S), T̂S,k := diag((τ̂jk)j∈S) and
β̂S,k := (β̂jk)j∈S .

Sample Zi for i ∈ [n]: We sample Zi := (Zik)k∈[q] from

(Zik)k∈K|− ∼ N
(
α̂�

KYi, Ξ̂K
)

(Zik)k∈[q]\K|− ∼ N (0, I) ,

where

α̂K := ψ−1Ξ̂KB�
[:,K] (2.9)

Ξ̂K :=
(
ψ−1B�

[:,K]B[:,K] + I
)−1

. (2.10)

Sample ψ: We sample ψ from

ψ|− ∼ IG

⎛⎝a1 + np

2 , a2 + 1
2

n∑
i=1

p∑
j=1

(
Yij −

∑
k∈K

Zikβjk

)2
⎞⎠ .

We provide several remarks on possible extensions of our Bayesian factor models.
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Remark 1 (Extension to heterogeneous noise variances). The AdaSS prior can be
easily modified for a factor model with heterogeneous noise variances, under which the
covariance matrix of the observed variable Yi is decomposed as Var(Yi) = BB� + Ψ
with Ψ := diag(ψ1, . . . , ψp). In this situation, a standard choice of the prior distribution
on Ψ is a product of the inverse gamma distributions, that is,

ψj
ind∼ IG(aj)

for some aj := (aj1, aj2) ∈ R
2
+ for j ∈ [p]. Then the conditional posterior of ψj is given

by

ψj |− ∼ IG

⎛⎜⎝aj1 + n

2 , aj2 + 1
2

n∑
i=1

⎛⎝Yij −
∑
k∈K

Zikβjk

⎞⎠2
⎞⎟⎠ .

For posterior sampling of other parameters, calculations given in (2.4)-(2.10) are modi-

fied as β̂jk := τ̂jk

{
ψ−1
j

∑n
i=1 Zik

(
Yij−

∑
h∈[]:h�=k Zihβjh

)}
, τ̂jk :=

(
ψ−1
j

∑n
i=1 Z

2
ik+τ−1

jk

)−1
,

α̂K :=Ξ̂KB�
[:,K]Ψ−1 and Ξ̂K :=

(
B�

[:,K]Ψ−1B[:,K]+I
)−1

, respectively.

Remark 2 (Extension to correlated factors). The factor model we investigated assumes
that all components of the latent factor are independent. A more general model would
be the correlated factor model such that Yi|(Zi = zi)

ind∼ N(Bzi, ψI) and Zi
iid∼ N(0,Σz)

for some Σz ∈ Sq
++, and our AdaSS prior can be easily modified for this model. If we

impose the inverse Wishart prior IW(A, ν) with scale matrix A ∈ Sq
++ and the degrees

of freedom ν > 0 on Σz, then we can sample Σz from the conditional posterior

Σz|− ∼ IW
(
A +

n∑
i=1

ziz�i , ν + n
)
,

while the other posterior sampling schemes remain the same. Unfortunately, the theo-
retical results in this paper could not be applied directly to the correlated factor model
since the correlated factor does not guarantee the required sparsity pattern of the load-
ing matrix to achieve optimal posterior concentration rates.

Remark 3 (Post-processing for estimating loading matrices). The loading matrix B is
not identifiable since for any q× q orthogonal matrix Q with QQ� = I the transformed
loading matrix BQ yields the exact same likelihood as that of B. Consequently, we
need additional effort if we are interested in estimating the loading matrix. A number
of methods have been proposed to resolve this identifiability issue for Bayesian factor
analysis. One approach is to impose a prior distribution on the loading matrix satisfying
certain identifiability constraints such as the positive diagonal, lower triangular (PLT)
constraint (Lopes and West, 2004; Ghosh and Dunson, 2009; Leung and Drton, 2016;
Man and Culpepper, 2022). But as pointed out by Carvalho et al. (2008); Aßmann
et al. (2016), the posterior distribution obtained under the PLT constraint may not be
invariant to the ordering of the observed variables. An alternative approach is to post-
process MCMC samples to make B identifiable (Aßmann et al., 2016; Papastamoulis and
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Ntzoufras, 2022), which can be directly applicable to our Bayesian model. We illustrate
the effectiveness of this approach by analyzing a toy example in Appendix C.2 in the
supplementary material (Ohn et al., 2023)

3 Asymptotic properties of the posterior distribution
We study frequentist properties of the posterior distribution induced by the proposed
AdaSS prior distribution. Throughout this section, we assume that the number of
columns q of the loading matrix B of our Bayesian model is taken to be sufficiently large
so that it is at least the true factor dimensionality. Given data Y1:n := (Y1, . . . ,Yn),
we denote by Π(·|Y1:n) the posterior distribution under the AdaSS prior Π. Proofs of
all results in this section are deferred to Appendix A in the supplementary material
(Ohn et al., 2023).

