
Bayesian Analysis (2023) TBA, Number TBA, pp. 1–31

Speeding up Inference of Homologous
Recombination in Bacteria∗

Felipe J Medina-Aguayo†, Xavier Didelot‡, and Richard G Everitt§

Abstract. Bacteria reproduce clonally but most species recombine frequently,
so that the ancestral process is best captured using an ancestral recombination
graph. This graph model is often too complex to be used in an inferential setup,
but it can be approximated for example by the ClonalOrigin model. Inference in
the ClonalOrigin model is performed via a Reversible-Jump Markov Chain Monte
Carlo algorithm, which attempts to jointly explore: the recombination rate, the
number of recombination events, the departure and arrival points on the clonal
genealogy for each recombination event, and the range of genomic sites affected
by each recombination event. However, the Reversible-Jump algorithm often per-
forms poorly due to the complexity of the target distribution since it needs to
explore spaces of different dimensions. Recent developments in Bayesian compu-
tation methodology have provided ways to improve existing methods and code,
but are not well-known outside the statistics community. We show how exploiting
one of these new computational methods can lead to faster inference under the
ClonalOrigin model.

MSC2020 subject classifications: Primary 92D15, 62-08.

Keywords: genetics, recombination, ClonalOrigin, reversible-jump MCMC.

1 Introduction
Recombination is a critical process in evolution, particularly when analysing within-
species variation. Bacteria reproduce clonally, but recombination exists in most species,
where a donor cell contributes a small segment of its DNA to a recipient cell. This
process is analogous to gene conversion in eukaryotes and is typically modelled using an
Ancestral Recombination Graph (ARG) model (Hudson, 1990; Griffiths, 1996; Wiuf and
Hein, 2000). The simulation of genomic data under this model is relatively easy (Didelot
et al., 2009; Brown et al., 2016) but inference of the ancestral process given genomic
data is much harder. This inference problem is important for several reasons. Firstly,
analysing bacterial genomic data using a phylogenetic method that ignores recombi-
nation leads to inaccurate reconstruction of the clonal part of the ancestry (Schierup
and Hein, 2000; Hedge and Wilson, 2014). This could in turn lead to misleading results
of subsequent analysis, for example when performing a genome-wide association study
(Collins and Didelot, 2018) or inferring the dates of ancestors (Didelot et al., 2018).

∗Felipe J. Medina-Aguayo and Richard G. Everitt were supported by the UK Biotechnology and
Biological Sciences Re-search Council grant BB/N00874X/1. Felipe J. Medina-Aguayo got support from
ONRG-RGCOMM grant, and partial funding from CONACYT CB-2016-01-284451 grant.

†Instituto Tecnológico Autónomo de México (ITAM), Mexico, felipe.medina@itam.mx
‡School of Life Sciences, University of Warwick, UK, Xavier.Didelot@warwick.ac.uk
§Department of Statistics, University of Warwick, UK, Richard.Everitt@warwick.ac.uk

c© 2023 International Society for Bayesian Analysis https://doi.org/10.1214/23-BA1388

https://bayesian.org/resources/bayesian-analysis/
https://mathscinet.ams.org/mathscinet/msc/msc2020.html
mailto:felipe.medina@itam.mx
mailto:Xavier.Didelot@warwick.ac.uk
mailto:Richard.Everitt@warwick.ac.uk
https://doi.org/10.1214/23-BA1388

2 Speeding up Inference of Homologous Recombination in Bacteria

But even more importantly, the recombination process itself is often of major interest
due to its great evolutionary potential. The number of substitutions introduced by re-
combination is often greater than the number of substitutions introduced by de novo
mutation, since the ratio between these two quantities, denoted r/m, is often estimated
to be greater than one (Vos and Didelot, 2009; Didelot and Maiden, 2010). Further-
more, the substitutions introduced by recombination are not random but have already
been filtered by the selection process (Castillo-Ramírez et al., 2011). Consequently, re-
combination has been found to play a major role in many evolutionary processes, for
example adaptation to a new host (Sheppard et al., 2013b) or agricultural niche (Shep-
pard et al., 2013a), speciation (Krause and Whitaker, 2015), evolution of pathogenicity
(Dingle et al., 2014) or antibiotic resistance (Perron et al., 2012).

The ClonalOrigin model (Didelot et al., 2010) can be regarded as a good approxima-
tion of the aforementioned ARG process, in which recombination events are modelled in-
dependently given the clonal genealogy, denoted throughout as T . For completeness, we
note the existence of related approximations to the ARG such as the sequential Markov
coalescent for eukaryotes (McVean and Cardin, 2005; Marjoram and Wall, 2006) and the
bacterial sequential Markov coalescent (De Maio and Wilson, 2017). There are also sim-
pler approximations such as the ClonalFrame model (Didelot and Falush, 2007; Didelot
and Wilson, 2015) in which the origin of each recombination event is not modelled.

The major challenge when implementing the ClonalOrigin model is to efficiently
explore the joint posterior distribution of the recombination rate (ρ), the number of
recombination events (R), their departures (a1, . . . , aR) and arrivals (b1,. . . ,bR) on the
clonal genealogy and the sites delimiting the start (x1, . . . , xR) and end (y1, . . . , yR)
points of each recombination event on the genome. In order to explore such a com-
plex distribution using Markov Chain Monte Carlo (MCMC), one must resort to the
Reversible-Jump MCMC (RJMCMC) algorithm (Green, 1995) which mainly aspires
exploring spaces of different dimensions. This is the approach that was taken previously
in both the original standalone implementation of the ClonalOrigin model (Didelot
et al., 2010) and a recent reimplementation (Vaughan et al., 2017) within the BEAST2
framework (Bouckaert et al., 2019).

Unfortunately, as known by computational statisticians, the RJMCMC algorithm
usually performs poorly due to the difficulty of proposing good trans-dimensional jumps.
Because of this, the number of iterations (and consequently the running time) required
by the algorithm for obtaining a reasonable approximation of the posterior distribution
may be impractically large. Recent developments in Bayesian computation methodology
provide ways of improving existing methods and code, but are not well-known outside
the statistics community.

Such state-of-the-art methods belong to the framework of Sequential Monte Carlo
(SMC) methods (see e.g. Doucet et al., 2001; Del Moral et al., 2006) where inference
is performed using an appropriate sequence of intermediate target distributions leading
to the desired one. Some of these methods have been successfully implemented to some
extent when inferring coalescent trees as data arrives (see e.g. Dinh et al., 2018; Everitt
et al., 2019; Fourment et al., 2018). In other areas of genetics SMC has also proved
useful (see e.g. Rasmussen et al., 2014; Smith et al., 2017; Ogundijo and Wang, 2017),

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 3

where standard MCMC-based inference can be problematic in the sense of diagnosing
the convergence of chains, establishing burn-in periods, or avoiding getting trapped in
local modes. Instead, when performing inference in a sequential manner, the complexity
of the problem is reduced and the desired target distribution may be explored more
efficiently.

The ideas presented here are based on the aforementioned SMC methodology that
can lead to faster inference in the ClonalOrigin model; nonetheless, these ideas could
be in principle applied to other evolutionary models. In particular, the work in Andrieu
et al. (2018) (see also the most recent manuscript Andrieu et al. 2021), addresses the use
of the aforementioned techniques for improving the convergence properties of the RJM-
CMC. To be precise, a generalisation of the RJMCMC algorithm is presented, where
the use of annealing moves and averages are possible in order to create a chain that
has provable smaller asymptotic variance, hence having better convergence properties.
Our main contribution is an implementation of the RmJMCMC algorithm from An-
drieu et al. (2018), but translated to the inference problem on the ClonalOrigin model.
We present several examples where, depending on the configuration used, the resulting
chains appears to converge much faster towards the limiting distribution (the desired
posterior on the unknown parameters). This faster converges arises primarily from the
appealing property of the RmJMCMC algorithm that the multiple moves can be par-
allelised; this in turn reduces the computational cost involved in computing averages.

2 Methods
Bayesian inference under the ClonalOrigin model

In this section we briefly describe the elements of the ClonalOrigin model, namely
the parameters of interest, prior distributions on these parameters and the likelihood
function for the data. For more details on assumptions and derivations of formulae
please refer to cited references and the supplementary material (Medina-Aguayo et al.,
2023).