3.1 Class of covariance matrices
We first define a class of matrices to which the true covariance matrix belongs. We
denote by r the true factor dimensionality. To deal with very high dimensional cases
where the dimension p is much larger than the sample size n, we impose sparsity on
the loading matrix. Specifically, for a loading matrix B� ∈ R

p×r, we define its (row)
support by

supp(B�) :=
{
j ∈ [p] : B�

[j,:] �= 0
}
.

We say that the loading matrix B� is s-sparse if |supp(B�)| ≤ s and let

B(p, r, s) :=
{
B� ∈ R

p×r : |supp(B�)| ≤ s
}

be a set of p× r-dimensional s-sparse (loading) matrices. The parameter space for the
covariance matrix we consider throughout the paper is given by

C(p, r, s, λ, ζ) :=
{
Σ� = B�(B�)� + ψ�I : B� ∈ B(p, r, s), λ1(Σ�) ≤ λ, ψ ≥ ψ0,

min
{
λr(B�(B�)�), min

j∈supp(B�)

∥∥B�
(
B�

[j,:]
)�∥∥

2

}
≥ ζ

}
(3.1)

for some arbitrarily small constant ψ0 > 0. We discuss the implications of the conditions
determining the class C(p, r, s, λ, ζ).

• As we will show in Section 3.2 (Theorem 3), the posterior concentration rate of the
covariance matrix depends on the dimension p, sparsity s, factor dimensionality
r and the upper bound of the largest eigenvalue λ, but not on ζ, which is needed
for the consistency of the factor dimensionality, and ψ0.

• Our parameter space (3.1) includes loading matrices whose row support is sparse,
which is also considered in Cai et al. (2013, 2015); Xie et al. (2022); Ning (2021).
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On the other hand, Pati et al. (2014); Gao and Zhou (2015); Rockova and George
(2016); Ohn and Kim (2022) consider the sparsity of the column support, which
means that the nonzero entries of each column vector are less than or equal to
s. Note that the s column support sparsity implies sr row support sparsity and
hence the column and row support sparsities have the same order of s as s → ∞
when r is bounded.

• The lower bound ψ ≥ ψ0, which is assumed in Pati et al. (2014); Ohn and Kim
(2022), is introduced to avoid ill-conditioned covariance matrices. In contrast, Cai
et al. (2013, 2015); Gao and Zhou (2015); Rockova and George (2016); Xie et al.
(2022); Ning (2021) assume that ψ is fixed in their theories.

• The condition λr(B�(B�)�) ≥ ζ yields the eigengap between spikes and noises,
which prevents underestimation of the factor dimensionality. The same condition
is assumed by Cai et al. (2013, 2015); Gao and Zhou (2015); Ohn and Kim (2022).

• Note that
∥∥B�

(
B�

[j,:]
)�∥∥

2
≥
∥∥B�

[j,:]
∥∥2

2
, thus the condition minj∈supp(B)

∥∥B�
(
B�

[j,:]
)�∥∥

2
≥

ζ is met when the magnitudes of the nonzero rows do not vanish too quickly. This
condition enables accurate estimation of the sparsity level of the true loading
matrix. This condition is similar to the beta-min condition (see Section 7.4 of
Bühlmann and Van De Geer (2011)) in high-dimensional sparse regression mod-
els. We believe that this condition is indispensable unless the column vectors are
assumed to be orthogonal (Cai et al., 2013, 2015; Gao and Zhou, 2015) or the true
sparsity level s is known (Ohn and Kim, 2022).

Note that we allow the model architecture parameters p, s, r λ and ζ to depend on
n, but we do not specify the subscript n to those quantities, e.g., keep using p instead
of pn, for notational simplicity.

3.2 Posterior consistency of the factor dimensionality
In this section, we explore asymptotic properties of the posterior distribution of the
factor dimensionality in the sparse factor model. For a loading matrix B ∈ R

p×q, we
define the factor dimensionality corresponding to B as

ξ := ξ(B) :=
∣∣∣∣{k ∈ [q] : B[:,k] �= 0

}∣∣∣∣ , (3.2)

that is, the factor dimensionality ξ(B) is equal to the number of nonzero columns of B.
The following theorem shows that the posterior distribution of the factor dimensionality
behaves nicely.

Theorem 1. Assume that r ≤ p/2, λ � s and ε := λ
√
sr log(p ∨ n)/n = o(1). More-

over, assume that ζ ≥ c0ε for sufficiently large c0 > 0. Then for any δ > 0, there exists
a constant Aδ > 0 depending only on δ such that

inf
Σ�∈C(p,r,s,λ,ζ)

P(n)
Σ�

[
Π
(
r ≤ ξ(B) ≤ (1 + δ)r|Y1:n

)]
→ 1 (3.3)
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for the prior distribution defined through (2.1), (2.2) and (2.3) with A > Aδ, and a ∈
R

2
+. Furthermore, if r � log(p ∨ n)/ logn, then there exists an universal constant A0 > 0

such that

inf
Σ�∈C(p,r,s,λ,ζ)

P(n)
Σ�

[
Π
(
ξ(B) = r|Y1:n

)]
→ 1, (3.4)

whenever A > A0.

Theorem 1 implies that a posteriori the factor dimensionality ξ is not much larger
than the true one r, and ξ concentrates on r asymptotically if r is not too large. .0
Gao and Zhou (2015) attains posterior consistency of the factor dimensionality of the
orthogonal loading matrix under a mildly growing regime r � log p. Our condition
r � log(p ∨ n)/ logn for the posterior consistency is slightly stronger than Gao and
Zhou (2015). However, note that we do not impose the orthogonality constraint on the
loading matrix which makes posterior computation difficult.

Ohn and Kim (2022) obtains posterior consistency without any condition on the
growth rate of the true factor dimensionality r by using a prior that strongly regularizes
ξ. However, this strong regularization sacrifices the convergence rate of the covariance
matrix by a factor of

√
s compared to the optimal rate. Another critical drawback of

their prior is that the knowledge of the true sparsity level is required to select the hyper-
parameters in the prior. In contrast, the AdaSS prior attains the posterior consistency
of the factor dimensionality without knowing the true sparsity level.

On the frequentist side, Cai et al. (2013, 2015) proposed consistent estimators of
the factor dimensionality for sparse factor models. However, Cai et al. (2013) requires
a
√
s times larger detection rate for the eigengap (i.e., the lower bound of ζ) than ours

and Cai et al. (2015) is nonadaptive to the true sparsity. Moreover, a known and fixed
noise variance ψ is required for the consistency of both estimators, while our consistency
result is adaptive to the unknown noise level.

Remark 4. One should set q > r to correctly estimate r, but r is unknown. A naive
strategy would be to set q very large, e.g., q = p−1, so that q ≥ r. However, unnecessarily
large q requires huge computation. A better strategy for choosing q is to set q =

√
n.

This choice is based on our posterior contraction rate λ
√
sr log(p ∨ n)/n = o(1) of the

covariance matrix given in Theorem 3 in the next section. Since r = rank(B�(B�)�) ≤
s for the true loading matrix B�, if λ log(p ∨ n) � 1 we have r = o(

√
n). Therefore,

asymptotically, the upper bound q =
√
n does not underdetermine the true factor

dimensionality. A similar problem occurs in Gao and Zhou (2015), where the authors
assume r � log p and set q � pb for some b > 0 so that q � r. When p is large, our
choice q =

√
n is much smaller than that of Gao and Zhou (2015), which leads to more

efficient computation

Remark 5. In Theorem 1, we assume an upper bound for the largest eigenvalue such
that λ � s. This bound is mild in view of the random matrix theory. Suppose that
B̃ ∈ R

s×r is a random matrix whose entries are independent centered random variables
with finite fourth moments. Then by Theorem 2 of Latala (2005), since r ≤ s, we
have E ‖B̃‖ � √

s +
√
r � √

s. Therefore, E[λ1(B̃B̃�)] = E ‖B̃B̃�‖ � s. Pati et al.
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(2014) and Rockova and George (2016) assumed the same condition as ours, while
other studies on the Bayesian covariance estimation (Gao and Zhou, 2015; Xie et al.,
2022) used a stronger condition that the largest eigenvalue of the true covariance matrix
is bounded.

In Theorem 1, we show that the true factor dimensionality is almost consistently
recovered whenever the eigengap ζ is larger than the detection rate λ

√
sr log p/n by

a sufficiently large constant c0 > 0. As shown in the next proposition, this detection
rate is optimal when r � 1 in the sense that any method cannot consistently estimate
the factor dimensionality when the eigengap ζ is less than a0λ

√
s log

(
p/s

)
/n for some

constant a0 > 0. This result is an extension of Theorem 5 of Cai et al. (2015) for
unknown ψ and diverging λ.