• We use a coalescent tree to represent the clonal genealogy of n samples (D = D1:n)
and denote such a tree by T = (τ, t), which is composed of a topology τ and a
vector t = (t2, . . . , tn) of branch lengths. A Kingman’s coalescent prior (Kingman,
1982) is assumed for T .

• Let R denote the number of recombination events affecting the DNA sequences,
which we assume a priori to be distributed according to a Poisson random variable
with mean ρL/2, where ρ denotes the global recombination rate and L =

∑n
i=2 iti

is the total branch length of the tree T , see e.g. Wiuf and Hein (1999) for more
details. We also let L (s, t) denote the sum of branch lengths from time s to time
t on the tree.

• Each recombination event is formed by the following variables: departure and
arrival points on the genealogy, and start and end sites on the genome. These four

4 Speeding up Inference of Homologous Recombination in Bacteria

variables, when referring to the i-th recombination edge, are denoted by ai, bi, xi

and yi, respectively.

• Both variables ai and bi are fully determined by a time and lineage on the tree
(denoted respectively by ai [t] and ai [l], respectively). The prior on the arrival
point bi is uniform on the clonal genealogy, and the prior on the departure point ai
given the arrival point bi corresponds to the coalescent process of the recombinant
edge on the clonal genealogy.

• The priors for xi and yi are constructed assuming a uniform distribution on the
sequence for xi and a geometric distribution of mean δ > 0 for the difference
yi − xi | xi. When the sequence is made of B blocks comprising a total length of
L the priors need to be modified accordingly as in Didelot et al. (2010).

• The entire set of variables describing the recombination events is denoted by

R = (R, a1:R, b1:R, x1:R, y1:R) .

• Mutation events occur at rate θ/2 across the genealogy and on existing recombi-
nation edges; for simplicity we assume that all substitutions are equally likely, as
in the evolutionary model JC69 (Jukes and Cantor, 1969). However, more com-
plex mutation models could be accommodated within our framework such as the
General time-reversible model (Tavaré, 1986).

Under the above the assumptions, the full prior for the set of parameters of interest is
given by (see the supplementary material for the derivation)

p0 (ρ, δ, θ, T ,R) = p0 (R | ρ, δ, T) p0 (T) p0,ρ (ρ) p0,δ (δ) p0,θ (θ)

=
[
exp

{
−ρT2

}(ρ
2

)R R∏
i=1

exp {−L (bi [t] , ai [t])} p0,x (xi|δ) p0,y (yi|xi, δ)
]

× exp
{
−

n∑
i=2

(
i

2

)
ti

}
p0,ρ (ρ) p0,δ (δ) p0,θ (θ) ,

where p0,ρ, p0,δ, p0,θ are arbitrary priors for the recombination rate, mean-tract length
and mutation rate. For the likelihood computation, first recall that mutation events
occur at rate θ/2 across the genealogy and on existing recombination edges; we then
assume for simplicity that all substitutions are equally likely (Jukes and Cantor, 1969).
The computation of the likelihood function L (T ,R, θ;D), for any tree T = (τ, t), set
of recombination events R, and mutation rate θ, is done using Felsenstein’s pruning
algorithm (Felsenstein, 1973, 1981). Briefly, after extracting for each site i the local
tree T (i) with leaves z

(i)
1:n and internal nodes z

(i)
n+1:2n−1, the contribution of site i to the

likelihood is given by the recursion:

Li

(
θ, T (i); z(i)

1:n

)
=

∑
z
(i)
2n−1∈{A,C,G,T}

π
(
z
(i)
2n−1

)
C
(
z
(i)
2n−1

)

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 5

where

C
(
z
(i)
k

)
=

⎧⎪⎨
⎪⎩

∑
v
(i)
k

C
(
v
(i)
k

)
p
z
(i)
k ,v

(i)
k

(
t
(i)
v
(i)
k

)∑
w

(i)
k

C
(
w

(i)
k

)
p
z
(i)
k ,w

(i)
k

(
t
(i)
w

(i)
k

)
, if k≥n+1;

1
(
z
(i)
k = D

(i)
k

)
, if k≤n;

and pz,w (t) denotes the transition probability from z to w in t units of time, and π
corresponds to the limiting probability of such transitions. See also the supplementary
material for more details.

The posterior on the full set of parameters is obtained through Bayes’ Theorem

π (ρ, δ, θ, T ,R | D) ∝ p0 (ρ, δ, θ, T ,R)L (T ,R, θ;D) . (2.1)

However, inferring the whole set of parameters represents a big challenge. One could
instead fix one or more parameters and work with the resulting conditional distribu-
tions, for example finding a point estimate of T and then fix it to infer the rest of
the parameters. We will consider this incomplete approach for some of the examples
presented later where we aim to explore

π (R | ρ, δ, θ, T ,D) ∝ π̃ (R) = p0 (R | ρ, δ, T)L (T ,R, θ;D) . (2.2)

The algorithm

Markov chain Monte Carlo (MCMC) is commonly the method of choice for exploring
posterior distributions. If we had access to the marginal posterior for the number of re-
combination events π (R | ρ, δ, θ, T ,D), the inference of the remaining parameters could
be carried out independently across different values of R. Since such a marginal is not
available we need to infer R jointly with the rest of the parameters leading to a poste-
rior that has no fixed dimension. The celebrated Reversible-Jump MCMC (RJMCMC)
algorithm (Green, 1995) provides an elegant solution and corresponds to the generali-
sation of the Metropolis-Hastings (MH) algorithm that allows “jumps” across different
dimensions. In our context, these jumps will correspond only to going up or down by
one dimension, i.e. given R ≥ 1 recombination events they can go up to R + 1 or down
to R − 1. In addition to these trans-dimensional moves, we still need to perform intra-
dimensional moves that allow the full exploration of the desired posterior. Therefore, for
fixed R we could also perform moves on ρ, δ, θ, T and R | R = {a1:R, b1:R, x1:R, y1:R}.

Unfortunately, RJMCMC typically suffers from bad mixing in the sense that the
resulting chain converges slowly to the desired posterior; this will in turn require a
prohibitively large number of iterations for obtaining accurate answers. Due to recent
developments in methodology (Karagiannis and Andrieu, 2013; Andrieu et al., 2018),
the acceptance ratio for trans-dimensional moves within the RJMCMC can be under-
stood as an importance sampling estimate of the ratio of two marginal densities, i.e. for
an upwards move the ratio corresponds to π (R + 1 | D) /π (R | D), and using a single
importance point (more details on this can be found in the supplementary material).
One could then ask whether improving the aforementioned estimate could result in a

6 Speeding up Inference of Homologous Recombination in Bacteria

chain with better mixing. The answer turns out to be positive but with some restric-
tions. Two straightforward approaches to achieve variance reduction of the estimator are
annealed importance sampling (Neal, 2001) and simply using more than one importance
point.

In general terms, the annealing procedure creates a smooth bridge between distri-
butions of different dimension; so, in a sense, instead of attempting one jump from R to
R+1 that has very small chance of being accepted, we attempt to improve the chances
of the jump being accepted with T ≥ 2 perturbations. Clearly, the downside of this
approach is the extra cost of performing T perturbations that could still result in a
rejection within the MCMC algorithm. Whether annealing provides an advantage or
not will entirely depend on the quality of the perturbations. In the ClonalOrigin con-
text, when proposing to add a new recombination event that is in a bad region of the
posterior, the perturbations attempt to correct its position before deciding to accept or
not.

On the other hand, considering N ≥ 2 importance points when jumping from R to
R + 1 requires the creation of several proposed recombination events which are used
for estimating the aforementioned ratio of marginals. However, if the upwards move is
accepted one needs to select which of the proposed recombination events will be retained
for the next iteration of the algorithm. To do this, a categorical distribution is used that
selects which recombination event will survive according to its weight or contribution
to the estimate of the acceptance ratio. Therefore, a recombination event that is more
plausible than the rest will have a larger weight and, if the upwards move is accepted,
it will have a greater chance of being retained, ready for the next iteration.

Figure 1 illustrates both the annealing and the multiple importance points schemes
when T = 5 and N = 4. The trees in black correspond to the current value of T on
which recombination events are appended. Colours correspond to different stages of
the proposed recombination event when perturbed; the idea of annealing is that the
proposed event in blue at t = 1 will be perturbed in such way that the one in red at
t = T has a better chance of being accepted. This process can be repeated N times,
possibly in parallel, noting that perturbations could be drastic (as in n = N in the
figure) or almost nonexistent (as in n = 3); it all depends on the quality of the proposed
event at t = 1 and the perturbation mechanism. Only one event from those at t = T
is selected for the final accept-reject step in the MCMC, but events leading to a higher
value in the posterior will have a better chance of being selected and possibly added
later on, as discussed previously.