Proposition 2. Assume that s log p/n = o(1). Then there exists a constant a0 > 0 such
that if 0 ≤ ζ ≤ a0λ

√
s log

(
p/s

)
/n,

inf
r̂:Rp×n �→N

sup
Σ∈C(p,r,s,λ,ζ)

P(n)
Σ

(
r̂(Y1:n) �= r

)
≥ 1

4 (3.5)

for all but finitely many n, where the infimum runs over all possible estimator r̂ of r.

3.3 Posterior concentration rate of the covariance matrix

In the linear factor model, the covariance matrix BB� +ψI determines its distribution.
In this section, we prove that the posterior distribution of the covariance matrix in our
Bayesian model concentrates around the true covariance matrix at a near-optimal rate,
which is summarized in the next theorem.

Theorem 3. Assume that λ � s. Then there exists a constant M > 0 such that

sup
Σ�∈C(p,r,s,λ,0)

P(n)
Σ�

⎡⎣Π
(
‖Σ − Σ�‖ > Mλ

√
sr log(p ∨ n)

n

∣∣∣Y1:n

)⎤⎦ → 0 (3.6)

for the prior distribution defined through (2.1), (2.2) and (2.3) with A > 0 and a ∈ R
2
+.

Note that the lower bound of the eigengap ζ is set to 0 in Theorem 3 while it should be
larger than a certain rate in Theorem 1, that is, the eigengap condition is required only
for consistent estimation of the factor dimensionality but not for the contraction of the
covariance matrix. This difference implies that the optimal estimation of the covariance
matrix does not require the consistent estimation of the factor dimensionality.

Our posterior concentration rate in (3.6) is near optimal when r � 1 as shown in
the following proposition, which is a direct consequence of Theorem 5.4 of Pati et al.
(2014).
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Proposition 4. Assume that s log p/n = o(1) and r � 1. Then

inf
Σ̂:Rp×n �→Sp

++

sup
Σ�∈C(p,r,s,λ,0)

P(n)
Σ�

[∥∥Σ̂ − Σ�
∥∥] � λ

√
s log

(
p/s

)
n

, (3.7)

for all but finitely many n, where the infimum runs over all possible estimator Σ̂ of Σ�.

4 Numerical examples
We evaluate the empirical performance of the proposed Bayesian model with the AdaSS
prior through simulation studies and real data analysis. For each posterior computation,
we run the MCMC sampler described in Section 2.2 for 3,000 iterations discarding the
first 500 as burn-in, and by thinning every 5, we obtain the final 500 MCMC samples
from the posterior. We give the convergence diagnostics via trace, autocorrelation and
partial autocorrelation plots of some randomly selected parameters in Appendix C.1 in
the supplementary material (Ohn et al., 2023), which confirm that the MCMC sampler
converges well.

4.1 Simulation study
In this section, we conduct an extensive numerical study to compare the performance of
the AdaSS prior for estimating the factor dimensionality and the covariance matrix with
various competitors. Throughout the simulation study, we set the number of columns
of the loading matrix q =

⌈√
n
⌉

for a sample size n and the hyperparameters A = 0.1
and a = (0.01, 0.01).

Posterior distribution of the factor dimensionality

We first compare the AdaSS prior and the spike and slab with the two-parameter IBP
prior of Ohn and Kim (2022) for evaluating the concentration behaviors of their posterior
distributions of the factor dimensionality. We only consider the prior of Ohn and Kim
(2022) since other Bayesian models either do not infer the factor dimensionality (Ning,
2021; Xie et al., 2022) or do not achieve posterior consistency of the factor dimensionality
(Rockova and George, 2016; Bhattacharya and Dunson, 2011; Srivastava et al., 2017) or
are purely theoretical (i.e., do not have a posterior computation algorithm) (Gao and
Zhou, 2015).

There are two hyperparameters of the spike and slab with the two-parameter IBP
prior of Ohn and Kim (2022). The first hyperparameter denoted by α controls the factor
dimensionality and the second hyperparameter denoted by κ does the sparsity of the
loading matrix. For κ, we choose p1.1 as recommended by Ohn and Kim (2022). For
α, we consider three values: p−30, p−25 and p−20. Ohn and Kim (2022) proved that
using α = p−As for a constant A > 0 and the true sparsity s can lead to the posterior
consistency. Assuming that s = 30, these choices of α correspond to the choices of
A ∈ {4/6, 5/6, 1}. We use the MCMC sampler used in Knowles and Ghahramani (2011);
Ohn and Kim (2022) for approximating the posterior.
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We generate a data set consisting of n synthetic random vectors from the multivariate
normal distribution with mean 0 and variance B�(B�)� + 2I independently, where B�

is a s-sparse p× r loading matrix. For the true loading matrix, we randomly select the
location of s nonzero rows and sample the elements in the nonzero rows from {−2, 2}
randomly. We set (n, p) = (100, 1000) and let the sparsity s and factor dimensionality
r vary among s ∈ {10, 30, 50} and r ∈ {1, 3, 5}, respectively.

Figure 1 presents the posterior distribution of the factor dimensionality for the
AdaSS prior and spike and slab with the two-parameter IBP prior with different α. The
posterior distribution under the AdaSS prior concentrates at the true factor dimension-
ality quite well for all nine cases, while the performance of the two-parameter IBP prior
depends heavily on the choice of the hyperparameter α. If α is not sufficiently small,
the resulting posterior distribution apparently overestimates the true factor dimension-
ality. The smallest choice of α = p−30 estimates the factor dimensionality consistently
for some cases, but also severe underestimation occurs in other cases. The results of
this simulation show that there is no universally good choice of the hyperparameter α

Figure 1: Posterior distributions of the factor dimensionality for the proposed adap-
tive Bayesian (AdaSS) prior and spike and slab with the two-parameter IBP prior with
various α (IBP(α)). The black dashed vertical lines indicate the true factor dimension-
ality r.
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in the two-parameter IBP across different levels of the sparsity, while the AdaSS prior
performs consistently well with a single choice of the hyperparameter.

Comparison with frequentist estimators

In this simulation, we compare the performance of the AdaSS prior with some frequentist
estimators for point estimation of the factor dimensionality. For our Bayesian model,
we use the mode of the posterior distribution of the factor dimensionality as a point
estimator. We consider the following five frequentist estimators as competitors: with S
and R being the sample covariance and correlation matrices, respectively, and rmax ∈ [p]
pre-specified,

• Eigenvalue threshold estimator (ET, Onatski (2010))

r̂ET :=
p∑

j=1
1
(
λj(S) > wλrmax+1(S) + (1 − w)λ2rmax+1(S)

)
,

where w := 22/3(22/3 − 1).

• Eigenvalue ratio estimator (ER, Ahn and Horenstein (2013); Lam and Yao (2012)):

r̂ER := argmax
j∈[rmax]

λj(S)/λj+1(S).

• Growth ratio estimator (GR, Ahn and Horenstein (2013)):

r̂GR := argmax
j∈[rmax]

log
(
Lj−1/Lj

)
log

(
Lj/Lj+1

) ,
where Lj :=

∑p
t=j+1 λt(S).

• Adjusted correlation threshold estimator (ACT, Fan et al. (2020)):

r̂ACT := max
{
j ∈ [rmax] : λ†

j > 1 +
√

p/(n− 1)
}
,

where

λ†
j :=

⎡⎢⎣1 − wj

λ̂j

− wj

p− j

⎧⎨⎩
p∑

t=j+1
(λ̂t − λ̂j)−1 + 4(λ̂j+1 − λ̂j)−1

⎫⎬⎭
⎤⎥⎦
−1

with λ̂j := λj(R) and wj := (p− j)/(n− 1) for j ∈ [p].

• Diagonal thresholding estimator (DT, Cai et al. (2013)):

r̂DT :=max
{
j∈ [rmax] :λj(Š[J,J])>2

(
1+

√
|J |/n+

√
(2(1+|J |)log(ep)+6 logn)/n

)2}
,
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where Š := n−1 ∑n
i=1(Yi + Z0

i )(Yi + Z0
i )� with Z0

1, . . . ,Z0
n

iid∼ N(0, I) and

J :=
{
j ∈ [p] : Š[j,j] ≥ 2 + 6

√
log p/n

}
.

We fix rmax = 10 throughout the simulation study.

A synthetic data set of size n is generated from the p-dimensional normal distribution
with mean 0 and covariance B�(B�)� + I, where the true loading matrix B� ∈ R

p×r is
s-sparse. The true loading matrix B� is generated as follows: we first select s nonzero
rows and sample the elements in the nonzero rows from the uniform distribution on
[−4/

√
s,−3/

√
s] ∪ [3/

√
s, 4/

√
s]. We take two sample sizes n = 50 and n = 100. We fix

the dimension p = 1, 000 and let the sparsity s and factor dimensionality r vary among
s ∈ {10, 30, 50} and r ∈ {1, 3, 5}, respectively.

The simulation results based on 100 synthetic data sets of size n = 50 and n = 100
are summarized in Tables 1 and 2, respectively. We see that the proposed Bayesian
model with the AdaSS prior outperforms the other competitors in the estimation of the
factor dimensionality. The AdaSS prior has the highest proportion of the correct esti-
mation for 17 out of the total 18 simulation setups. In particular, there are considerable
performance gaps between the AdaSS prior and the other competitors when sparsity is
small (s = 10) or the factor dimensionality is large (r = 5).