Algorithm 1 describes one step of the full process which was termed Reversible-
multiple-Jump MCMC (RmJMCMC) in Andrieu et al. (2018), and where it was firstly
introduced and studied. It belongs to the wider class of MH with Asymmetric Accep-
tance Ratio (MHAAR) algorithms. Here we have adapted RmJMCMC to the Clon-
alOrigin context. In order to perform Algorithm 1 one requires performing two type
of moves, which we have termed the Upwards Annealing Move (UAM) and the Down-
wards Annealing Move (DAM). These two moves are in fact needed if one desires to
perform annealing as described beforehand, i.e. when T ≥ 2. We refer the reader to

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 7

Figure 1: Illustration of annealing and multiple importance points for T = 5 and N = 4.
The black tree represent the clonal genealogy T on which recombination events (coloured
lines) occur. Once multiple recombination events are proposed at time t = 1 (blue lines),
they are perturbed over T − 1 steps obtaining the recombination events at time t = T
(red lines). The dashed lines show how the perturbed recombination events go from
time t = 1 to t = T ; notice that these perturbations are not necessarily very different
at each step. Perturbations also occur on the genome (gray horizontal bars) since a
recombination event is also composed of start and end sites on the genome. The gray
horizontal bars represent the whole genome, whereas the colours on them indicate the
place where each recombination at time t is acting, for t = 1 (blue) up to time t = T
(red).

8 Speeding up Inference of Homologous Recombination in Bacteria

Algorithm 1 Reversible-multiple-Jump MCMC (RmJMCMC).
NOTATION: Let Er = (ar, br, xr, yr) denote the r-th recombination event, and E1:r =

(a1:r, b1:r, x1:r, y1:r).
REQUIRES: Sequence {γt}Tt=0 such that 0 = γ0 < γ1 < · · · < γT = 1.
INPUT: Current values for ρ, δ, θ, T , and R = (R,E1:R) for R ≥ 0.
OUTPUT: New value for R.

• Draw W ∼ Unif(0, 1), if W ≤ 1/2 [attempt and upwards move]:

1. Generate N recombination events
{
E

(n)
∗ =

(
a
(n)
∗ , b

(n)
∗ , x

(n)
∗ , y

(n)
∗

)}N

n=1
using

the common distribution −→ϕ (· | R).
2. For each n ∈ {1, . . . , N} perform an UAM as in Algorithm 1 in the sup-

plementary material using as input
(
R, E

(n)
∗

)
, obtaining r

(n)
T and the set of

variables
(
R̄(n), J

(n)
∗

)
.

3. Compute r̄T = N−1 ∑N
n=1 r

(n)
T and draw U ∼ Unif (0, 1).

4. If U ≤ r̄T

– Draw K ∼ Mult
(
N,

(
r
(1)
T , . . . , r

(N)
T

))
.

– Return R̄(K).
Otherwise return R.

• Else if R 	= (0, ∅), rename E1:R and R = (R,E1:R) by Ē1:R and R̄ =
(
R, Ē1:R

)
,

respectively. Then [attempt a downwards move]:

1. Sample an index J
(1)
∗ ∈ {1, . . . , R} from the distribution ←−ϕ (· | R), which

indicates the recombination index to be deleted.
2. Delete the recombination event with index J

(1)
∗ from Ē1:R to obtain E1:R−1,

denoting by E
(1)
∗ = Ē

J
(1)
∗

.
3. Perform a DAM as in Algorithm 2 in the supplementary material using as

input
(
R̄, J

(1)
∗

)
, retaining only r

(1)
T and discarding the other output variables.

4. Define R = (R− 1, E1:R−1) and generate N − 1 recombination events{
E

(n)
∗ =

(
a
(n)
∗ , b

(n)
∗ , x

(n)
∗ , y

(n)
∗

)}N

n=2
using the common distribution −→ϕ (· | R).

5. For each n ∈ {2, . . . , N} perform an UAM as in Algorithm 1 in the supple-
mentary material using as input

(
R, E

(n)
∗

)
, retaining only r

(n)
T and discarding

the other output variables.

6. Compute r̄T = N−1
((

r
(1)
T

)−1
+

∑N
n=2 r

(n)
T

)
and draw U ∼ Unif (0, 1).

7. If r̄T ≤ 1/U return R, otherwise return R̄.
• Otherwise, return R = (0, ∅) [there are currently no recombination events available

for deletion].

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 9

the appendix, where we provide a more in depth description of the UAM and DAM
algorithms used in the RmJMCMC.

Additionally, it is worth pointing out the fact that the validity of the RmJMCMC
algorithm (including the UAM and DAM algorithms) has already been addressed in
Andrieu et al. (2018) and in Karagiannis and Andrieu (2013). The novelty of this
work is more focused on the adaptation to the ClonalOrigin framework. The imple-
mentation in C++ of the RmJMCMC algorithm is available at: https://github.com/
fjmedinaaguayo/ClonOr_cpp. We have also created a version of the implementation
that is callable from R, found at https://github.com/maugu/RClonOr.

Notice that the upwards move in Algorithm 1 agrees with the description in the
previous paragraph; however, the downwards move appears to be more intricate. In
simple terms, we propose to delete a recombination event but in order to decide whether
to accept or not we must test if this deletion is convenient. This is done by generating
N−1 recombination events and computing the resulting acceptance ratios as if we were
trying an upwards move. Low values for the aforementioned ratios would imply that
the proposed deletion is possibly a good decision, whereas if many ratios result in high
values it might indicate that the deletion is a poor choice. The final decision rule results
in a valid algorithm as shown in Andrieu et al. (2018), otherwise the algorithm would
not be exact in the sense that it does not target the desired posterior distribution. We
provide more intuition in the following subsection of why this is the case. Nonetheless,
non-exact or noisy methods have been explored in the past (see e.g. Alquier et al., 2016
and references therein), however we do not discuss them any further as the bias that is
introduced is typically difficult to quantify.

One further observation is the obvious increased computational cost of RmJMCMC
as opposed to performing only RJMCMC (equivalent to RmJMCMC when T = N = 1)
or running multiple RJMCMC chains in parallel. Every iteration of RmJMCMC is at
least TN times more expensive than one RJMCMC iteration. However, as opposed to
running RJMCMC for longer or multiple independent RJMCMC chains, RmJMCMC
has provable better convergence properties (Andrieu et al., 2018) that can reduce burn-
in times and improve convergence towards a region of high posterior probability. This
is discussed in more depth in the Results section where we look at some examples.

Validity of the algorithm
The posterior distribution in the ClonalOrigin model, as described in Didelot et al.
(2010) and in the first part of Section 2, cannot be obtained analytically. For this
reason the RJMCMC algorithm is needed in order to explore the posterior distribution
via simulation; demonstrating that the algorithm reproduces the desired posterior does
not seem possible in this context. Nonetheless, the RmJMCMC as presented here can
be seen as a particular case of the more general algorithm presented in Andrieu et al.
(2018), where the authors show theoretically (together with several tractable examples),
that the resulting chain actually converges to the true posterior.

Instead, we now give extra details regarding the connection between the RmJMCMC
as presented here and the more general version from Andrieu et al. (2018). The idea

https://github.com/fjmedinaaguayo/ClonOr_cpp
https://github.com/fjmedinaaguayo/ClonOr_cpp
https://github.com/maugu/RClonOr

10 Speeding up Inference of Homologous Recombination in Bacteria

behind the RJMCMC algorithm is to explore a posterior of varying dimension, in our
context the dimension is determined by the number of recombination events that act on
the clonal genealogy T . Suppose there are m active recevs (shorthand for recombination
events), we either want to try going up or down in dimension, meaning we either want
to add a new recev or delete an existing recev. Let πm be the posterior distribution
when there are m active recevs and let θm represent the m recevs, this means that
θm represents all of the departure and arrival points on the tree and genome of the m
recevs, which are ordered according to some specific rule, for example the departure
time on the tree. Using our previous notation, θm is a vector containing m recevs of the
form (ai, bi, xi, yi).

In order to move up in dimension, we propose a new recombination event, denoted
by ϑ, according to the prior p0, which was discussed in Section 2. Hence, in order to
obtain θm+1 we need to rearrange (θm, ϑ) according to our ordering rule; this is the
purpose of the function −→ϕ since (θm+1, k) = −→ϕ (θm, ϑ), where k simply denotes the
position in the vector θm+1 where ϑ was inserted. This additional variable ensures that
the function is −→ϕ is invertible, we thus define ←−ϕ := (−→ϕ)−1. In order to move down in
dimension, say from m + 1 to m recevs, we simply select uniformly at random one of
the m + 1 available recevs, say the k-th one. Consequently, we can extract ϑ out from
θm+1 via (θm, ϑ) = ←−ϕ (θm+1, k).

Therefore, the acceptance ratio for going up in dimension is given by

−→r (θm, θm+1) = πm+1(θm+1)(m + 1)−1

πm(θm)p0(ϑ) ,

where the proposal distribution is

q(θm, θm+1) =
m+1∑
k=1

δ(θ(1:m)
m)(θ

(−k)
m+1)1θ

(k)
m+1∈(θ(k−1)

m ,θ
(k)
m)p0(θ(k)

m+1),

where θ
(k)
m denotes the k-th element of θm and θ

(−k)
m+1 denotes the subvector from θm+1

without considering the k-th element. In a much simpler form the above proposal is just
q(θm, θm+1) = p0(ϑ), where ϑ is such that θm+1 is equal to (θm, ϑ) after reordering. It
is straightforward to check that detailed balance is satisfied since

min{1,−→r (θm, θm+1)}πm(dθm)p0(dϑ)=min{1/−→r (θm; θm+1), 1}πm+1(θm + 1)(m + 1)−1,

which also provides the acceptance ratio when attempting to remove a recev. That is,
when there are m active recevs, the ratio for going down in dimension is

←−r (θm, θm−1) = πm−1(θm−1)p0(ϑ)
πm(θm)m−1 .

Clearly, if m = 0, then the only way to jump in dimension is by going up. These
expressions simplify to the ratios appearing in Appendix A from Didelot et al. (2010).

The annealing feature of the algorithm (which is essentially the AISRJMCMC from
Karagiannis and Andrieu 2013) states that instead of trying a jump directly one can
improve the proposal before the accept/reject step in the following sense:

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 11

• Propose ϑ ∼ p0(·) and obtain (θm+1, k) = −→ϕ (θm, ϑ).

• Compute, for some γ ∈ (0, 1),
−→ηγ
−→η0

(θm+1, k) = (πm+1(θm+1)(m + 1)−1)γ(πm(θm)p0(ϑ))1−γ

πm(θm)p0(ϑ) .

• Perturb (θm+1, k) using an MCMC kernel Kγ(θm+1, k; ·) targeting −→ηγ , obtaining
(θ∗m+1, k

∗).

• Use the following product of ratios in the accept/reject step

−→rγ(θm, θ∗m+1) =
−→ηγ
−→η0

(θm+1, k) ×
−→η1
−→ηγ

(θ∗m+1, k
∗).

Detailed balance still holds since the MCMC kernel Kγ is reversible w.r.t. −→ηγ , omit-
ting the overhead arrows for simplicity we have

min{1,rγ(θm, θ∗m+1)}πm(θm)p0(ϑ)Kγ(θm+1, k; θ∗m+1, k
∗)

= min{ η0

ηγ
(θm+1, k), η1

ηγ
(θ∗m+1, k

∗)}ηγ(θm+1, k)Kγ(θm+1, k; θ∗m+1, k
∗)

= min{ η0

ηγ
(θm+1, k), η1

ηγ
(θ∗m+1, k

∗)}ηγ(θ∗m+1, k
∗)Kγ(θ∗m+1, k

∗; θm+1, k)

= min{1/rγ(θm, θ∗m+1), 1}η1(θ∗m+1, k
∗)Kγ(θ∗m+1, k

∗; θm+1, k)
= min{1/rγ(θm, θ∗m+1), 1}πm+1(θ∗m+1)(m + 1)−1Kγ(θ∗m+1, k

∗; θm+1, k).

This tells us that in order to obtain a valid algorithm we need to implement also an
annealing move for going down in dimension in such way that

←−rγ(θm, θ∗m−1) = 1/−→rγ(θ∗m−1, θm),

hence we need
←−ηγ
←−η0

(θm−1, ϑ) ×
←−η1
←−ηγ

(θ∗m−1, ϑ
∗) =

−→ηγ
−→η1

(θm, k) ×
−→η0
−→ηγ

(θ∗m, k∗),

which imposes the following condition
←−ηγ(θm−1, ϑ) = −→ηγ(θm, k).

The above implies that

(πm−1(θm−1)p0(ϑ))
←−γ (πm(θm)m−1)1−

←−γ = (πm(θm)m−1)
−→γ (πm−1(θm−1)p0(ϑ))1−

−→γ ,

which translates to ←−γ = 1−−→γ , where ←−γ is the value used in the downwards move and
−→γ is the one used going upwards in dimension. This condition is exactly the imposed
in Algorithm 2 in the supplementary material (DAM move). The previous idea can be
extended to any number of intermediate steps using a sequence of intermediate targets

12 Speeding up Inference of Homologous Recombination in Bacteria

{−→ηγt}Tt=1, resulting in a valid algorithm in the sense that it targets the desired posterior,
as long as ←−γ t = −→γ T−t, for each t = 0, . . . , T .

Having established the nature of the annealing moves we now turn to the multiple
jump aspect of the algorithm. Having m active recevs, we propose N possible new
recevs, specifically we propose ϑ(1:N) := {ϑ(n)}Nn=1, each of them coming from the prior
p0; this in turn produces N different acceptance ratios {−→r (n)}Nn=1. A way to condense
all of them is to average their values, hence obtaining an averaged acceptance ratio

−→rN = 1
N

∑
n

−→r (n).

Similarly, when trying to delete recevs, one could propose N possible candidates out
of the existing m recevs obtaining N different integers

{
k(n)}N

n=1, where each k(n) was
selected uniformly from {1, . . . ,m}. Once again, this produces N different acceptance
ratios {←−r (n)}n, which could be condensed into an averaged acceptance ratio

←−rN = 1
N

∑
n

←−r (n).

However, plugging these averaged ratios into a MH algorithm does not produce
in general a chain with the correct limiting posterior, see e.g. Alquier et al. (2016).
Nonetheless, using a slight modification of the previous idea will in fact produce an
exact algorithm, as shown in Andrieu et al. (2018). Suppose we use −→rN as acceptance
ratio into an MH algorithm for going up in dimension, the acceptance probability can
be expressed as follows

min{1,−→rN} = min{1, 1
N

∑
n

−→r (n)}

= min{1, N
−1−→r (j)

−→r (j)∑
n
−→r (n)

}

= min{1,
N−1πm+1(θ(j)

m+1)(m + 1)−1

πm(θm)p0(ϑ(j))
−→r (j)∑
n
−→r (n)

}

= min{1,
πm+1(θ(j)

m+1)(m + 1)−1 ∏
l �=j p0(ϑ(l))N−1

πm(θm)
∏

l p0(ϑ(l))
−→r (j)∑
n
−→r (n)

}

=: min{1, πm+1(θm+1)
←−
QN (θm+1, θm)

πm(θm)−→QN (θm, θm+1)
}.

The proposal −→QN states how N new recevs are generated (independently and ac-
cording to the prior) and then only one is selected for constructing θ

(j)
m+1, in this case

the j-th one (according the unnormalised weight −→r (j)). The other proposal ←−QN states
the reverse move, a recombination is selected out of the existing m+1 for deletion, this

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 13

is equivalent to sample uniformly a single ϑ from θm+1. However, recall that there are
other N − 1 recevs involved in the algorithm, these are proposed independently from
the prior as stated by the product of N − 1 terms. The only thing left to decide is the
value of the superscript of the recev that will be deleted, this is done uniformly as the
term N−1 indicates.

Having found the above kernels we can write the acceptance probability when at-
tempting to delete a recev. This is simply

min{1, πm−1(θm−1)
−→
QN (θm−1, θm)

πm(θm)←−
QN (θm, θm−1)

}

= min{1,
πm−1(θm−1)

∏
l p0(ϑ(l))

−→r (j)∑
n
−→r (n)

πm(θ(j)
m)m−1 ∏

l �=j p0(ϑ(l))N−1
}

= min{1,
πm−1(θm−1)p0(ϑ(j))

−→r (j)∑
n
−→r (n)

πm(θ(j)
m)m−1N−1

}

= min{1, N−→r (j)

−→r (j) ∑
n
−→r (n) }

= min{1, 1
−→rN

}.