Covariance matrix estimation

In this simulation study, we compare the AdaSS prior with other competitors for covari-
ance matrix estimation. For competitors, we consider the principal orthogonal comple-
ment thresholding method (POET, Fan et al. (2013)), the variational inference method
for Bayesian sparse PCA (SPCA-VI, Ning (2021)), the Bayesian sparse factor models
with multiplicative gamma process shrinkage prior (MGPS, Bhattacharya and Dunson
(2011)) and two maximum a posteriori estimators that employ the multi-scale general-
ized double Pareto prior (MDP, (Srivastava et al., 2017)) and the spike-and-slab lasso
with Indian buffet process prior (SSL-IBP, (Rockova and George, 2016)), respectively.
For the POET and SPCA-VI, the factor dimensionality must be selected in advance
and we use the true factor dimensionality for this. We use the posterior mean of the
covariance matrix as the point estimator for the MGPS and AdaSS priors.

We generate 100 synthetic data sets with sample size n = 50 and n = 100, respec-
tively, and we report the averages of the scaled spectral norm losses ‖Σ̂ − Σ�‖ /‖Σ�‖
between the point estimate Σ̂ of each estimator and the true covariance matrix Σ�

obtained over 100 synthetic data sets in Tables 3 and 4. The AdaSS prior performs
generally well, while the POET, MGPS and MDP are significantly inferior. SSL-IBP is
not much worse and performs best for the setups with s = 50.

4.2 Real data analysis
In this section, we analyze gene expression data on aging in mice from the AGEMAP
(Atlas of Gene Expression in Mouse Aging Project) database Zahn et al. (2007). We
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s r ET ER GR ACT DT AdaSS

10

1

True 85 97 97 96 100 100
Over 14 3 3 4 0 0
Under 1 0 0 0 0 0
Ave 1.14 1.03 1.03 1.04 1 1

3

True 24 3 3 0 0 97
Over 1 0 0 0 0 0
Under 75 97 97 100 100 3
Ave 2.16 1.35 1.37 1.01 1 2.97

5

True 0 0 0 0 0 77
Over 0 0 0 0 0 15
Under 100 100 100 100 100 8
Ave 2.97 1.54 1.55 1.01 1.1 5.06

30

1

True 86 96 97 97 100 100
Over 12 4 3 3 0 0
Under 2 0 0 0 0 0
Ave 1.1 1.1 1.07 1.03 1 1

3

True 46 15 15 0 0 94
Over 0 0 0 0 0 0
Under 54 85 85 100 100 6
Ave 2.43 1.57 1.57 1.09 1 2.93

5

True 0 1 1 0 0 87
Over 0 0 0 0 0 0
Under 100 99 99 100 100 13
Ave 3.2 1.72 1.77 1.06 1 4.86

50

1

True 80 98 97 95 100 100
Over 17 2 3 5 0 0
Under 3 0 0 0 0 0
Ave 1.17 1.04 1.05 1.05 1 1

3

True 58 9 10 6 0 73
Over 2 0 0 0 0 0
Under 40 91 90 94 100 27
Ave 2.62 1.52 1.56 1.4 1 2.67

5

True 2 2 2 0 0 61
Over 0 0 0 0 0 0
Under 98 98 98 100 100 39
Ave 3.39 1.94 1.99 1.25 1 4.54

Table 1: Proportions of correct estimation (“True”), overestimation (“Over”) and un-
derestimation (“Under”) of the estimated factor dimensionalities for various sparsity s
and true factor dimensionality r obtained on 100 synthetic data sets of size n = 50.
“Ave” is the average of the estimated factor dimensionalities.

obtained this data from the online website http://statweb.stanford.edu/∼owen/data/
AGEMAP. There are 5 female and 5 male mice in each age group, where there are 4

http://statweb.stanford.edu/~owen/data/AGEMAP/
http://statweb.stanford.edu/~owen/data/AGEMAP/
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s r ET ER GR ACT DT AdaSS

10

1

True 78 100 100 93 100 100
Over 22 0 0 7 0 0
Under 0 0 0 0 0 0
Ave 1.24 1 1 1.07 1 1

3

True 66 9 10 0 0 86
Over 2 0 0 0 0 13
Under 32 91 90 100 100 1
Ave 2.7 1.55 1.57 1.02 1.25 3.12

5

True 6 0 0 0 0 20
Over 0 0 0 0 0 77
Under 94 100 100 100 100 3
Ave 3.63 1.83 1.86 1 2.13 5.93

30

1

True 83 100 100 93 100 100
Over 17 0 0 7 0 0
Under 0 0 0 0 0 0
Ave 1.18 1 1 1.09 1 1