Notice that the previous probability coincides with the expression used in Algorithm 1,
where a deletion would proceed as follows: select uniformly a recombination to be deleted
out of the m existing ones, which produces a ratio ←−r (j) for going down in dimension.
Considering the remaining recevs, propose N−1 new ones according to the prior, which
produces N − 1 ratios for going up in dimension, i.e. {−→r (−j)}. Select uniformly the
superscript j (out of N possibilities) to the recev selected for deletion, and finally accept
the deletion if an independent uniform r.v. is less than or equal to 1/−→rN = N/

∑
n
−→r (n),

recalling that −→r (j) = 1/←−r (j).

Some final implementation details are in order, in either move (adding or deleting a
recev) there is no need to sample the superscript j before deciding whether to accept or
not. The only expression needed for making a decision is the value of −→rN , once a decision
is made the superscript can be obtained using the unnormalised weights {−→r (n)} (when
adding a recev) or uniformly out of N possible values (when deleting a recev). Lastly,
notice that the value of the superscript j is not needed in a further iteration of the
MCMC chain. This is because the selected recev and the other N−1 dummy events are
only needed for computing the acceptance ratio −→rN ; in the end, if a deletion is accepted,
the new state of the chain corresponds simply to the preserved recevs. Hence, the value
of j is always 1 in Algorithm 1, as it is irrelevant in further iterations.

Flavours of RmJMCMC
In order to implement Algorithm 1, we must specify the sampling auxiliary distributions
−→ϕ (· | R) and ←−ϕ (· | R) (which could both depend on other parameters, e.g. ρ, δ, θ, T). In

14 Speeding up Inference of Homologous Recombination in Bacteria

the following section we present results using simple choices, the joint prior on (a, b, x, y)
for the distribution −→ϕ and a discrete uniform on the set {1, . . . , R} for ←−ϕ assuming there
are R active recombination events. In mathematical terms, the associated densities are

−→ϕ (a, b, x, y) = exp {−L (b [t] , a [t])} p0,x (x|δ) p0,y (y|x, δ) ,

and −→ϕ (j | R) = R−1 for j ∈ {1, . . . , R}. The previous choices greatly simplify the
computation of the output ratios in Algorithms 1 and 2 in the supplementary material,
which involve mainly ratios of likelihood functions.

Additionally, we must define the way to perturb recombination events at every small
step in the annealing process. This is done using an MCMC algorithm as explained in
Algorithms 1 and 2 in the supplementary material; hence the perturbation is fully
defined once we select a proposal distribution for R fixing the value of R, i.e. we need to
perturb at least one recombination event within the existing R events. For the examples
in the following section we choose to perturb (using the prior as proposal) only the newly
created recombination event when going upwards, or the recombination event to be
deleted when going downwards, for both cases this event is denoted by E∗ in Algorithms
1 and 2 in the supplementary material. Doing this provides a very simple expression for
the acceptance ratio in the MCMC steps within the annealing that involves only ratios
of likelihood functions.

Finally, we must decide the number of annealing steps T , the sequence of real num-
bers {γt}Tt=0 and the value of replicates N . In the examples that follow we use different
values for T and N which involve different costs and running times. As mentioned
earlier, the computational cost increased as T and N increases, however an appealing
property of RmJMCMC is that loops involving N (either upwards or downwards) can
be performed in parallel, this may lead to higher efficiency when computing running
times. Due to this, the value of N is commonly determined by the number of cores
available in the computer or server. For the required sequence {γt}Tt=0 we simply choose
a linear interpolation γt = t/T .

We want to emphasise that the choice of −→ϕ and ←−ϕ were made in accordance to the
original ClonalOrigin implementation from Didelot et al. (2010); whereas the choices for
the proposals within the MCMC and the elements of the sequence {γt}Tt=0 were made
for convenience. However, the way RmJMCMC was formulated permits the use of more
complex approaches that could provide better results in terms of efficiency. Some of
these improvements are briefly described in the final section and are devoted to future
work.

3 Results
This section compares the RmJMCMC algorithm and the standard RJMCMC for the
ClonalOrigin model. We start with some toy simulated experiments, moving later on to
results using real, and previously studied, datasets. When considering more than one
importance point (i.e. N > 1), we are running a parallelised version of the algorithm in
all of the examples that follow.

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 15

Figure 2: Trace plots for the total number of recombinations and for the log-likelihood
for different combinations of T and N and using 10 million iterations. Plots on the
left correspond to values vs iteration number, those on the right are vs running time.
Grey dotted line corresponds to ground truth, coloured dotted lines indicate time when
algorithm stopped. Bottom row: trace plots of the log-likelihood for the last 6 million
iterations (left) and after 12 hours of running time (right).

Application to simulated data

We present several simulated examples in order to explore the scalability and usability
of RmJMCMC. We compare the settings when N = T = 1 (corresponding to the
RJMCMC algorithm), when T = 4 and N = 4, when T = 2 and N = 8, and when
T = 1 and N = 16. The efficiency between these configurations is compared using an
estimation of the effective sample size (ESS) for a quantity of interest, as is commonly
done in MCMC (Robert and Casella, 2004). In simple terms, the ESS indicates how

16 Speeding up Inference of Homologous Recombination in Bacteria

Figure 3: Effective sample sizes per 10 thousand iterations (left) and per hour of running
time (right).

many independent samples were obtained from the total number of iterations for which
the algorithm was run, and if the chain exhibits large correlation then the ESS will
typically be much smaller than the number of iterations.

Throughout this section we consider a “typical setting” where data was simulated
using a mean tract length of δ = 236, a mutation rate per site θs = 0.03, and a recombi-
nation rate per site ρs = 0.005. These three parameters remain fixed, and consequently
the inference is carried only for the number of recombination events and their locations
on the genome and on the tree, i.e. the target distribution is given by (2.2).

Example 1. Typical setting: 50 sequences, length 50 kilobase pairs (Kb), mean tract
length δ = 236, global mutation rate θ = 1500 (θs = 0.03), global recombination rate
ρ = 250 (ρs = 0.005).

Figure 2 contains traceplots for the number of recombination events (top row) and
for the value of the log-likelihood (middle and bottom rows). Observe that the schemes
for which N > 1 have a similar performance when comparing against iteration number
(plots on the left); this is not surprising since the annealing moves (those involving
T) are perturbed using an MCMC algorithm with a proposal equal to the prior, and
also the multiple instances (those involving N) are generated using the prior. However,
the computational burden is different in each setting since for a fixed value of NT the
algorithm could be parallelised using N cores but still requires T − 1 serial iterations
of the annealing process. Hence, for this case, the setting where T = 1 and N = 16
should perform best when taking into account the running time. The plots on the right
incorporate this information and notice that all the schemes still seem to perform better
than the standard RJMCMC chain (in blue) as they reach a region where the likelihood
is high in a shorter amount of time, this can also be seen more clearly in the plots from
the bottom row. It is worth noting that despite the RJMCMC chain being closer to the
true number of recombination events, it is not a reliable indicator of whether the chain
has converged since the value of the log-likelihood is still in a transient phase.

Figure 3 compares the ESS fusing the values of the log-likelihood for the different
schemes. Notice that when the running time is not taken into account (left plot) the

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 17

Figure 4: Average recombination frequency vs site number for different combinations of
T and N . Grey dotted line corresponds to the true recombination frequency.

three settings of RmJMCMC (those with NT = 16) have very similar ESS, as expected
from the left plots of Figure 3. The right plot is in line with the conjecture that the
setting when T = 1 and N = 16 is the most efficient, observing that all three still
outperform the standard RJMCMC chain. When a chain has not reached stationarity
one must be careful when attempting to draw conclusions from the ESS, this is the case
for the standard RJMCMC chain shown in blue. Nevertheless, using annealing moves
(T > 1) or multiple importance points (N > 1) is beneficial as the corresponding chains
appear to converge more rapidly towards the limiting distribution.

Figures 4 and 5 compare other quantities of interest. Figure 4 shows the recombi-
nation frequencies across the sequence of length 50K depicting the active number of

18 Speeding up Inference of Homologous Recombination in Bacteria

Figure 5: Average recombination frequency between edges, y-axis indicates the edge
number where a recombination departed, x-axis denotes the edge number where a re-
combination landed. The plots correspond to the corners of the 98x99 matrices contain-
ing the recombination frequencies between edges.

recombinations affecting each site. Despite the apparent similarity of the results for the
different schemes (top and middle rows), when looking at a smaller scale there are im-
portant deviances from the truth (bottom plots) that are direct consequence of a bad
mixing from the chain. Settings with large values of NT have greater chances of better
exploring the complicated state space in the ClonalOrigin model.

Figure 5 also shows recombination frequencies, but between edges in the tree.
Coloured squares indicate pair of edges on the tree joined by several recombination
events, depending on the scale. In this case, the differences between the schemes and
against the ground truth are negligible.

Example 2. Typical setting: 50 sequences, length 10Kb, mean tract length δ = 236,
global mutation rate θ = 300 (θs = 0.03), global recombination rate ρ = 50 (ρs = 0.005).

This example is similar to the previous one, except for the length of the sequence
which is now 10Kb. The global mutation and recombination rates have been scaled
appropriately leaving the per-site rates the same as before. Figure 6 contains some plots
of interest, we observe once more an improvement of the ESS and faster convergence of
the log-likelihood without considering running times. However, when time is taken into
account (right plots) running RmJMCMC seems to be worth it only when T = 1 and

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 19

Figure 6: Top row: Effective sample sizes per 10 thousand iterations (left) and per hour
of running time (right). Middle and bottom row: Trace plots for the total number of
recombinations (bottom) and for the log-likelihood (middle) for different combinations
of T and N and using 10 million iterations.

N = 16. Having shorter sequences makes the inference problem less expensive, so the
schemes where T > 1 do not seem to add any benefit.

Example 3. Typical setting: Comparison across schemes with different sequence lengths
and different number of sequences. For all cases δ = 236, θs = 0.03, ρs = 0.005.

Here we compare how the ESS is affected as the length of the sequences becomes
larger and as the number of sequences increases. Figure 7 presents the results for lengths
of 10Kb, 20Kb and 50Kb. From the plots in the bottom row, the inverse of the ESS
appears to be linear as the length of the sequence increases, more specifically, doubling

20 Speeding up Inference of Homologous Recombination in Bacteria

Figure 7: ESS comparison for 10Kb, 20Kb and 50Kb (plots in rows 1-3 , respectively)
considering 50 sequences in all cases. Bottom plots: increase of the inverse of the ESS
as a function of sequence length.

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 21

Figure 8: ESS comparison for 50, 100 and 250 sequences (plots in rows 1-3 , respectively)
considering a length of 10K in all cases. Bottom plots: increase of the inverse of the ESS
as a function of the number of sequences.

22 Speeding up Inference of Homologous Recombination in Bacteria

the sequence length halves the ESS. Interestingly, the reduction of ESS for the RJMCMC
chain (in blue) when taking into account the running time seems more drastic than the
other schemes.

In contrast, increasing the number of sequences seems to have a logarithmic effect
on the inverse of the ESS as seen in Figure 8; however, when considering running times,
the effect becomes linear. For this case, the method with less reduction of ESS is the
RJMCMC chain. Thus, RmJMCMC seems to outperform RJMCMC when having larger
sequences rather than when having lots of short sequences.

3.1 Application to Escherichia coli data

Here we present results for a dataset of 27 sequences from Escherichia coli on two
regions with different recombination intensity; this dataset has been previously studied
using ClonalOrigin (Didelot et al., 2012). Similarly as in the simulated examples, we
have fixed the clonal genealogy T and also some of the global parameters. The specific
details on how these fixed values were obtained can be found in Didelot et al. (2012).

Example 4. E. coli data on region of length 27.1Kb. The fixed parameters considered
here are the clonal genealogy T and the mutation rate per site θs = 0.0125. There-
fore, the inference is performed on the set of recombination events R and the global
parameters ρ and δ, i.e. the target distribution arises from (2.1) by fixing T and θ
accordingly.

Figure 9 presents some preliminary results on a region with a moderate recombina-
tion frequency of ρs near 0.01. Observe that, even though increasing N does not seem
to improve the value of the ESS adjusted for running time, the log-likelihood trace plot
appears to indicate there is some advantage of taking N > 1 during the burn-in phase.
Interestingly, the trace plots in the bottom row show that when N > 1 the chain ap-
pears to favour large values for ρ during the burn-in stage, whereas for δ might take
different routes towards the apparent high-posterior region. Clearly, further simulations
are needed to decide whether RmJMCMC offers a clear advantage.

Performing full inference can be quite challenging since the global parameters have a
strong influence in the number and length of recombination events. We thus run further
simulations but reducing the complexity by fixing the global parameter δ to δ = 542.
Doing this allow us to obtain convergent chains in a decent amount of time and with
moderate file sizes. In Figure 10 we observe the results when δ is fixed. As commented
before, the ESS adjusted for time (top-left plot) does not tell the whole story; in fact,
the chain when N = 24 reaches regions where the likelihood is much higher (top-right
plot). This effect does not seem to affect neither the inferred number of recombination
events nor the recombination rate ρ (middle plots). However, the mean recombination
frequencies (bottom-left plot) seem to be quite different, in certain regions, depending
on the value of N ; in particular, when N = 12 or N = 24 the chains seem to infer a
region of very high recombination near the site 2000, whereas the chain N = 1 does
not seem to reflect this. Finally, there seems to be almost no variation in the inferred
recombination frequencies between edges (bottom-right plot).

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 23

Figure 9: E. coli data on region of length 27.1Kb allowing moves on δ and ρ. Top-left:
ESS comparison for three different RmJMCMC schemes where T = 1; top-right: trace
plots for the log-likelihood; bottom-left: trace plots for ρ; bottom-right: trace plots for
δ.

Example 5. E. coli data on region of length 3.4Kb. Here we consider a shorter region
but for which we know the recombination frequency is higher. The fixed parameters con-
sidered once again are the clonal genealogy T and the mutation rate per site θs = 0.0125,
we have also fixed the tract length δ = 542 due to the high levels of recombination. The
inference is thus performed on the set of recombination events R and the global param-
eter ρ, i.e. the target distribution arises from (2.1) by fixing T , θ and δ accordingly.

Observe from Figure 11 that this is a more challenging region for the E. coli data. In
particular, observe that apparently the setting N = 12 does not provide an advantage
in terms of reaching a high likelihood region in a shorter time; however, when looking
at the trace plots for the number of recombination events and for ρ it does appear to
have an improvement. In this case ESS plots have not been presented since clearly the
chain has not reached stationarity, even after nearly 21 days of running the algorithms.
Recall that accurate ESS values are based on the fact that the chains have converged.
Observe that the recombination rate in this region is much higher than in the previous
example, with ρs reaching values around 0.17. Due to the difficulty of this example,
further simulations are needed in order to have a clearer picture of the benefits, if any,
from running a RmJMCMC algorithm.

Further simulations were run fixing the value ρ = 670, which is roughly the value

24 Speeding up Inference of Homologous Recombination in Bacteria

Figure 10: E. coli data on region of length 27.1Kb allowing moves on ρ and fixing
δ = 542. Top-left: ESS comparison for three different RmJMCMC schemes where T = 1;
top-right: trace plots for the log-likelihood; middle-left: trace plots for the number of
recombination events; middle-right trace plots for ρ; bottom-left: comparison of mean
recombination frequencies per site; bottom-right: mean recombination frequencies be-
tween edges.

reached by the chains during the last hundreds of iterations. Once more this reduces the
complexity of the inference problem in order to obtain sensible estimates in a manageable
amount of time. Figure 12 shows the results when ρ and δ are fixed observing that in
this case the ESS adjusted by time does seem to improve for the chains with multiple
jump. All chains seem to reach similar regions in the case when looking at the trace
plots for the log-likelihood and for number of recombination events; however, the mean

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 25

Figure 11: E. coli data on region of length 3.4Kb. Top-left: ESS comparison for three
different RmJMCMC schemes where T = 1; top-right: trace plots for the log-likelihood;
bottom-left: trace plots for ρ; bottom-right: trace plots for δ.

recombination frequencies suggest that the chains when N = 12 and N = 56 provide
similar answers but quite different to N = 1.