3

True 92 33 34 5 0 99
Over 4 0 0 2 0 1
Under 4 67 66 93 100 0
Ave 3 1.96 1.98 1.56 1 3.01

5

True 46 3 4 0 0 68
Over 1 0 0 0 0 32
Under 53 97 96 100 100 0
Ave 4.45 2 2.1 1.43 1 5.32

50

1

True 85 100 100 94 100 100
Over 15 0 0 6 0 0
Under 0 0 0 0 0 0
Ave 1.16 1 1 1.06 1 1

3

True 99 59 61 64 0 98
Over 1 0 0 2 0 0
Under 0 41 39 34 100 2
Ave 3.01 2.36 2.38 2.67 1 2.98

5

True 68 15 20 2 0 91
Over 0 0 0 0 0 6
Under 32 85 80 98 100 3
Ave 4.68 2.36 2.65 2.61 1 5.03

Table 2: Proportions of correct estimation (“True”), overestimation (“Over”) and un-
derestimation (“Under”) of the estimated factor dimensionalities for various sparsity s
and true factor dimensionality r obtained on 100 synthetic data sets of size n = 100.
“Ave” is the average of the estimated factor dimensionalities.

age groups of 1, 6, 16 and 24 months. Thus there are 40 mice in total. From each of 40
mice, 16 microarrays obtained from 16 different tissues were prepared, and from each
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s r POET SPCA-VI MGPS MDP SSL-IBP ABayes

10
1 2.366 (0.151) 0.245 (0.108) 2.591 (2.04) 2.103 (0.135) 0.689 (0.062) 0.233 (0.103)
3 1.83 (0.254) 0.398 (0.12) 1.45 (0.863) 1.583 (0.212) 0.646 (0.094) 0.301 (0.113)
5 1.59 (0.232) 0.422 (0.111) 1.195 (0.575) 1.271 (0.191) 0.696 (0.101) 0.335 (0.107)

30
1 2.375 (0.155) 0.772 (0.102) 1.945 (1.292) 2.104 (0.14) 0.699 (0.067) 0.624 (0.152)
3 2.073 (0.202) 0.674 (0.117) 2.078 (1.309) 1.839 (0.184) 0.696 (0.063) 0.609 (0.172)
5 1.868 (0.192) 0.644 (0.086) 1.551 (0.87) 1.649 (0.175) 0.684 (0.052) 0.631 (0.138)

50
1 2.345 (0.146) 0.901 (0.039) 2.018 (1.52) 2.072 (0.13) 0.759 (0.065) 0.847 (0.134)
3 2.145 (0.194) 0.762 (0.102) 1.996 (1.168) 1.901 (0.175) 0.695 (0.069) 0.966 (0.208)
5 2.013 (0.2) 0.744 (0.098) 1.519 (0.752) 1.786 (0.182) 0.709 (0.067) 1.049 (0.228)

Table 3: The averages and standard errors of the scaled spectral norm losses of the
estimators of the covariance matrix obtained on 100 synthetic data sets with n = 50.

s r POET SPCA-VI MGPS MDP SSL-IBP ABayes

10
1 1.437 (0.108) 0.164 (0.064) 2.374 (1.123) 1.322 (0.101) 0.523 (0.048) 0.17 (0.066)
3 1.136 (0.146) 0.274 (0.074) 1.565 (1.129) 1.044 (0.141) 0.483 (0.066) 0.218 (0.074)
5 0.999 (0.151) 0.281 (0.069) 1.051 (0.407) 0.881 (0.135) 0.464 (0.057) 0.244 (0.075)

30
1 1.437 (0.09) 0.366 (0.105) 2.489 (1.124) 1.317 (0.085) 0.534 (0.053) 0.317 (0.088)
3 1.28 (0.138) 0.449 (0.083) 2.187 (0.946) 1.175 (0.133) 0.533 (0.055) 0.353 (0.105)
5 1.178 (0.116) 0.457 (0.079) 1.723 (1.618) 1.084 (0.109) 0.538 (0.059) 0.4 (0.087)

50
1 1.428 (0.095) 0.707 (0.112) 2.357 (1.226) 1.306 (0.09) 0.57 (0.065) 0.536 (0.133)
3 1.328 (0.102) 0.628 (0.102) 2.236 (1.072) 1.219 (0.1) 0.547 (0.058) 0.587 (0.133)
5 1.261 (0.119) 0.57 (0.072) 1.729 (0.97) 1.161 (0.112) 0.564 (0.059) 0.652 (0.123)

Table 4: The averages and standard errors of the scaled spectral norm losses of the
estimators of the covariance matrix obtained on 100 synthetic data sets with n = 100.

microarray, gene expression levels of 8, 932 probes were measured. In this paper, we
focus only on the microarray data from the cerebrum tissue, for which the rotation test
of Perry and Owen (2010) provided strong evidence for the presence of the latent factor.
We will call this one tissue data set with sample size n = 40 and dimension p = 8, 932
the AGEMAP data for simplicity.