4 Discussion
In this study we have shown that the RmJMCMC algorithm has the potential of speed-
ing up the convergence in the ClonalOrigin model (Didelot et al., 2010) towards a
region of high likelihood, hence reducing the number of iterations and running time
when compared to a standard RJMCMC. The version used in the examples presented

26 Speeding up Inference of Homologous Recombination in Bacteria

Figure 12: E. coli data on region of length 3.4Kb fixing ρ = 670 and δ = 542. Top-left:
ESS comparison for three different RmJMCMC schemes where T = 1; top-right: trace
plots for the log-likelihood; bottom-left: trace plots for the number of recombination
events; bottom-right: comparison of mean recombination frequencies per site.

here is possibly the simplest that one could implement, namely using the prior distri-
bution for proposing and perturbing recombination events. However, other alternatives
are possible that may lead to better results, for example splitting or merging existing
recombination events, or modifying the prior accordingly if recombination is more likely
to happen in some parts of the tree (Ansari and Didelot, 2014) or in some specific
regions of the genome (Yahara et al., 2014).

Similarly, different perturbations in the annealing step may be considered since in the
presented examples there is no clear advantage when taking T > 1. Alternatives include
random-walk style proposals for some (or all) of the variables involved in the proposed
recombination event (ai, bi, xi, yi). In this respect, within the annealing process, one
should also consider perturbing all of the existing recombination events and not just
the recently proposed one. Finally, it is worth pointing out that the number of cores
used in the presented examples was not particularly large; nonetheless we were able to
observe significant improvements in some cases. It would be interesting to perform a
much larger study where several hundred cores are at hand.

Here the RmJMCMC algorithm has been presented in the context of a model of
bacterial recombination, but in principle it could be implemented to other models in
population genetics where the dimension of the posterior is not fixed, for example the

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 27

inference of demographic history (Opgen-Rhein et al., 2005), the estimation of trans-
mission networks (Didelot et al., 2017) or the selection of a substitution site model
(Bouckaert and Drummond, 2017).

Supplementary Material
Supplementary Material to “Speeding up Inference of 2 Homologous Recombination in
Bacteria” (DOI: 10.1214/23-BA1388SUPP; .pdf).
Details on priors: Full details of prior distributions used on the full set of parameters.
Likelihood computation: Details on how to compute the likelihood function using the
JC69 model.
RJMCMC as an importance estimator within MCMC: Brief explanation of how the
acceptance ratio in the RJMCMC can be understood as an unbiased estimator of the
ratio in the ideal algorithm.
Annealing Moves: Details of the upwards and downwards moves used in the main algo-
rithm.

References
Alquier, P., Friel, N., Everitt, R., and Boland, A. (2016). “Noisy Monte Carlo: con-

vergence of Markov chains with approximate transition kernels”. Statistics and Com-
puting, 26(1-2): 29–47. MR3439357. doi: https://doi.org/10.1007/s11222-014-
9521-x. 9, 12

Andrieu, C., Doucet, A., Yıldırım, S., and Chopin, N. (2018). “On the utility of
Metropolis-Hastings with asymmetric acceptance ratio”. URL http://arxiv.org/
abs/1803.09527 3, 5, 6, 9, 12

Andrieu, C., Yıldırım, S., Doucet, A., and Chopin, N. (2021). “Metropolis-Hastings with
Averaged Acceptance Ratios”. URL https://arxiv.org/abs/2101.01253 3

Ansari, M. A. and Didelot, X. (2014). “Inference of the Properties of the Recombination
Process from Whole Bacterial Genomes”. Genetics, 196: 253–265. 26

Bouckaert, R., Vaughan, T. G., Fourment, M., Gavryushkina, A., Heled, J., Denise,
K., Maio, N. D., Matschiner, M., Ogilvie, H., Plessis, L., and Popinga, A. (2019).
“BEAST 2.5: An Advanced Software Platform for Bayesian Evolutionary Analysis”.
PLoS Comput. Biol., 15(4): e1006650. 2

Bouckaert, R. R. and Drummond, A. J. (2017). “bModelTest: Bayesian Phylogenetic
Site Model Averaging and Model Comparison”. BMC Evolutionary Biology, 17(1):42.
MR2712977. 27

Brown, T., Didelot, X., Wilson, D. J., and De Maio, N. (2016). “SimBac: simulation
of whole bacterial genomes with homologous recombination”. Microb. Genomics, 2:
10.1099/mgen.0.000044. 1

Castillo-Ramírez, S., Harris, S. R., Holden, M. T. G., He, M., Parkhill, J., Bentley, S. D.,

https://doi.org/10.1214/23-BA1388SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=3439357
https://doi.org/10.1007/s11222-014-9521-x
https://doi.org/10.1007/s11222-014-9521-x
http://arxiv.org/abs/1803.09527
http://arxiv.org/abs/1803.09527
https://arxiv.org/abs/2101.01253
https://mathscinet.ams.org/mathscinet-getitem?mr=2712977

28 Speeding up Inference of Homologous Recombination in Bacteria

and Feil, E. J. (2011). “The Impact of Recombination on dN/dS within Recently
Emerged Bacterial Clones”. PLoS Pathogens, 7(7): e1002129. 2

Collins, C. and Didelot, X. (2018). “A phylogenetic method to perform genome-wide
association studies in microbes that accounts for population structure and recombi-
nation”. PLoS Computational Biology, 14(2): e1005958. 1

De Maio, N. and Wilson, D. J. (2017). “The Bacterial Sequential Markov Coalescent”.
Genetics, 206(1): 333–343. 2

Del Moral, P., Doucet, A., and Jasra, A. (2006). “Sequential Monte Carlo sam-
plers”. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
68(3): 411–436. MR2278333. doi: https://doi.org/10.1111/j.1467-9868.2006.
00553.x. 2

Didelot, X., Croucher, N. J., Bentley, S. D., Harris, S. R., and Wilson, D. J. (2018).
“Bayesian inference of ancestral dates on bacterial phylogenetic trees”. Nucleic Acids
Research, 46: e134. 1

Didelot, X. and Falush, D. (2007). “Inference of bacterial microevolution using multilo-
cus sequence data”. Genetics, 175(3): 1251–66. 2

Didelot, X., Fraser, C., Gardy, J., and Colijn, C. (2017). “Genomic Infectious Disease
Epidemiology in Partially Sampled and Ongoing Outbreaks”. Molecular Biology and
Evolution, 34: 997–1007. 27

Didelot, X., Lawson, D., Darling, A., and Falush, D. (2010). “Inference of homologous re-
combination in bacteria using whole-genome sequences”. Genetics, 186(4): 1435–1449.
2, 4, 9, 10, 14, 25

Didelot, X., Lawson, D. J., and Falush, D. (2009). “SimMLST: simulation of multi-locus
sequence typing data under a neutral model”. Bioinformatics, 25(11): 1442–4. 1

Didelot, X. and Maiden, M. C. J. (2010). “Impact of recombination on bacterial evolu-
tion”. Trends in Microbiology, 18(7): 315–322. 2

Didelot, X., Méric, G., Falush, D., and Darling, A. E. (2012). “Impact of homologous and
non-homologous recombination in the genomic evolution of Escherichia coli”. BMC
Genomics, 13(1): 256. 22

Didelot, X. and Wilson, D. J. (2015). “ClonalFrameML: Efficient Inference of Recombi-
nation in Whole Bacterial Genomes”. PLoS Computational Biology, 11(2): e1004041.
2

Dingle, K. E., Elliott, B., Robinson, E., Griffiths, D., Eyre, D. W., Stoesser, N., Vaughan,
A., Golubchik, T., Fawley, W. N., Wilcox, M. H., Peto, T. E. A., Walker, A. S., Riley,
T. V., Crook, D. W., and Didelot, X. (2014). “Evolutionary History of the Clostridium
difficile Pathogenicity Locus”. Genome Biol. Evol., 6: 36–52. 2

Dinh, V., Darling, A. E., and Matsen, F. A. (2018). “Online Bayesian phylogenetic
inference: Theoretical foundations via sequential Monte Carlo”. Systematic Biology.
2

https://mathscinet.ams.org/mathscinet-getitem?mr=2278333
https://doi.org/10.1111/j.1467-9868.2006.00553.x
https://doi.org/10.1111/j.1467-9868.2006.00553.x

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 29

Doucet, A., Freitas, N., and Gordon, N. (2001). “An Introduction to Sequential Monte
Carlo Methods.” In Sequential Monte Carlo Methods in Practice, 3–14. New York,
NY: Springer New York. MR1847784. doi: https://doi.org/10.1007/978-1-4757-
3437-9_1. 2