We preprocessed the AGEMAP data following the regression model of Perry and
Owen (2010). We obtained the mean-centered data by regressing out an intercept, sex,
and age effects on each of the 8,932 outcomes. Then the factor dimensionality is esti-
mated based on the mean-centered data set. We consider the factor model with het-
erogeneous noise variances and impose the AdaSS prior presented in Remark 1. We set
q = 10 ≥ √

n =
√

40, A = 0.1 and aj = (0.01, 0.01) for every j ∈ [p] in the prior.
Then we take the posterior mode of the factor dimensionality as the point estimate. For
comparison, we also considered the five frequentist methods described in Section 4.1,
i.e., ET, ER, GR, ACT and DT.

Table 5 provides the factor dimensionality estimates by the proposed Bayesian model
and the five competing frequentist methods. The four methods including the AdaSS
prior estimate the factor dimensionality by 1. The presence of the one-dimensional
latent factor was advocated by the rotation test of Perry and Owen (2010).

Figure 2a shows the histogram of the posterior means of the latent factors



20 Adaptive Bayesian Factor Model

ET ER GR ACT DT AdaSS
8 1 1 10 1 1

Table 5: Estimated factor dimensionality for the AGEMAP data.

Figure 2: (a) Histogram of the posterior means of the latent factors for each observation;
(b) Posterior distribution of the sparsity of the loading matrix for the AGEMAP data.

E(Zik∗ |Y1:n) for i ∈ [n] obtained under the AdaSS prior, where k∗ denotes the in-
dex of the nonzero column of the loading matrix, i.e., B[:,k∗] �= 0 under the posterior
distribution. The bimodality of the histogram is clearly shown, which is also confirmed
by Perry and Owen (2010). Figure 2b presents the posterior distribution of the spar-
sity |supp(B)| of the loading matrix, which ranges from 79.4% to 82%. A similar 78%
sparsity of the estimated factor model was reported by Rockova and George (2016).

5 Concluding remarks
In this paper, we proposed a novel prior distribution, called AdaSS, to infer high-
dimensional sparse factor models. We proved that the resulting posterior distribution
asymptotically concentrates at the true factor dimensionality without knowing the spar-
sity level of the true loading matrix. This adaptivity to the sparsity is a remarkable ad-
vantage of the proposed method over other theoretically consistent estimators such as
the point estimator in Cai et al. (2015) and Bayesian posterior distribution in Ohn and
Kim (2022). We also showed that the proposed model attained the optimal detection
rate of the eigengap for consistent estimation of the factor dimensionality. Moreover,
the concentration rate of the posterior distribution of the covariance matrix is optimal
when the true factor dimensionality is bounded and equal or faster than those of other
Bayesian models otherwise. Our numerical studies amply confirmed the theoretical re-
sults and provided strong empirical support to the proposed AdaSS prior.

With our prior, nonzero row vectors of the loading matrix B are not sparse. That
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is, when s′-many nonzero row vectors and the factor dimensionality are given, all the
entries of the corresponding s′×ξ sub-matrix are all nonzero. In practice, one may want
to have sparsity in nonzero row vectors. Our prior can be modified easily to ensure such
sparsity without hampering the asymptotic properties, which we will report somewhere
else.

There are several promising directions for future work. In this paper, we consider the
static factor model where the observations are assumed to be identically distributed.
However, this static factor model may be inadequate to capture the dependence struc-
ture in some types of data, e.g., time series data. As an alternative, we may consider a
dynamic factor model, where the covariance matrix as well as the factor dimensionality
can be different at each time point. It would of interest to study the posterior consistency
of the factor dimensionality which possibly varies over time. Another promising avenue
of research is to develop the Bayesian factor model which deals with non-Gaussian or
mixed-type observed variables. We believe that the proposed Bayesian model can be eas-
ily extended to those types of data using the Gaussian copula factor model developed
by Murray et al. (2013). It would be interesting to investigate the theoretical properties
of such a non-Gaussian extension of the proposed Bayesian model.

Supplementary Material
Supplement to “A Bayesian sparse factor model with adaptive posterior concentration”
(DOI: 10.1214/23-BA1392SUPP; .pdf). The supplementary material contains the proofs
of the main results and additional numerical results.
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