Everitt, R. G., Culliford, R., Medina-Aguayo, F., and Wilson, D. J. (2019). “Se-
quential Monte Carlo with transformations”. Statistics and Computing. MR4065225.
doi: https://doi.org/10.1007/s11222-019-09903-y. 2

Felsenstein, J. (1973). “Maximum Likelihood and Minimum-Steps Methods for Esti-
mating Evolutionary Trees from Data on Discrete Characters”. Systematic Biology,
22(3): 240–249. 4

Felsenstein, J. (1981). “Evolutionary trees from DNA sequences: A maximum likelihood
approach”. Journal of Molecular Evolution, 17(6): 368–376. 4

Fourment, M., Claywell, B. C., Dinh, V., McCoy, C., Matsen IV, F. A., and Darling,
A. E. (2018). “Effective online Bayesian phylogenetics via sequential Monte Carlo
with guided proposals”. Systematic Biology, 67(3): 490–502. 2

Green, P. J. (1995). “Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination”. Biometrika, 82(4): 711–732. MR1380810.
doi: https://doi.org/10.1093/biomet/82.4.711. 2, 5

Griffiths, R. C. (1996). “Ancestral inference from samples of DNA sequences with re-
combination”. Journal of Computational Biology. 1

Hedge, J. and Wilson, D. J. (2014). “Bacterial phylogenetic reconstruction from whole
genomes is robust to recombination but demographic inference is not”. MBio, 5(6):
6–9. 1

Hudson, R. R. (1990). “Gene genealogies and the coalescent process”. In Oxford Surveys
in Evolutionary Biology. 1

Jukes, T. H. and Cantor, C. R. (1969). “Evolution of protein molecules BT - Mammalian
protein metabolism”. In Mammalian protein metabolism. 4

Karagiannis, G. and Andrieu, C. (2013). “Annealed Importance Sampling Reversible
Jump MCMC Algorithms”. Journal of Computational and Graphical Statistics, 22(3):
623–648. MR3173734. doi: https://doi.org/10.1080/10618600.2013.805651. 5,
9, 10

Kingman, J. F. C. (1982). “The coalescent”. Stochastic Processes and their Applications.
MR0671034. doi: https://doi.org/10.1016/0304-4149(82)90011-4. 3

Krause, D. J. and Whitaker, R. J. (2015). “Inferring speciation processes from patterns
of natural variation in microbial genomes”. Systems Biology, 64(6): 926–935. 2

Marjoram, P. and Wall, J. D. (2006). “Fast “coalescent” simulation”. BMC Genetics.
2

McVean, G. A. and Cardin, N. J. (2005). “Approximating the coalescent with recom-

https://mathscinet.ams.org/mathscinet-getitem?mr=1847784
https://doi.org/10.1007/978-1-4757-3437-9_1
https://doi.org/10.1007/978-1-4757-3437-9_1
https://mathscinet.ams.org/mathscinet-getitem?mr=4065225
https://doi.org/10.1007/s11222-019-09903-y
https://mathscinet.ams.org/mathscinet-getitem?mr=1380810
https://doi.org/10.1093/biomet/82.4.711
https://mathscinet.ams.org/mathscinet-getitem?mr=3173734
https://doi.org/10.1080/10618600.2013.805651
https://mathscinet.ams.org/mathscinet-getitem?mr=0671034
https://doi.org/10.1016/0304-4149(82)90011-4

30 Speeding up Inference of Homologous Recombination in Bacteria

bination”. Philosophical Transactions of the Royal Society B: Biological Sciences,
360(1459): 1387–1393. 2

Medina-Aguayo, F. J., Didelot, X., and Everitt, R. G. (2023). “Supplementary Material
for “Speeding up Inference of Homologous Recombination in Bacteria”.” Bayesian
Analysis. doi: https://doi.org/10.1214/23-BA1388SUPP. 3

Neal, R. M. (2001). “Annealed Importance Sampling”. Statistics and computing, 11(2):
125–139. MR1837132. doi: https://doi.org/10.1023/A:1008923215028. 6

Ogundijo, O. E. and Wang, X. (2017). “A sequential Monte Carlo approach to gene
expression deconvolution”. PLOS ONE , 12(10): 1–31. 2

Opgen-Rhein, R., Fahrmeir, L., and Strimmer, K. (2005). “Inference of Demographic
History from Genealogical Trees Using Reversible Jump Markov Chain Monte Carlo”.
BMC Evolutionary Biology, 5: 6. 27

Perron, G. G., Lee, A. E., Wang, Y., Huang, W. E., and Barraclough, T. G. (2012).
“Bacterial recombination promotes the evolution of multi-drug-resistance in function-
ally diverse populations”. Proc. R. Soc. B Biol. Sci., 279(1733): 1477–1484. 2

Rasmussen, D. A., Volz, E. M., and Koelle, K. (2014). “Phylodynamic Inference for
Structured Epidemiological Models”. PLOS Computational Biology, 10(4): 1–16. 2

Robert, C. P. and Casella, G. (2004). Monte Carlo Statistical Methods. Springer Texts
in Statistics. New York, NY: Springer New York. MR2080278. doi: https://doi.
org/10.1007/978-1-4757-4145-2. 15

Schierup, M. H. and Hein, J. (2000). “Consequences of recombination on traditional
phylogenetic analysis”. Genetics, 156(2): 879–91. 1

Sheppard, S. K., Didelot, X., Jolley, K. A., Darling, A. E., Pascoe, B., Meric, G., Kelly,
D. J., Cody, A., Colles, F. M., Strachan, N. J. C., Ogden, I. D., Forbes, K., French,
N. P., Carter, P., Miller, W. G., McCarthy, N. D., Owen, R., Litrup, E., Egholm,
M., Affourtit, J. P., Bentley, S. D., Parkhill, J., Maiden, M. C. J., and Falush, D.
(2013a). “Progressive genome-wide introgression in agricultural Campylobacter coli”.
Molecular Ecology, 22: 1051–1064. 2

Sheppard, S. K., Didelot, X., Meric, G., Torralbo, A., Jolley, K. A., Kelly, D. J., Bentley,
S. D., Maiden, M. C. J., Parkhill, J., and Falush, D. (2013b). “Genome-wide associ-
ation study identifies vitamin B5 biosynthesis as a host specificity factor in Campy-
lobacter”. Proceedings of the National Academy of Sciences of the United States of
America, 110(29): 11923–7. 2

Smith, R., Ionides, E., and King, A. (2017). “Infectious Disease Dynamics Inferred from
Genetic Data via Sequential Monte Carlo”. Molecular Biology and Evolution, 34(8):
2065–2084. 2

Tavaré, S. (1986). “Some probabilistic and statistical problems in the analysis of DNA
sequences”. Lectures on mathematics in the life sciences, 17(2): 57–86. MR0846877.
4

https://doi.org/10.1214/23-BA1388SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=1837132
https://doi.org/10.1023/A:1008923215028
https://mathscinet.ams.org/mathscinet-getitem?mr=2080278
https://doi.org/10.1007/978-1-4757-4145-2
https://doi.org/10.1007/978-1-4757-4145-2
https://mathscinet.ams.org/mathscinet-getitem?mr=0846877

F. J. Medina-Aguayo, X. Didelot, and R. G. Everitt 31

Vaughan, T. G., Welch, D., Drummond, A. J., Biggs, P. J., George, T., and French,
N. P. (2017). “Inferring Ancestral Recombination Graphs from Bacterial Genomic
Data”. Genetics, 205(2): 857–870. 2

Vos, M. and Didelot, X. (2009). “A comparison of homologous recombination rates in
bacteria and archaea”. The ISME Journal, 3(2): 199–208. 2

Wiuf, C. and Hein, J. (1999). “Recombination as a point process along sequences”.
Theoretical Population Biology. 3

Wiuf, C. and Hein, J. (2000). “The coalescent with gene conversion”. Genetics, 155(1):
451–62. 1

Yahara, K., Didelot, X., Ansari, M. A., Sheppard, S. K., and Falush, D. (2014). “Efficient
Inference of Recombination Hot Regions in Bacterial Genomes”. Molecular biology and
evolution, 31: 1593–605. 26

Acknowledgments

FJM-A and RGE were supported by the UK Biotechnology and Biological Sciences Research
Council grant BB/N00874X/1. FJM-A also acknowledges support from an ONRG-RGCOMM
grant, and partial funding from CONACYT CB-2016-01-284451 grant.

	Introduction
	Methods
	Results
	Application to Escherichia coli data

	Discussion
	Supplementary Material
	References

